Introduction to Cryptography

Lecture 4

Benny Pinkas

Block Ciphers

- Plaintexts, ciphertexts of fixed length, |m|. Usually, $|\mathrm{m}|=64$ or $|\mathrm{m}|=128$ bits.
- The encryption algorithm E_{k} is a permutation over $\{0,1\}^{|m|}$, and the decryption D_{k} is its inverse. (They are not permutations of the bit order, but rather of the entire string.)
- Ideally, use a random permutation.
- Can only be implemented using a table with $2^{|m|}$ entries $:$
- Instead, use a pseudo-random permutation, keyed by a key k.
- Implemented by a computer program whose

Block cipher input is m, k.

- We learned last week how to use a block cipher for encrypting messages longer than the block size.

Block ciphers or stream ciphers?

Performance: Crypto++ 5.6.0 [Wei Dai]
AMD Opteron, 2.2 GHz (Linux)

$\begin{aligned} & \stackrel{n}{\widetilde{\Phi}} \\ & \stackrel{\omega}{3} \end{aligned}$	Cipher	Block/key size	Speed (MB/sec)
	RC4		126
	Salsa20/12		643
	Sosemanuk		727
등	3DES	64/168	13
	AES-128	128/128	109

Pseudo-random functions (PRFs)

- $F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- The first input is the key, and once chosen it is kept fixed.
- For simplicity, assume $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- $F(k, x)$ is written as $F_{k}(x)$
- F is pseudo-random if $F_{k}()$ (where k is chosen uniformly at random) is indistinguishable (to a polynomial distinguisher D) from a function f chosen at random from all functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{n}$
- There are 2^{n} choices of F_{k}, whereas there are $\left(2^{n}\right)^{2^{n}}$ choices for f.
- The distinguisher D's task:
- We choose a function G. With probability $1 / 2 G$ is F_{k} (where $k \in{ }_{R}$ $\{0,1\}^{n}$), and with probability $1 / 2$ it is a random function f.
- D can compute $G\left(x_{1}\right), G\left(x_{2}\right), \ldots$ for any x_{1}, x_{2}, \ldots it chooses.
- D must say if $G=F_{k}$ or $G=f$.
- F_{k} is pseudo-random if D succeeds with prob $1 / 2+$ negligible..

Pseudo-random permutations (PRPs)

- $F_{k}(x)$ is a keyed permutation if for every choice of k, $F_{k}()$ is one-to-one.
- Note that in this case $F_{k}(x)$ has an inverse, namely for every y there is exactly one x for which $F_{k}(x)=y$.
- $F_{k}(x)$ is a pseudo-random permutation if
- It is a keyed permutation
- It is indistinguishable (to a polynomial distinguisher D) from a permutation f chosen at random from all permutations mapping $\{0,1\}^{n}$ to $\{0,1\}^{n}$.
-2^{n} possible values for F_{k}
- (2n)! possible values for a random permutation
- It is known how to construct PRPs from PRFs

Block ciphers

- A block cipher is a function $F_{k}(x)$ with a key k and an $|m|$ bit input x, which has an $|m|$ bit output.
- $F_{k}(x)$ is a keyed permutation
- When analyzing security we assume it to be a PRP (PseudoRandom Permutation)
- How can we encrypt plaintexts longer than $|m|$?
- Different modes of operation were designed for this task.
- Discussed last week.

Practical design of Block Ciphers

- Recall that as with prgs, the design of a block cipher that is provably secure without any assumptions implies P!=NP.
- The design of block ciphers is therefore more an engineering challenge. Based on experience and public scrutiny.
- It is often based on combining together simple building blocks, which support the following principles:
- "Diffusion" (bit shuffling): each intermediate/output bit is affected by many input bits
- "Confusion": avoid structural relationships (and in particular, linear relationships) between bits
- Cascaded (round) design: the encryption algorithm is composed of iterative applications of a simple round

Confusion-Diffusion and Substitution-Permutation

 Networks- Construct a PRP for a large block using PRPs for small blocks
- Divide the input to small parts, and apply rounds:
- Feed the parts through PRPs ("confusion")
- Mix the parts ("diffusion")
- Repeat
- Why both confusion and diffusion are necessary?
- Design musts: Avalanche effect. Using reversible s-boxes.

