
page 1March 6, 2011 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography

Lecture 3

Benny Pinkas

page 2March 6, 2011 Introduction to Cryptography, Benny Pinkas

Pseudo-random generator

Gs G(s)
seed

(random, |s|=n)

Pseudo-random
generator

output
u

Distinguisher

D

random

????

|u|=2n

Deterministic

function of s,

publicly known

∀ D

|G(s)| = 2n

Pseudo-random generators

• Pseudo-random generator (PRG)

– G: {0,1}n ⇒ {0,1}m

• A deterministic function, computable in polynomial time.

• It must hold that m > n. Let us assume m=2n.

• The function has only 2n possible outputs.

• Pseudo-random property:

– ∀ polynomial time adversary D, (whose output is 0/1)

if we choose inputs s∈R{0,1}n, u∈R{0,1}m, (in other
words, choose s and u uniformly at random), then

it holds that D(G(s)) is similar to D(u)

namely, | Pr[D(G(s))=1] - | Pr[D(u)=1] | is negligible

Do PRGs exist?

• If P=NP then PRGs do not exist (why?)

• So their existence can only be conjectured until the
P=NP question is resolved.

Using a PRG for Encryption

• Replace the one-time-pad with the output of the PRG

• Key: a (short) random key k∈{0,1}|k|.

• Message m= m1,…,m|m|.

• Use a PRG G : {0,1}|k| → {0,1}|m|

• Key generation: choose k∈{0,1}|k| uniformly at random.

• Encryption:

– Use the output of the PRG as a one-time pad. Namely,

– Generate G(k) = g1,…,g|m|

– Ciphertext C = g1⊕m1,…, g|m| ⊕m|m|

• This is an example of a stream cipher.

Security of encryption against polynomial adversaries

• Perfect security (previous equivalent defs):

– (indistinguishability) ∀ m0,m1∈M, ∀c, the probability that c is
an encryption of m0 is equal to the probability that c is an
encryption of m1.

– (semantic security) The distribution of m given the
encryption of m is the same as the a-priori distribution of m.

• Security of pseudo-random encryption (equivalent defs):

– (indistinguishability) ∀ m0,m1∈M, no polynomial time
adversary D can distinguish between the encryptions of m0

and of m1. Namely, Pr[D(E(m0))=1] ≈ Pr[D(E(m1))=1)

– (semantic security) ∀ m0,m1∈M, a polynomial time
adversary which is given E(mb), where b∈r{0,1}, succeeds
in finding b with probability ≈ ½.

Proofs by reduction

• We don’t know how to prove unconditional proofs of
computational security; we must rely on assumptions.

– We can simply assume that the encryption scheme is
secure. This is bad.

– Instead, we will assume that some low-level problem is
hard to solve, and then prove that the cryptosystem is
secure under this assumption.

– (For example, the assumption might be that a certain
function G is a pseudo-random generator.)

– Advantages of this approach:

• It is easier to design a low-level function.

• There are (very few) “established” assumptions in
cryptography, and people prove the security of cryptosystem
based on these assumptions.

Using a PRG for Encryption: Security

• The output of a pseudo-random generator is used
instead of a one-time pad.

• Proof of security by reduction:
– The assumption is that the PRG is strong (its output is

indistinguishable from random).

– We want to prove that in this case the encryption is strong
(it satisfies the indistinguishability definition above).

– In other words, prove that if one can break the security of
the encryption (distinguish between encryptions of m0 and
of m1), then it is also possible to break the security of the
PRG (distinguish its output from random).

page 9March 6, 2011 Introduction to Cryptography, Benny Pinkas

Proof of Security

Enc(m0) with

PRG

Enc(m0) with

one-time pad

Enc(m1) with

one-time pad

Enc(m1) with

PRG

Polynomially indistinguishable? Same distribution

• Suppose that there is a distinguisher algorithm D’() which distinguishes
between (1) and (2)

• We know that no D’() can distinguish between (3) and (4)

• We are given a string S and need to decide whether it is drawn from a
pseudorandom distribution or from a uniformly random distribution

• We will use S as a pad to encrypt a message.

