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Integer Multiplication & Factoring as a One Way 

Function.

p,q N=pq

hard

easy

Can a public key system be based
on this observation ?????
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The Multiplicative Group Zpq*

• p and q denote two large primes (e.g. 512 bits long).

• Denote their product as N = pq.

• The multiplicative group ZN
* =Zpq

* contains all integers 
in the range [1,pq-1] that are relatively prime to both p 
and q.

• The size of the group is 

– φ(N) = φ(pq) = (p-1) (q-1) = N - (p+q) + 1 

• For every x ∈ ZN
*, xφ(N)=x(p-1)(q-1) = 1 mod N.



Trapdoor permutation

• A trapdoor permutation is a tuple of three PPT (Probabilistic 

Polynomial Time) algorithms:

– GEN(1k): Outputs a pair (F,F-1)

– F is a permutation over {0,1}k.  (In our case the 
permutation is over Zn*.)

– Correctness: For all x, F-1(F(x)) = x.

– One-wayness: For all PPT  A, for (F,F-1) randomly 
generated by GEN, and random x, the probability that 
A(F,F(x))=x is negligible.

– In other words, inverting F without the trapdoor F-1 is hard.

– Looks ideal for public key encryption.
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Example

• fg,p(x) = gx mod p is not a trapdoor one way function.

– Why?

• Therefore El Gamal encryption is not based on 
assuming the existence of a trapdoor one way function.
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The RSA Trapdoor Permutation

• The RSA function (textbook RSA)  is not a secure 
encryption system

– Does not satisfy basic security definitions

– Many attacks do exist

• It implements a trapdoor permutation, which is the 
basis for secure public key encryption

– It is the working horse of public key cryptography



page 7December 25, 2012 Introduction to Cryptography, Benny Pinkas      

The RSA Trapdoor Permutation

• Gen (public key):

– N=pq the product of two primes (we assume that factoring 
N is hard)

– e such that gcd(e,φ(N))=1        (are these hard to find?)

• Trapdoor (Private key):

– d such that de≡1 mod φ(N)

• Computing F (Encryption) of M∈ZN* 

– C=E(M)=Me mod N

• Computing F-1 (Decryption) of C∈ZN* 

– M=D(C)=Cd mod N    (why does it work?)



Public-key encryption from trapdoor 

permutations

• (Gen, F, F-1):    secure trapdoor permutation X ⟶ Y       

• (Es, Ds) :   symmetric encryption defined over (K,M,C)

• H: X ⟶ K  a hash function

Construct a pub-key enc. system (G, E, D):

Key generation Gen:    same as Gen for trapdoor 
permutation



Public-key encryption from trapdoor 

permutations

E( pk, m) :

x ⟵ X,    y ⟵ F(pk, x)

k ⟵ H(x),  
c ⟵ Es(k, m)

output   (y, c)

D( sk, (y,c) ) :

x ⟵ F-1(sk, y),

k ⟵ H(x),  
m ⟵ Ds(k, c)

output   m

• (Gen, F, F-1):    secure trapdoor permutation X ⟶ Y       

• (Es, Ds) :   symmetric auth. encryption defined over (K,M,C)

• H: X ⟶ K   a hash function

R



In pictures:

Security Theorem:    

If  (Gen, F, F-1)  is a secure trapdoor permutation, 

(Es, Ds) provides auth. enc.,

and   H: X ⟶ K    is a   “random oracle” 

then (Gen,E,D)   is  public key enc scheme 

secure against chosen ciphertext attacks.

F(pk, x) Es( H(x),  m )

header body

Public-key encryption from trapdoor 

permutations
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Security reductions

• Security by reduction

– Define what it means for the system to be “secure” 
(chosen plaintext/ciphertext attacks, etc.)

– State a “hardness assumption” (e.g., that it is hard to 
extract discrete logarithms in a certain group).

– Show that if the hardness assumption holds then the 
cryptosystem is secure. 

• Benefits:

– To examine the security of the system it is sufficient to 
check whether the assumption holds

– Similarly, for setting parameters (e.g. group size).
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RSA Security

• (For ElGamal encryption, we showed that if the DDH assumption 
holds then El Gamal encryption has semantic security.)

• We know that if factoring N is easy then RSA is insecure 
– can factor N ⇒ find p,q ⇒ find (p-1)(q-1) ⇒ find d from e ⇒ decrypt RSA

– Is the converse true? (we would have liked to show that decrypting RSA 
⇒ factoring N)

• Factoring assumption: 
– For a randomly chosen p,q of good length, it is infeasible to factor N=pq.

– This assumption might be too weak (might not ensure secure RSA 
encryption)

– Maybe it is possible to break RSA without factoring N ?

