Introduction to Cryptography

Lecture 5

Benny Pinkas

Differential Cryptanalysis

Differential Cryptanalysis of DES

DES diagram:

DES F functions

Differential Cryptanalysis [Biham-Shamir 1990]

- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
$-a=b \oplus c$
- $a=$ the bits of b in (a known) permuted order
- Linear relations can be exposed by solving a system of linear equations

Is a Linear F in a Feistel Network secure?

- Suppose $F\left(\mathrm{R}_{\mathrm{i}-1}, \mathrm{~K}_{\mathrm{i}}\right)=\mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$
- Namely, F is linear
- Then $\mathrm{R}_{\mathrm{i}}=\mathrm{L}_{\mathrm{i}-1} \oplus \mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$

$$
L_{i}=R_{i-1}
$$

- Write L_{16}, R_{16} as linear functions of L_{0}, R_{0} and K.
- Given $L_{0} R_{0}$ and $L_{16} R_{16}$ Solve and find K .
- F must therefore be non-linear.

- F is the only source of nonlinearity in DES.

DES F functions

Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
- Denote two different plaintexts as P and P^{*}
- Their difference is $\mathrm{dP}=\mathrm{P} \oplus \mathrm{P}^{*}$
- Let X and X^{*} be two intermediate values, for P and P^{*}, respectively, in the encryption process.
- Their difference is $d X=X \oplus X^{*}$
- Namely, dX is always the result of two inputs

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X^{*} are inputs to the same S-box. We can compute their difference $d X=X \oplus X^{*}$.
- $\mathrm{Y}=\mathrm{S}(\mathrm{X})$
- When $d X=0, X=X^{*}$, and therefore $Y=S(X)=S\left(X^{*}\right)=Y^{*}$, and $d Y=0$.
- When $d X \neq 0, X \neq X^{*}$ and we don't know dY for sure, but we can investigate its distribution.
- For example,

Distribution of Y^{\prime} for S1

- $d X=110100$
- There are $2^{6}=64$ input pairs with this difference, $\{(000000,110100)$, (000001,110101),...\}
- For each pair we can compute the xor of outputs of S1
- E.g., $\mathrm{S} 1(000000)=1110, \mathrm{~S} 1(110100)=1001$. $\mathrm{dY}=0111$.
- Table of frequencies of each dY:

0000	0001	0010	0011	0100	0101	0110	0111
0	8	16	6	2	0	0	12
1000	1001	1010	101	100	1101	110	1111
6	0	0	0	0	8	0	6

Differential Probabilities

- The probability of $d X \Rightarrow d Y$ is the probability that a pair of inputs whose xor is dX , results in a pair of outputs whose xor is $d Y$ (for a given S-box).
- Namely, for $d X=110100$ these are the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values
- dX=0 $\Rightarrow d Y=0$
- Entries with value 16/64
- (Recall that the outputs of the S-box are uniformly distributed, so the attacker gains a lot by looking at differentials rather than the original values.)

Warmup

Inputs: $\mathrm{L}_{0} \mathrm{R}_{0}, \mathrm{~L}_{0}{ }^{*} \mathrm{R}_{0}{ }^{*}$, s.t. $\mathrm{R}_{0}=\mathrm{R}_{0}{ }^{*}$.
Namely, inputs whose xor is $\mathrm{dL}_{0} 0$

3 Round DES

The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

Intermediate differences equal to

 plaintext/ciphertext differences

Finding K

DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if $\mathrm{dL}_{0}=40080000_{x}, \mathrm{dR}_{0}=04000000_{x}$

Then, with probability $1 / 4, \mathrm{dL}_{3}=04000000_{x}, \mathrm{dR}_{3}=4008000_{x}$

- 8 round DES is broken given 2^{14} chosen plaintexts.
- 16 round DES is broken given 2^{47} chosen plaintexts...

Message Authentication

Data Integrity, Message Authentication

- Risk: an active adversary might change messages exchanged between Alice and Bob

- Authentication is orthogonal to secrecy. It is a relevant challenge regardless of whether encryption is applied.