Fig 2.3 - Substitutice-Fermutation Netwock with the Avalanche Characteristic

AES (Advanced Encryption Standard)

- Design initiated in 1997 by NIST
- Goals: improve security and software efficiency of DES
- 15 submissions, several rounds of public analysis
- The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

Rijndael animation

$>$ press Control $+F$ (full screen mode)
$>$ use Enter key to advance
> use Backspace key to go backwards

AES

- The S-boxes (SubBytes) are the only non-linear component of AES
- ShiftRows mixes data in byte level
- MixColumns mixes blocks of four bytes
- Software implementation
- A straightforward implementation is well suite for 8bit processors, but does not fully utilize 32b/64b architectures
- A 32 bit implementation can combine SubBytes, ShiftRows and MixColumns into 16 lookups in tables of 256 32-bit entries
- Hardware implementation: AES is implemented using machine instruction in new Intel processors.

AES instructions in Intel Westmere:

- aesenc, aesenclast: do one round of AES
- aeskeygenassist: performs AES key expansion
- Implement AES by doing aeskeygenassist + 9 x aesenc + aesenclast
- Claim $14 \times$ speed-up over OpenSSL on same hardware
- Similar instructions on AMD Bulldozer

Slide taken from Dan Boneh

Reversible s-boxes

- Substitution-Permutation networks must use reversible s-boxes
- Allow for easy decryption
- However, we want the block cipher to be "as random as possible"
- s-boxes need to have some structure to be reversible
- Better use non-invertible s-boxes
- Enter Feistel networks
- A round-based block-cipher which uses s-boxes which are not necessarily reversible
- Namely, building an invertible function (permutation) from a non-invertible function.

Feistel Networks

- Encryption:
- Input: $\mathrm{P}=\mathrm{L}_{\mathrm{i}-1}\left|\mathrm{R}_{\mathrm{i}-1} \cdot\right| \mathrm{L}_{\mathrm{i}-1}\left|=\left|\mathrm{R}_{\mathrm{i}-1}\right|\right.$
$-L_{i}=R_{i-1}$
$-R_{i}=L_{i-1} \oplus F\left(K_{i}, R_{i-1}\right)$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).
- The same code/circuit, with keys in reverse order, can be used for decryption.
- Theoretical result [LubRac]: If f is a pseudo-random function then a 4 rounds Feistel network gives a pseudo-random permutation

DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
- How many rounds?
- How are the round keys generated?
- What is F ?
- DES (Data Encryption Standard)
- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput \approx software: $10 \mathrm{Mb} / \mathrm{sec}$, hardware: $1 \mathrm{~Gb} / \mathrm{sec}$ (in 1991!).

Security of DES

- Criticized for unpublished design decisions (designers did not want to disclose differential cryptanalysis).
- Very secure - the best attack in practice is brute force
- 2006: \$1 million search machine: 30 seconds
- cost per key: less than \$1
- •2006: 1000 PCs at night: 1 month
- Cost per key: essentially 0 (+ some patience)
- Some theoretical attacks were discovered in the 90s:
- Differential cryptanalysis
- Linear cryptanalysis: requires about 2^{40} known plaintexts
- The use of DES is not recommend since 2004 , but 3DES is still recommended for use.

Iterated ciphers

- Suppose that E_{k} is a good cipher, with a key of length k bits and plaintext/ciphertext of length n.
- The best attack on E_{k} is a brute force attack with has $O(1)$ plaintext/ciphertext pairs, and goes over all 2^{k} possible keys searching for the one which results in these pairs.
- New technological advances make it possible to run this brute force exhaustive search attack. What shall we do?
- Design a new cipher with a longer key.
- Encrypt messages using two keys $\mathrm{k}_{1}, \mathrm{k}_{2}$, and the encryption function $E_{k 2}\left(E_{k 1}()\right)$. Hoping that the best brute force attack would take $\left(2^{\mathrm{k}}\right)^{2}=2^{2 \mathrm{k}}$ time.

Iterated ciphers - what can go wrong?