– We don’t know how to reduce RSA security to the hardness of factoring. 

– Fact: finding d is equivalent to factoring (will not be proved here)

– I.e., if it is possible to find d given (N,e) , then it is easy to factor N. 

– can find d from e  ⇒ can factor N
– But perhaps it is possible to break RSA without finding d?
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The RSA assumption: Trap-Door One-Way 

Function (OWF)

• (what is the minimal assumption required to show that RSA 
encryption is secure?)
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The RSA assumption: Trap-Door One-Way 

Function (OWF)

• The RSA assumption: the RSA function is a trapdoor 
permutation
– The setting: Generate random RSA keys (N,e,d). Choose 

random y∈ Z*N. Provide the adversary with N,e,y.

– The assumption that is the there is no efficient algorithm 
which can output x such that xe=y mod N.

– (The trapdoor is d s.t. ed = 1 mod φ(N))

• More concretely, (n,e,t,ε)-RSA assumption
– For all t-time adversaries A

– Choose p,q as random n/2 bit primes, define N=pq (|N|=n), 
choose random y in ZN*.

– Pr ( A(N,e,y) = x,  s.t. xe=y mod N) < ε
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RSA as a One Way Trapdoor Permutation

x xe mod N

hard

easy

Easy with trapdoor info ( d )
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RSA assumption: cautions

• The RSA assumption is quite well established:
– Namely, the assumption that RSA is a Trapdoor One-Way 

Permutation

– This means that it is hard to invert RSA on a random input 
– without knowing the secret key

• But is it a secure cryptosystem?
– Given the assumption it is hard to reconstruct the input x 

(if x was chosen randomly), but is it hard to learn anything 
about x?

• Theorem [G]: RSA hides the log(log(N)) least and most 
significant bits of a uniformly-distributed random input
– But some (other) information about pre-image may leak
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Security of RSA

• Deterministic encryption. In textbook RSA:

– M is always encrypted as Me

– The ciphertext is as long as the domain of M

• Corollary: textbook RSA does not have semantic security.

– If we suspect that a ciphertext is an encryption of a specific message 
M, we can encrypt m and compare it to the ciphertext. If the result is 
equal, then M is indeed the message encrypted in the ciphertext. 

• In the recitation we will show that if M is a 64 bit message, it is 
easy tor recover it using a meet in the middle attack.

• Encrypting random messages:

• It can be proved that if the message M is chosen uniformly at 
random from Z*N, then the RSA assumption means that no 
efficient algorithm can recover M from N,e,Me.
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Security of RSA

• Chosen ciphertext attack: (homomorphic property)

– Given C = Me  and C’ = M’ e it is easy to compute C’’=MM’ e

– Textbook RSA is therefore also susceptible to chosen 
ciphertext attacks:

• We are given a ciphertext C=Me

• We can choose a random R and generate C’=CRe (an 
encryption of M·R). 

• Suppose we can receive the decryption of C’. It is equal to M⋅R.

• We divide it by R and reveal M.
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Padded RSA

• In order to make textbook RSA semantically secure we 
must change it to be a probabilistic encryption
– The initial message must be preprocessed before being input to 

the RSA function
– For example, we can pad the message with random bits.

• Suppose that messages are of length |N|-L bits

• To encrypt a message M, choose a random string r of length L, 
and compute (r | M)e mod N.

• When decrypting, output only the last |N|-L bits of Cd mod N

• Any message has 2L possible encryptions. L must be long enough 
so that a search of all 2L pads is inefficient.

• There is no known proof that this is secure.
• Similar schemes can be proven to be secure under certain 

assumptions



RSA in practice – PKCS1 V1.5

• To encrypt a message

– The result is encrypted using the RSA function

– This system is widely deployed even though it has no 
security analysis.

– This solution makes the encryption non-deterministic but 
does not prevent chosen ciphertext attacks.
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02 random pad FF msg



PKCS1 V1.5 – Attack [Bleinchenbacher 98]

• To encrypt a message

• PKCS1 as used in SSL

– Server decrypts message. If first byte is not 02, sends an 
error message.

– Attacker can test if plaintext begins with “02”

• Attack:

– Given ciphertext C, choose random r. Compute C’ = reC = 
(r · PKCS1(msg))e.

– Send C’ and wait for response.
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02 random pad FF msg



PKCS1 V1.5 – Attack [Bleinchenbacher 98]

• The attacker can test if the plaintext r·PKCS1(msg) begins 
with “02”. This reveals information about the message. 

• To see why this works, consider a simplified setting:

– N = 2n (i.e., is a power of 2, which is impossible in RSA)

– Server returns an error message if msb=1

– Attacker sends (2·X)e. 