One Time Pad

- OTP is a perfect cipher, yet provides no authentication
- Plaintext $x_{1} x_{2} \ldots x_{n}$
- Key $\mathrm{k}_{1} \mathrm{k}_{2} \ldots \mathrm{k}_{\mathrm{n}}$
- Ciphertext $\mathrm{c}_{1}=\mathrm{x}_{1} \oplus \mathrm{k}_{1}, \mathrm{c}_{2}=\mathrm{x}_{2} \oplus \mathrm{k}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}} \oplus \mathrm{k}_{\mathrm{n}}$
- Adversary changes, e.g., c_{2} to $1 \oplus \mathrm{c}_{2}$
- User decrypts $1 \oplus \mathrm{x}_{2}$
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)
- They were not designed to withstand adversarial behavior.

The setting

- A random key K is shared between Alice and Bob.
- Authentication (tagging) algorithm:
- Compute a Message Authentication Code: $\alpha=M A C_{K}(m)$.
- Send m and α
- Verification algorithm: $V_{K}(m, \alpha)$. Output is a single bit.
- $V_{K}\left(m, M A C_{K}(m)\right)=$ accept.
- For $\alpha \neq M A C_{K}(m), \quad V_{K}(m, \alpha)=$ reject.
- How does $V_{k}(m)$ work?
- Receiver knows k. Receives m and α.
- Receiver uses k to compute $M A C_{K}(m)$.
$-V_{K}(m, \alpha)=1$ iff $M A C_{K}(m)=\alpha$.

Common Usage of MACs for message authentication

Requirements

- Security: The adversary,
- Knows the MAC algorithm (but not K).
- Is given many pairs $\left(m_{i}, \operatorname{MAC} C_{K}\left(m_{i}\right)\right)$, where the m_{i} values might also be chosen by the adversary (chosen plaintext).
- Cannot compute ($m, M A C_{K}(m)$) for any new m ($\forall i m \neq m_{i}$).
- The adversary must not be able to compute $M A C_{K}(m)$ even for a message m which is "meaningless" (since we don't know the context of the attack).
- Efficiency: MAC output must be of fixed length, and as short as possible.
$-\Rightarrow$ The MAC function is not 1-to-1.
$-\Rightarrow$ An n bit MAC can be broken with prob. of at least 2^{-n}.

Constructing MACs

- Length of MAC output must be at least n bits, if we do not want the cheating probability to be greater than 2^{-n}
- Constructions of MACs
- Based on block ciphers (CBC-MAC)
or,
- Based on hash functions
- More efficient
- At the time, encryption technology was controlled (export restricted) and it was preferable to use other means when possible.

Definitions - security against chosen message attacks

- The authentication game
- A secret key K is chosen at random.
- The adversary can obtain the MAC $M A C_{K}(m)$ on any message m of its choice.
- Let Q be the set of messages whose MACs were learned by the adversary.
- At the end, the adversary outputs ($m^{\prime}, \alpha^{\prime}$), for an $m^{\prime} \notin Q$.
- The adversary succeeds if $V_{K}\left(m^{\prime}, \alpha^{\prime}\right)=$ accept.
- A MAC is (t, ε)-secure if for every adversary A that runs at most t steps, the probability of success is at most ε.

CBC

- Reminder: CBC encryption
- Plaintext block is xored with previous ciphertext block

CBC MAC

- Encrypt M in CBC mode, using the MAC key. Discard $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{n}-1}$ and define $\mathrm{MAC}_{K}\left(\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}\right)=\mathrm{C}_{\mathrm{n}}$.

Security of CBC-MAC

- Claim: if E_{K} is pseudo-random then
- CBC-MAC, applied to fixed length messages, is a pseudorandom function,
- and is therefore a secure MAC (i.e., resilient to forgery).
- We will not prove this claim.
- But, CBC-MAC is insecure if variable length messages are allowed

Security of CBC-MAC

- Insecurity of CBC-MAC when applied to messages of variable length:
- Get $\mathrm{C}_{1}=\operatorname{CBC}-\mathrm{MAC}_{K}\left(\mathrm{M}_{1}\right)=\mathrm{E}_{\mathrm{K}}\left(0 \oplus \mathrm{M}_{1}\right)$
- Ask for MAC of C_{1}, i.e., $\mathrm{C}_{2}=\mathrm{CBC}-\mathrm{MAC}_{K}\left(\mathrm{C}_{1}\right)=\mathrm{E}_{\mathrm{K}}\left(0 \oplus \mathrm{C}_{1}\right)$
- But, $E_{K}\left(C_{1} \oplus 0\right)=E_{K}\left(E_{K}\left(0 \oplus M_{1}\right) \oplus 0\right)=C B C-M A C_{K}\left(M_{1} \mid 0\right)$
- Can you show, for every n, a collision between two messages of lengths 1 and $n+1$?
- It's known that CBC-MAC is secure if message space is prefix-free.