- If encryption is closed under composition, namely for all k_{1}, k_{2} there is a k_{3} such that $E_{k 2}\left(E_{k 1}()\right)=E_{k 3}()$, then we gain nothing.
- Could just exhaustively search for k_{3}, instead of separately searching for k_{1} and k_{2}.
- Substitution ciphers definitely have this property (in fact, they are a permutation group and therefore closed under composition).
- It was suspected that DES is a group under composition. This assumption was refuted only in 1992.

Iterated Ciphers - Double DES

- DES is out of date due to brute force attacks on its short key (56 bits)
- Why not apply DES twice with two keys?
- Double DES: DES ${ }_{k 1, k 2}=E_{k 2}\left(E_{k 1}(m)\right)$
- Key length: 112 bits
- But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.
- Compared to brute a force attack, requiring 2^{112} operations and $\mathrm{O}(1)$ storage.

Meet-in-the-middle attack

- Meet-in-the-middle attack
$-\mathrm{C}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right)$
$-D_{k 2}(c)=E_{k 1}(m)$
- The attack:
- Input: (m, c) for which $\mathrm{c}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right.$)
- For every possible value of k_{1}, generate and store $E_{k 1}(m)$.
- For every possible value of k_{2}, generate and store $D_{k 2}(c)$.
- Match k_{1} and k_{2} for which $E_{k 1}(m)=D_{k 2}(c)$.
- Might obtain several options for $\left(k_{1}, k_{2}\right)$. Check them or repeat the process again with a new (m, c) pair (see next slide)
- The attack is applicable to any iterated cipher. Running time and memory are $O\left(2^{|k|}\right)$, where $|k|$ is the key size.

Meet-in-the-middle attack: how many pairs to check?

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given one plaintext-ciphertext pair (m,c)
- The attack looks for $\mathrm{k} 1, \mathrm{k} 2$, such that $\mathrm{D}_{\mathrm{k} 2}(\mathrm{c})=\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})$
- The correct values of $\mathrm{k} 1, \mathrm{k} 2$ satisfy this equality
- There are 2^{112} (actually 2^{112-1}) other values for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Each one of these satisfies the equalities with probability 2^{-64}
- We therefore expect to have $2^{112-64}=2^{48}$ candidates for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Suppose that we are given two pairs (m,c), (m', c')
- The correct values of $\mathrm{k} 1, \mathrm{k} 2$ satisfy both equalities
- There are 2^{112} (actually 2^{112-1}) other values for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Each one of these satisfies the equalities with probability 2^{-128}
- We therefore expect to have $2^{112-128}<1$ false candidates for $\mathrm{k}_{1}, \mathrm{k}_{2}$.

Triple DES

- 3 DES ${ }_{k 1, k 2, k 3}=E_{k 3}\left(D_{k 2}\left(E_{k 1}(m)\right)\right.$
- Two-key-3DES ${ }_{k 1, k 2}=E_{k 1}\left(D_{k 2}\left(E_{k 1}(m)\right)\right.$
- Why use Enc(Dec(Enc())) ?
- Backward compatibility: setting $\mathrm{k}_{1}=\mathrm{k}_{2}$ is compatible with single key DES
- Two-key-3DES (key length is only 112 bits)
- There is an attack which requires 2^{56} work and memory, but needs also 2^{56} encryptions of chosen plaintexts. Therefore not practical.
- Without chosen plaintext, best attack needs 2^{112} work and memory.
- Why isn't it better to use 3DES with three keys? There is a meet-in-the-middle attack against three keys with 2^{112} operations
- 3DES is widely used. Less efficient than DES.

Internals of DES

DES F functions

The S-boxes

- Very careful design (it is now known that random choices for the S-boxes result in weak encryption).
- Each s-box maps 6 bits to 4 bits:
- A 4×16 table of 4 -bit entries.
- Bits 1 and 6 choose the row, and bits $2-5$ choose column.
- Each row is a permutation of the values $0,1, \ldots, 15$.
- Therefore, given an output there are exactly 4 options for the input
- Curcial property: Changing one input bit changes at least two output bits \Rightarrow avalanche effect.

Differential Cryptanalysis of DES

DES diagram:

Differential Cryptanalysis [Biham-Shamir 1990]

- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
$-a=b \oplus c$
- $a=$ the bits of b in (a known) permuted order
- Linear relations can be exposed by solving a system of linear equations

Is a Linear F in a Feistel Network secure?

