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Groups we will use

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,…,p-1}, ×)

– E.g., Z7
* = ( {1,2,3,4,5,6} , ×)

• ZN
*  Multiplication modulo a composite number N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)

– E.g., Z10
* = ( {1,3,7,9}, ×)
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Cyclic Groups

• Exponentiation is repeated application of °
– a3 = a° a° a.

– a0 = 1.

– a-x = (a-1)x

• A group G is cyclic if there exists a generator g, s.t.          
∀ a∈G, ∃ i s.t. gi=a. 
– I.e., G= <g> = {1, g, g2, g3, …} 

– For example Z7
* = <3> = {1,3,2,6,4,5}

• Not all a∈G are generators of G, but they all generate a 
subgroup of G.
– E.g. 2 is not a generator of Z7

* 

• The order of a group element a is the smallest j>0 s.t.       
a j=1

• Lagrange’s theorem ⇒ for x∈Zp
*,   ord(x) | p-1.
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Computing in Zp
*

• P is a huge prime (1024 bits)

• Easy tasks (measured in bit operations):

– Adding in O(log p)  (namely, linear n the length of p)

– Multiplying in O(log2 p)   (and even in O(log1.7 p) )

– Inverting (a to a-1) in O(log2 p) 

– Exponentiations:

• xr mod p in O(log r · log2 p), using repeated squaring
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Euler’s phi function

• Lagrange’s Theorem: ∀a in a finite group G, a|G|=1.

• Euler’s phi function (aka, Euler’s totient function), 

– φ(n) = number of elements in Z*
n    (i.e. | {x | gcd(x,n)=1, 1≤x≤n} |

– φ(p) = p-1 for a prime p.

– n=∏i=1..k pi
e(i) ⇒ φ(n) = n·∏i=1..k (1-1/pi)

– φ(p2) = p(p-1) for a prime p. 

– n=p·q   ⇒ φ(n) =(p-1)(q-1) 

• Corollary: For Zn
* (n=p·q),    |Zn

*|= φ(n) =(p-1)(q-1).

• ∀a∈ Zn
* it holds that aφ(n) =1 mod n

– For Zp
* (prime p),   ap-1 =1 mod p    (Fermat’s theorem).

– For Zn
* (n=p·q),   a(p-1)(q-1) =1 mod n
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Hard problems in cyclic groups

A hard problem can be useful for constructing 
cryptographic systems, if we can show that breaking 
the system is equivalent to solving this problem.
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The Discrete Logarithm

• Let G be a cyclic group of order q, with a generator g.

– ∀h∈G,  ∃ x∈[0,…,q-1], such that  gx=h.

– This x is called the discrete logarithm of h to the base g.

– logg h = x.

– logg1 = 0,  and logg(h1⋅ h2) = logg(h1)+ logg(h2) mod q.
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The Discrete Logarithm Problem and Assumption

• The discrete log problem

– Choose G,g at random (from a certain family G of groups), 
where G is a cyclic group and g is a generator

– Choose a random element h∈ G

– Give the adversary the input (G,|G|,g,h)

– The adversary succeeds if it outputs loggh

• The discrete log assumption

– There exists a family G of groups for which the discrete 
log problem is hard

• Namely, the adversary has negligible success probability.
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Cyclic groups of prime order

• (The order of a group G is the number of elements in 
the group)

• Zp* has order p-1  (and p-1 is even and therefore non-
prime).

• We will need to work in groups of prime order.

• If p=2q+1, and q is prime, then Zp* has a subgroup of 
order q (namely, a subgroup of prime order, in which 
we will work).
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Hard problems in cyclic groups of prime order

• The following problems are believed to be hard in subgroups of 
prime order of Zp

*       (if the subgroup is large enough)

– The discrete log problem

– The Diffie-Hellman problem: The input contains g and x,y∈G, such 
that x=ga and y=gb (where a,b were chosen at random). The task is to 
find z=ga·b.

– The Decisional Diffie-Hellman problem: The input contains x,y∈G, 
such that x=ga and y=gb (and a,b were chosen at random); and a pair (z,z’) 
where one of (z,z’) is ga·b and the other is gc (for a random c). The task 
is to tell which of (z,z’) is ga·b. 

• Solving DDH ≤ solving DH ≤ solving DL

– All believed to be hard if the size of the subgroup > 2700.
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Classical symmetric ciphers

• Alice and Bob share a private key k.

• System is secure as long as k is secret.

• Major problem: generating and distributing k.

Alice Bob

k k
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Diffie and Hellman: “New Directions in 

Cryptography”, 1976.