• Answer is 1 iff msb of (2·X) mod 2n is 1. Namely, if 2nd bit of X 
is 1.

– Attacker sends (4·X)e. 

• Answer is 1 3rd bit of X is 1.

– Continue to find all bits of X…  
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PKCS1 V2.0 – OAEP (based on slides by Dan Boneh)

• OAEP (Optimal asymmetric encryption padding)

• Encrypt X|Y using RSA

• Decryption: check pad and reject

if invalid.

Thm: If RSA is a trapdoor permutation

then RSA-OAEP provides chosen

ciphertext security when H,G are

“random oracles”.

Usually implement H,G using SHA-256.
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Implementation attacks (based on slides by Dan Boneh)

• Attack the implementation of RSA

• Timing attack (Kocher 97)

– The time it takes to compute Cd mod N can expose d.

• Power attack (Kocher 99)

– The power consumption of a smartcard while it is 
computing Cd mod N can expose  d.

• Faults attack:  (BDL 97) A computer error during Cd

mod N can expose d.   

– OpenSSL defense:  check output. 10% slowdown.

page 24December 25, 2012 Introduction to Cryptography, Benny Pinkas      



Digital Signatures
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Handwritten signatures

• Associate a document with an signer (individual)

• Signature can be verified against a different signature 
of the individual

• It is hard to forge the signature…

• It is hard to change the document after it was signed…

• Signatures are legally binding
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Desiderata for digital signatures

• Associate a document to an signer

• A digital signature is attached to a document (rather 

then be part of it)

• The signature is easy to verify but hard to forge

– Signing is done using knowledge of a private key

– Verification is done using a public key associated with the 
signer (rather than comparing to an original signature)

– It is impossible to change even one bit in the signed 
document 

• A copy of a digitally signed document is as good as the 
original signed document.

• Digital signatures could be legally binding…
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Non Repudiation

• Prevent signer from denying that it signed the message

• I.e., the receiver can prove to third parties that the 
message was signed by the signer

• This is different than message authentication (MACs)

– There the receiver is assured that the message was sent 
by the receiver and was not changed in transit

– But the receiver cannot prove this to other parties

• MACs: sender and receiver share a secret key K

• If R sees a message MACed with K, it knows that it could 
have only been generated by S

• But if R shows the MAC to a third party, it cannot prove that 
the MAC was generated by S and not by R
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Signing/verification process

Document M
signing

algorithm

Private signature key

Signature of M

Public verification key

verification

algorithm

valid / invalid

signer 

verifier Signature 

depends on M
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Diffie-Hellman 

“New directions in cryptography” (1976) 

• In public key encryption

– The encryption function is a trapdoor permutation f

• Everyone can encrypt =  compute  f(). (using the public key)

• Only Alice can decrypt = compute  f- -1(). (using her private key)

• Alice can use f  for signing

– Alice signs m by computing  s=f -1(m).

– Verification is done by computing  m=f(s).

• Intuition: since only Alice can compute f- -1(), forgery is 
infeasible. 

• Caveat: none of the established practical signature 
schemes following this paradigm is provably secure
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Example: simple RSA based signatures

• Key generation: (as in RSA)

– Alice picks random p,q. Finds e·d=1 mod (p-1)(q-1).

– Public verification key: (N,e)

– Private signature key: d

• Signing: Given m, Alice computes s=md mod N. 

• Verification: given m,s and public key (N,e).

– Compute m’ = se mod N.

– Output “valid” iff m’=m.
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Example: simple RSA based signatures
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Message lengths

• A technical problem: 
– |m| might be longer than |N|

– m might not be in the domain of f -1()

Solution “hash-and-sign” paradigm:

• Signing: First compute H(m), then compute the 
signature f -1(H(M)).  Where, 
– The range of H() must be contained in the domain of f -1().

– H() must be collision intractable. I.e. it is hard to find (in 
polynomial time) messages m, m’ s.t. H(m)=H(m’).

• Verification: 
– Compute f(s). Compare to H(m).

• Using H() is also good for security reasons. See below.
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Security of using a hash function

• Intuitively
– Adversary can compute H(), f(), but not H -1(), f -1().

– Can only compute (m,H(m)) by choosing m and computing H().

– Adversary wants to compute (m ,f -1(H(m))).

– To break signature needs to show s s.t. f(s)=H(m). (E.g. se=H(m).)

– Failed attack strategy 1:

• Pick s, compute f(s), and look for m s.t. H(m)=f(s).

– Failed attack strategy 2:

• Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’
(which is also a signature of m). 

• (If H() is not collision resistant, adversary could find m,m’ 
s.t. H(m) = H(m’).)

– This does not mean that the scheme is secure, only that these attacks 
fail. 