- Suppose $F\left(\mathrm{R}_{\mathrm{i}-1}, \mathrm{~K}_{\mathrm{i}}\right)=\mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$
- Namely, F is linear
- Then $\mathrm{R}_{\mathrm{i}}=\mathrm{L}_{\mathrm{i}-1} \oplus \mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$

$$
L_{i}=R_{i-1}
$$

- Write L_{16}, R_{16} as linear functions of L_{0}, R_{0} and K.
- Given $L_{0} R_{0}$ and $L_{16} R_{16}$ Solve and find K .
- F must therefore be non-linear.

- F is the only source of nonlinearity in DES.

DES F functions

Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
- Denote two different plaintexts as P and P^{*}
- Their difference is $\mathrm{dP}=\mathrm{P} \oplus \mathrm{P}^{*}$
- Let X and X^{*} be two intermediate values, for P and P^{*}, respectively, in the encryption process.
- Their difference is $d X=X \oplus X^{*}$
- Namely, dX is always the result of two inputs

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X^{*} are inputs to the same S-box. We can compute their difference $d X=X \oplus X^{*}$.
- $\mathrm{Y}=\mathrm{S}(\mathrm{X})$
- When $d X=0, X=X^{*}$, and therefore $Y=S(X)=S\left(X^{*}\right)=Y^{*}$, and $d Y=0$.
- When $d X \neq 0, X \neq X^{*}$ and we don't know dY for sure, but we can investigate its distribution.
- For example,

Distribution of Y^{\prime} for S1

- $d X=110100$
- There are $2^{6}=64$ input pairs with this difference, $\{(000000,110100)$, (000001,110101),...\}
- For each pair we can compute the xor of outputs of S1
- E.g., $S 1(000000)=1110, S 1(110100)=1001$. $\mathrm{dY}=0111$.
- Table of frequencies of each dY:

Differential Probabilities

- The probability of $d X \Rightarrow d Y$ is the probability that a pair of inputs whose xor is dX , results in a pair of outputs whose xor is $d Y$ (for a given S-box).
- Namely, for $d X=110100$ these are the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values
- dX=0 $\Rightarrow d Y=0$
- Entries with value 16/64
- (Recall that the outputs of the S-box are uniformly distributed, so the attacker gains a lot by looking at differentials rather than the original values.)

Warmup

Inputs: $\mathrm{L}_{0} \mathrm{R}_{0}, \mathrm{~L}_{0}{ }^{*} \mathrm{R}_{0}{ }^{*}$, s.t. $\mathrm{R}_{0}=\mathrm{R}_{0}{ }^{*}$.
Namely, inputs whose xor is $\mathrm{dL}_{0} 0$

3 Round DES

The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

Intermediate differences equal to

 plaintext/ciphertext differences

Finding K

DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if $\mathrm{dL}_{0}=40080000_{x}, \mathrm{dR}_{0}=04000000_{x}$

Then, with probability $1 / 4, \mathrm{dL}_{3}=04000000_{x}, \mathrm{dR}_{3}=4008000_{x}$

- 8 round DES is broken given 2^{14} chosen plaintexts.
- 16 round DES is broken given 2^{47} chosen plaintexts...

Linear cryptanalysis of DES [BS'89,M'93]

Given many inp/out pairs, can recover key in time less than 2^{56}.

Linear cryptanalysis (overview) : let c=DES(k, m)
Suppose for random k,m :
$\operatorname{Pr}\left[m\left[i_{1}\right] \oplus \cdots \oplus m\left[i_{r}\right] \oplus c[j] \oplus \oplus \oplus c\left[j_{v}\right]=k\left[l_{1}\right] \oplus \cdots \oplus k\left[l_{u}\right]\right]=1 / 2+\varepsilon$
For some ε.
For DES, this exists with $\quad \varepsilon=1 / 2^{21} \approx 0.0000000477$

Slide taken from Dan Boneh

Linear attacks

$$
\operatorname{Pr}\left[m\left[i_{1}\right] \oplus \cdots \oplus m\left[i_{1}\right] \oplus c[j j] \oplus \cdots \oplus c\left[j_{v}\right]=k\left[I_{1}\right] \oplus \cdots \oplus k\left[l_{u}\right]\right]=1 / 2+\varepsilon
$$