• “We stand today on the brink of a revolution in 
cryptography. The development of cheap digital 
hardware has freed it from the design limitations of 
mechanical computing…

…such applications create a need for new types of 
cryptographic systems which minimize the necessity of 
secure key distribution…

…theoretical developments in information theory and 
computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science.”
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Diffie-Hellman

• Came up with the idea of public key cryptography

• Diffie and Hellman did not have an implementation for a 
public key encryption system

• Suggested a method for key exchange over insecure 
communication lines, that is still in use today.

Alice Bob

public keyBob secret keyBob

Everyone can learn Bob’s public key and encrypt messages to Bob. 

Only Bob knows the decryption key and can decrypt. 

Key distribution is greatly simplified. 
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Public Key-Exchange

• Goal: Two parties who do not share any secret 
information, perform a protocol and derive the same 
shared key.

• No eavesdropper can obtain the new shared key (if it 
has limited computational resources).

• The parties can  therefore safely use the key as an 
encryption key.
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The Diffie-Hellman Key Exchange Protocol

• Alice:

– picks a random a∈[0,q-1].

– Sends ga mod p to Bob.

– Computes k=(gb)a mod p

• Bob:

– picks a random b∈[0,q-1].

– Sends gb mod p to Alice.

– Computes k=(ga)b mod p

• Public parameters: a group where the DDH assumption 
holds. For example, a subgroup H⊂ Zp* (where |p|= 768 
or 1024, p=2q+1) of order q, and a generator g of H⊂ Zp*.

• K = gab is used as a shared key between Alice and Bob.

• DDH assumption ⇒ K is indistinguishable from a random key
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Diffie-Hellman: security

• A (passive) adversary

– Knows Zp
*, g

– Sees ga, gb

– Wants to compute gab, or at least learn something about it

• Recall the Decisional Diffie-Hellman problem: 

– Given random x,y∈Zp
*, such that x=ga and y=gb; and a pair 

(gab,gc) (in random order, for a random c), it is hard to tell 
which is gab.

– This is exactly the setting of the DH key exchange protocol
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Diffie-Hellman: security

• It is straightforward to show a reduction showing that an 
adversary that distinguishes the key gab generated in a 
DH key exchange from a random value in the group, 
can also break the DDH assumption.

• Note: it is insufficient to require that the adversary 
cannot compute gab.
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Diffie-Hellman key exchange: usage

• The DH key exchange can be used in any group in 
which the Decisional Diffie-Hellman (DDH) assumption 
is believed to hold.

• Currently, appropriate subgroups of Zp* and elliptic 
curve groups.

• Common usage:

– Overhead: 1-2 exponentiations

– Usually,

• A DH key exchange for generating a master key

• Master key used to encrypt session keys

• Session key is used to encrypt traffic with a symmetric 
cryptosystem
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• Why don’t we implement Diffie-Hellman in Zp* itself ?

(but rather in a subgroup H⊂ Zp*, for p=2q+1, of order 
q, and a generator g of H⊂ Zp*)

• For the system to be secure, we need that the DDH 
assumption holds.

• This assumption does not hold in Zp* (see discussion 
below)
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Quadratic Residues

• The square root of x∈Zp
* is y∈Zp

* s.t. y2=x mod p.

• Examples: sqrt(2) mod 7 = 3, sqrt(3) mod 7 doesn’t exist.

• How many square roots does x∈Zp
* have?

– If a and b are square roots of x, then x=a2=b2 mod p.
Therefore (a-b)(a+b)=0 mod p. Therefore either a=b or a= -b mod p.

– It cannot be that x has 3 or more different square roots, a,b,c, because 
then a= -b mod p, and also a= -c mod p, and therefore b=c.

– It cannot be that x has just a single root a of x, because (-a)2 = (-1)2a2 = 
x mod p.

• Therefore x has either 2 or 0 square roots, and is denoted as a 
Quadratic Residue (QR) or Non Quadratic Residue (NQR), 
respectively. There are exactly (p-1)/2 QRs.
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Quadratic Residues

• x(p-1)/2 is either 1 or -1 in Zp
* (since (x(p-1)/2)2  is always 1).

• Euler’s theorem: x∈Zp
* is a QR iff x(p-1)/2 = 1 mod p.

• Legendre’s symbol:

• Legendre’s symbol can be efficiently computed as x(p-1)/2 mod p.

• Another way to look at this: let g be a generator of Zp
*. Then every x can 

be written as x=gi mod p. It holds that x is a QR iff i is even.

• In Zp
* the quadratic residues form a subgroup of order (p-1)/2   (=q)
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Does the DDH assumption hold in Zp
*?

• The DDH assumption does not hold in Zp
*

– Assume that either x=ga or y=gb are QRs in Zp
*. 