CBC-MAC for variable length messages

- Solution 1: The first block of the message is set to be its length. l.e., to authenticate M_{1}, \ldots, M_{n}, apply CBCMAC to (n, M_{1}, \ldots, M_{n}).
- Works since now the message space is prefix-free.
- Drawback: The message length (n) must be known in advance.

CBC-MAC for variable length messages

- "Solution 2": apply CBC-MAC to ($\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}, \mathrm{n}$)
- Message length does not have to be known is advance
- But, this scheme is broken (see, M. Bellare, J. Kilian, P. Rogaway, The Security of Cipher Block Chaining, 1984)
- Solution 3: (preferable)
- Use a second key K'.
- Compute MAC $_{K, K^{\prime}}\left(\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}\right)=\mathrm{E}_{K^{\prime}}\left(\operatorname{MAC}_{K}\left(\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}\right)\right)$
- Essentially the same overhead as CBC-MAC

Hash functions

- MACs can be constructed based on hash functions.
- A hash function $h: X \rightarrow Y$ maps long inputs to fixed size outputs. ($|\mathrm{X}|>|\mathrm{Y}|$)
- No secret key. The hash function algorithm is public.
- If $|\mathrm{X}|>|\mathrm{Y}|$ there are collisions $\left(x \neq x^{\prime}\right.$ for which $\left.h(x)=h\left(x^{\prime}\right)\right)$, but would like it to be hard to find them.

Security definitions for hash functions

1. Weak collision resistance: for any $x \in X$, it is hard to find $x^{\prime} \neq x$ such that $h(x)=h\left(x^{\prime}\right)$. (Also known as "universal one-way hash", or "second preimage resistance").

- In other words, there is no efficient algorithm which given x can find an x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$.

2. Strong collision resistance: it is hard to find any x, x^{\prime} for which $h(x)=h\left(x^{\prime}\right)$.

- In other words, there is no efficient algorithm that can find a pair x, x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$.

Security definitions for hash functions

- It is easier to find collisions when you can choose both inputs.
- In other words, under reasonable assumptions it holds that if it is possible to achieve security according to definition (2) then it is also possible to achieve security according to definition(1).
- Therefore strong collision resistance is a stronger assumption.
- Real world hash functions: MD5, SHA-1, SHA-256.
- Output length is at least 160 bits.

The Birthday Phenomenon (Paradox)

- For 23 people chosen at random, the probability that two of them have the same birthday is about $1 / 2$.
- Compare to: The probability that one or more of them has the same birthday as Alan Turing is 23/365 (actually, 1-(1$1 / 365)^{23}$.)
- More generally, for a random $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Z}$, if we choose about $|Z|^{1 / 2}$ elements of X at random (1.17 |Z| $\left.\right|^{1 / 2}$), the probability that two of them are mapped to the same image is $>1 / 2$.
- Implication: it's harder to achieve strong collision resistance
- A random function with an n bit output
- Can find x, x^{\prime} with $h(x)=h\left(x^{\prime}\right)$ after about $2^{n / 2}$ tries.
- Can find $x \neq 0$ s.t. $h(x)=h(0)$ after about 2^{n} attempts.

From collision-resistance for fixed length inputs, to collision-resistance for arbitrary input lengths

- Hash function:
- Input block length is usually 512 bits (|X|=512)
- Output length is at least 160 bits (birthday attacks)
- Extending the domain to arbitrary inputs (Damgard-Merkle)
- Suppose h:\{0,1\} ${ }^{512}$-> $\{0,1\}^{160}$
- Input: $M=m_{1} \ldots m_{s},\left|m_{i}\right|=512-160=352$. (what if $|M| \nmid \neq 352 \cdot i$ bits?)
- Define: $\mathrm{y}_{0}=0^{160} . \mathrm{y}_{\mathrm{i}}=\mathrm{h}\left(\mathrm{y}_{\mathrm{i}-1}, \mathrm{~m}_{\mathrm{i}}\right) \cdot \mathrm{y}_{\mathrm{s}+1}=\mathrm{h}\left(\mathrm{y}_{\mathrm{s}}, \mathrm{s}\right) . \mathrm{h}(\mathrm{M})=\mathrm{y}_{\mathrm{s}+1}$.
- Why is it secure? What about different length inputs?