Thm: given $1 / \varepsilon^{2}$ random ($m, c=D E S(k, m)$) pairs then

$$
\mathrm{k}\left[\mathrm{l}_{1}, \ldots, \mathrm{I}_{\mathrm{u}}\right]=\operatorname{MAJ}\left[\mathrm{m}\left[\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{r}}\right] \oplus \mathrm{c}\left[\mathrm{j}_{\mathrm{j}}, \ldots, \mathrm{j}_{\mathrm{v}}\right]\right]
$$

with prob. $\geq 97.7 \%$
\Rightarrow with $1 / \varepsilon^{2}$ inp/out pairs can find $\mathrm{k}\left[l_{1}, \ldots, \mathrm{I}_{\mathrm{u}}\right]$ in time $\approx 1 / \varepsilon^{2}$

Linear attacks

- For DES, $\varepsilon=1 / 2^{21} \Rightarrow$
- with 2^{42} inp/out pairs can find $k\left[l_{1}, \ldots,,_{u}\right]$ in time 2^{42}
- Roughly speaking: can find 14 key "bits" this way in time 2^{42}
- Apply a brute force attack against remaining 56-14=42 bits in time 2^{42}
- Total attack time $\approx 2^{43}\left(\ll 2^{56}\right)$
- but only if you have 2^{42} random inp/out pairs $:$

Message Authentication

Data Integrity, Message Authentication

- Risk: an active adversary might change messages exchanged between Alice and Bob

- Authentication is orthogonal to secrecy. It is a relevant challenge regardless of whether encryption is applied.

One Time Pad

- OTP is a perfect cipher, yet provides no authentication
- Plaintext $x_{1} x_{2} \ldots x_{n}$
- Key $\mathrm{k}_{1} \mathrm{k}_{2} \ldots \mathrm{k}_{\mathrm{n}}$
- Ciphertext $\mathrm{c}_{1}=\mathrm{x}_{1} \oplus \mathrm{k}_{1}, \mathrm{c}_{2}=\mathrm{x}_{2} \oplus \mathrm{k}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}} \oplus \mathrm{k}_{\mathrm{n}}$
- Adversary changes, e.g., c_{2} to $1 \oplus \mathrm{c}_{2}$
- User decrypts $1 \oplus \mathrm{x}_{2}$
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)
- They were not designed to withstand adversarial behavior.

Definitions

- Scenario: Alice and Bob share a secret key K.
- Authentication algorithm:
- Compute a Message Authentication Code: $\alpha=M A C_{K}(m)$.
- Send m and α
- Verification algorithm: $V_{K}(m, \alpha)$.
- $V_{K}\left(m, M A C_{K}(m)\right)=$ accept.
- For $\alpha \neq M A C_{K}(m), \quad V_{K}(m, \alpha)=$ reject.
- How does $V_{k}(m)$ work?
- Receiver knows k. Receives m and α.
- Receiver uses k to compute $M A C_{K}(m)$.
$-V_{K}(m, \alpha)=1$ iff $M A C_{K}(m)=\alpha$.

Common Usage of MACs for message authentication

Requirements

- Security: The adversary,
- Knows the MAC algorithm (but not K).
- Is given many pairs $\left(m_{i}, \operatorname{MAC} C_{K}\left(m_{i}\right)\right)$, where the m_{i} values might also be chosen by the adversary (chosen plaintext).
- Cannot compute ($m, \mathrm{MAC}_{K}(m)$) for any new m ($\left.\forall i m \neq m_{i}\right)$.
- The adversary must not be able to compute $M A C_{K}(m)$ even for a message m which is "meaningless" (since we don't know the context of the attack).
- Efficiency: MAC output must be of fixed length, and as short as possible.
$-\Rightarrow$ The MAC function is not 1-to-1.
$-\Rightarrow$ An n bit MAC can be broken with prob. of at least 2^{-n}.

Constructing MACs

- Length of MAC output must be at least n bits, if we do not want the cheating probability to be greater than 2^{-n}
- Constructions of MACs
- Based on block ciphers (CBC-MAC)
or,
- Based on hash functions
- More efficient
- At the time, encryption technology was controlled (export restricted) and it was preferable to use other means when possible.