– Then gab is also a QR, whereas a random gc is an NQR 
with probability ½. 

• Solution:  (work in a subgroup of prime order)

– Set p=2q+1, where q is prime.

– φ(Zp
*) = p-1 = 2q. Therefore Zp

*  has a subgroup H of prime 
order q.

– Let g be a generator of H  (for example,  g is a QR in Zp
*).

– The DDH assumption is believed to hold in H. (The 
Legendre symbol is always 1.)
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An active attack against the Diffie-Hellman Key 

Exchange Protocol

• An active adversary Eve.

• Can read and change the communication between 
Alice and Bob.

• …As if Alice and Bob communicate via Eve.

Alice BobEve
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Man–in-the-Middle: an active attack against the 

Diffie-Hellman Key Exchange protocol

• Alice:

– picks a random a∈[1,q].

– Sends ga mod p to Bob.

– Computes k=(gd)a mod p

– Solution: ?  (wireless usb)

• Bob:

Eve changes ga to gc

– picks a random b∈[1,q].

– Sends gb mod p to Alice.

– Computes k=(gc)b mod p

Eve changes gb to gd

Keys:

Alice                      Eve                   Bob

gad                         gad, gbc                   gbc
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Public key encryption

• Alice publishes a public key PKAlice.

• Alice has a secret key SKAlice.

• Anyone knowing PKAlice can encrypt messages using it.

• Message decryption is possible only if SKAlice is known.

• Compared to symmetric encryption:
– Easier key management: n users need n keys, rather than 

O(n2) keys, to communicate securely.

• Compared to Diffie-Hellman key agreement:
– No need for an interactive key agreement protocol. (Think 

about sending email…)

• Secure as long as we can trust the association of keys 
with users.
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Notes on public key encryption

• Must use different keys for encryption and decryption.

• Public key encryption cannot provide perfect secrecy:

– Suppose Epk() is an algorithm that encrypts m=0/1, and 
uses r random bits in operation.

– An adversary is given Epk(m). It can compare it to all 
possible 2r encryptions of 0…

• Efficiency is the main drawback of public key 
encryption.
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Defining a public key encryption

• The definition must include the following algorithms;

• Key generation:  KeyGen(1k)→(PK,SK) (where k is a 
security parameter, e.g. k=1024).

• Encryption: C = EPK(m) (E might be a randomized 
algorithm)

• Decryption: M= DSK(C)
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The El Gamal public key encryption system

• Public information (can be common to different public keys): 
– A group in which the DDH assumption holds. Usually start with a 

prime p=2q+1, and use H⊂Zp
* of order q. Define a generator g of H.

• Key generation: pick a random private key a in [1,|H|] (e.g. 
0<a<q). Define the public key h=ga  (h=ga mod  p).

• Encryption of a message m∈ H⊂ Zp
*

– Pick a random 0 < r < q.

– The ciphertext is (gr, hr·m).

• Decryption of (s,t)

– Compute t /sa (m= hr·m / (gr)a)

Using public key alone

Using private key
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El Gamal and Diffie-Hellman

• ElGamal encryption is similar to DH key exchange

– DH key exchange: Adversary sees ga, gb. Cannot 
distinguish the key gab from random.

– El Gamal: 

• A fixed public key ga. 

• Sender picks a random gr.

• Sender encrypts message using gar.

• El Gamal is like DH where

– The same ga  is used for all communication

– There is no need to explicitly send this ga  (it is already 
known as the public key of Alice)

Known to the adversary

Used as a key
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The El Gamal public key encryption system

• Setting the public information

• A large prime p, and a generator g of H⊂Zp
* of order q.

– |p| = 756 or 1024 bits.

– p-1 must have a large prime factor (e.g. p=2q+1) 

• Otherwise it is easy to solve discrete logs in Zp
*  (relevant also 

to DH key agreement)

• This large prime factor is also needed for the DDH 
assumption to hold (Legendre’s symbol).

– g must be a generator of a large subgroup of Zp
*, in which 

the DDH assumption holds.
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The El Gamal public key encryption system

• Encoding the message:

– m must be in the subgroup H generated by g.

– For example, p=2q+1, and H is the subgroup of quadratic 
residues (which has (p-1)/2=q items). We can map each 
message m∈{1,…,(p-1)/2} to the value     m2 mod p, which 
is in H.

• Encrypt m2 instead of m. Therefore decryption yields m2 and 
not m. Must then compute a square root to obtain m.