Proof

- Show that if we can find $M \neq M^{\prime}$ for which $H(M)=H\left(M^{\prime}\right)$, we can find blocks $m \neq m^{\prime}$ for which $h(m)=h\left(m^{\prime}\right)$.
- Case 1: suppose $|M|=s,\left|M^{\prime}\right|=s^{\prime}$, and $s \neq s^{\prime}$
- Then, collision: $\mathrm{H}(\mathrm{M})=\mathrm{h}\left(\mathrm{y}_{\mathrm{s}}, \mathrm{s}\right)=\mathrm{h}\left(\mathrm{y}_{\mathrm{s}^{\prime}}, \mathrm{s}^{\prime}\right)=\mathrm{H}\left(\mathrm{M}^{\prime}\right)$
- Case 2: $|\mathrm{M}|=\left|\mathrm{M}^{\prime}\right|=\mathrm{s}$
- We know that $H(M)=h\left(y_{s}, s\right)=h\left(y_{s}, s\right)=H\left(M^{\prime}\right)$
- If $y_{s} \neq y_{s}^{\prime}$ then we found a collision in h.
- Otherwise, go from $i=s-1$ to $i=1$:
- $y_{i+1}=y_{i+1}^{\prime}$ implies $h\left(y_{i}, m_{i+1}\right)=h\left(y_{i}^{\prime}, m_{i+1}^{\prime}\right)$.
- If $y_{i} \neq y_{i}^{\prime}$ or $m_{i+1} \neq m_{i+1}^{\prime}$, then we found a collision.
- $M \neq M^{\prime}$ and therefore there is an i for which $m_{i+1} \neq m_{i+1}^{\prime}$

The implication of collisions

- Given a hash function with 2^{n} possible outputs. Collisions can be found
- after a search of $2^{n / 2}$ values
- even faster if the function is weak (MD5, SHA-1)
- We can find x, x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$, but we cannot control the value of x, x^{\prime}.
- Can we find "meaningful" colliding values x, x' ?
- The case of pdf/postscript files...

Basing MACs on Hash Functions

- Hash functions are not keyed. $\mathrm{MAC}_{K}()$ uses a key.
- Best attack should not succeed with prob $>\max \left(2^{-|k|}, 2^{-|\operatorname{MAC}()|}\right)$.
- Idea: MAC combines message and a secret key, and hashes them with a collision resistant hash function.
- E.g. $\mathrm{MAC}_{K}(m)=h(k, m)$. (insecure.., given $\mathrm{MAC}_{K}(m)$ can compute $\mathrm{MAC}_{K}\left(\mathrm{~m},|\mathrm{~m}|, \mathrm{m}^{\prime}\right)$, if using the MD construction)
$-\operatorname{MAC}_{K}(m)=h(m, k)$. (insecure.., regardless of key length, use a birthday attack of $2^{|\mathrm{MAC}()| / 2}$ steps to find m, m such that $h(m)=h\left(m^{\prime}\right)$.)

Basing MACs on Hash Functions

- How should security be proved?:
- Show that if MAC is insecure then so is hash function h.
- Insecurity of MAC: adversary can generate $\mathrm{MAC}_{K}(\mathrm{~m})$ without knowing k.
- Insecurity of h : adversary finds collisions $\left(x \neq x^{\prime}, h(x)=h\left(x^{\prime}\right).\right)$

HMAC

- Input: message m, a key K, and a hash function h.
- $\operatorname{HMAC}_{K}(\mathrm{~m})=\mathrm{h}(\mathrm{K} \oplus$ opad, $\mathrm{h}(\mathrm{K} \oplus$ ipad, m$))$
- where ipad, opad are 64 byte long fixed strings
- K is 64 byte long (if shorter, append 0 s to get 64 bytes).
- Overhead: the same as that of applying h to m, plus an additional invocation to a short string.
- It was proven [BCK] that if HMAC is broken then either
- h is not collision resistant (even when the initial block is random and secret), or
- The output of h is not "unpredcitable" (when the initial block is random and secret)
- HMAC is used everywhere (SSL, IPSec).