– Alternatively, encrypt m using (gr, H(hr)⊕ m). Decryption is 
done by computing H( (gr)a ).   (H is a hash function that 
preserves the pseudo-randomness of hr.)
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The El Gamal public key encryption system

• Overhead:

– Encryption: two exponentiations; preprocessing possible.

– Decryption: one exponentiation.

– message expansion:    m ⇒ (gr, hr·m).

• This is a randomized encryption

– Must use fresh randomness r for every message.

– Two different encryptions of the same message are 
different! (this is crucial in order to provide semantic 
security)
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Security proof

• Security by reduction
– Define what it means for the system to be “secure” (chosen 

plaintext/ciphertext attacks, etc.)

– State a “hardness assumption” (e.g., that it is hard to extract 
discrete logarithms in a certain group).

– Show that if the hardness assumption holds then the 
cryptosystem is secure.

– Usually prove security by showing that breaking the 
cryptosystem means that the hardness assumption is false.

• Benefits:
– To examine the security of the system it is sufficient to 

check whether the assumption holds

– Similarly, for setting parameters (e.g. group size).
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Semantic security

• Semantic Security: knowing that an encryption is either 
E(m0) or E(m1), (where m0,m1 are known, or even 
chosen by the attacker) an adversary cannot decide 
with probability better than ½ which is the case.

– This is a very strong security property.

• Suppose that a public key encryption system is 
deterministic, then it cannot have semantic security.

– In this case, E(m) is a deterministic function of m and P.

– Therefore, if Eve suspects that Bob might encrypt either 
m0 or m1, she can compute (by herself)  E(m0) and E(m1) 
and compare them to the encryption that Bob sends.
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Goal and method

• Goal

– Show that if the DDH assumption holds

– then the El Gamal cryptosystem is semantically secure

• Method:

– Show that if the El Gamal cryptosystem is not semantically 
secure

– Then the DDH assumption does not hold
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El Gamal encryption: breaking semantic security 

implies breaking DDH

• Proof by reduction:

– We can use an adversay that breaks El Gamal.

– We are given a DDH challenge: (g,ga,gr, (D0,D1) ) where one 
of D0,D1 is gar, and the other is gc. We need to identify gar.

– We give the adversay g and a public key: h=ga. 

– The adversary chooses m0,m1.

– We give the adversay (gr,De·mb), using random b,e∈{0,1}.

(That is, choose mb randomly from {m0,m1}, choose De 

randomly from {D0,D1}. The result is a valid El Gamal 
encryption if De=gar.)

– If the adversay guesses b correctly, we decide that De=gar. 
Otherwise we decide that De=gc.



page 37December 11, 2012 Introduction to Cryptography, Benny Pinkas      

El Gamal encryption: breaking semantic security 

implies breaking DDH

• Analysis:

– Suppose that the adversary can break the El Gamal 
encryption with prob 1.

– If De=gar then the adversary finds c with probability 1, 
otherwise it finds c with probability ½.

– Our success probability   ½ ⋅ 1 + ½ ⋅ ½ = 3/4.

– Suppose now that the adversary can break the El Gamal 
encryption with prob ½+p.

– If De=gar then the adversary finds c with probability ½+p, 
otherwise it finds c with probability ½.

– Our success probability   ½ ⋅ (½+p) + ½ ⋅ ½ = ½+½p. QED
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Chosen ciphertext attacks

• In a chosen ciphertext attack, the adversary is allowed 
to obtain decryptions of arbitrary ciphertexts of its 
choice (except for the specific message it needs to 
decrypt).

• El Gamal encryption is insecure against chosen 
ciphertext attacks:

– Suppose the adversary wants to decrypt <c1,c2> which is 
an ElGamal encryption of the form (gr,hrm).

– The adversary computes c’1=c1g
r’, c’2=c2h

r’m’, where it 
chooses r’,m’ at random.

– It asks for the decryption of <c’1,c’2>. It multiplies the 
plaintext by (m’)-1 and obtains m.
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Homomorphic property

• The attack on chosen ciphertext security is 
based on the homomorphic property of the 
encryption

• Homomorphic property:

– Given encryptions of x,y, it is easy to generate an 
encryption of x·y

• (gr, hr·x) × (gr’, hr’·y) → (gr’’, hr’’ ·x·y)
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Homomorphic encryption

• Homomorphic encryption is useful for performing 
operations over encrypted data.

• Given E(m1) and E(m2) it is easy to compute E(m1m2), 
even if you don’t know how to decrypt.

• For example, an election procedure:

– A “Yes” is E(2). A “No” vote is E(1).

– Take all the votes and multiply them. Obtain E(2j), where j 
is the number of “Yes” votes.

– Decrypt only the result and find out how many “Yes” votes 
there are, without identifying how each person voted. 