(1) (2) (3) (4)

page 10March 6, 2011 Introduction to Cryptography, Benny Pinkas

Proof of Security

Enc(m0) with

PRG

Enc(m0) with

one-time pad

Enc(m1) with

one-time pad

Enc(m1) with

PRG

Polynomially indistinguishable? Same distribution

• Recall: we assume that there is a D’() which always distinguishes between
(1) and (2), and which distinguishes between (3) and (4) with probability ½.

• Choose a random b∈{0,1} and compute mb⊕S. Give the result to D’().

• if S was chosen uniformly, D’() must distinguish (3) from (4). (prob=½)

• if S is pseudorandom, D’() must distinguish (1) from (2). (prob=1)

• If D’() outputs b then declare “pseudorandom”, otherwise declare “random”.

• if S was chosen uniformly we output “pseudorandom” with prob ½.

• if S is pseudorandom we output “pseudorandom” with prob 1.

(1) (2) (3) (4)

page 11March 6, 2011 Introduction to Cryptography, Benny Pinkas

Proof of Security

Enc(m0) with

PRG

Enc(m0) with

one-time pad

Enc(m1) with

one-time pad

Enc(m1) with

PRG

Polynomially indistinguishable? Same distribution

• Recall: we assume that there is a D’() which always distinguishes between
(1) and (2), and which distinguishes between (3) and (4) with probability ½.

• Choose a random b∈{0,1} and compute mb⊕S. Give the result to D’().

• if S was chosen uniformly, D’() must distinguish (3) from (4). (prob=½)

• if S is pseudorandom, D’() must distinguish (1) from (2). (prob=½+δ)

• If D’() outputs b then declare “pseudorandom”, otherwise declare “random”.

• if S was chosen uniformly we output “pseudorandom” with prob ½.

• if S is pseudorandom we output “pseudorandom” with prob ½+δ.

(1) (2) (3) (4)

Stream ciphers

• Stream ciphers are based on pseudo-random
generators.

– Usually used for encryption in the same way as OTP

• Examples: A5, SEAL, RC4.

– Very fast implementations.

– RC4 is popular and secure when used correctly, but it was
shown that its first output bytes are biased. This resulted
in breaking WEP encryption in 802.11.

• Some technical issues:

– Stream ciphers require synchronization (for example, if
some packets are lost in transit).

RC4

• A stream cipher designed by Ron Rivest. Intellectual
property belongs to RSA Inc.

– Designed in 1987.

– Kept secret until the design was leaked in 1994.

• Used in many protocols (SSL, WEP, etc.)

• Byte oriented operations.

• 8-16 machine operations per output byte.

• First output bytes are biased �

RC4 initialization

Word size is a single byte.

Input: k0;…;k255 (if key has fewer bits, pad it to
itself sufficiently many times)

1. j = 0

2. S0 = 0; S1 = 1;… ; S255 = 255

3. Let the key be k0;…;k255

4. For i = 0 to 255

• j = (j + Si + ki) mod 256

• Swap Si and Sj

(note that S is a permutation of 0,…,255)

RC4 keying stream generation

An output byte B is generated as follows:

• i = i + 1 mod 256

• j = j + Si mod 256

• Swap Si and Sj

• r = Si + Sj mod 256

• Output: B = Sr

B is xored to the next byte of the plaintext.

(since S is a permutation, we want that B is uniformly distributed)

Bias: The probability that the first two output bytes are 0 is 2-16+2-23 �

page 16March 6, 2011 Introduction to Cryptography, Benny Pinkas

Block Ciphers

• Plaintexts, ciphertexts of fixed length, |m|.
Usually, |m|=64 or 128 bits.

• The encryption algorithm Ek is a permutation
over {0,1}|m|, and the decryption Dk is its
inverse. (They are not permutations of the bit
order, but rather of the entire string.)

• Ideally, use a random permutation.

– Implemented using a table with 2|m| entries �

• Instead, use a pseudo-random permutation*,
keyed by a key k.

– Implemented by a computer program whose
input is m,k.

– (*) will be explained shortly

m1,…,m|m|

Block cipher

c1,…,c|m|

page 17March 6, 2011 Introduction to Cryptography, Benny Pinkas

Block Ciphers

• Modeled as a pseudo-random permutation.

• Encrypt/decrypt whole blocks of bits

– Might provide better encryption by
simultaneously working on a block of bits

– One error in ciphertext affects whole block

– Delay in encryption/decryption

– There was more research on the security
of block ciphers than on the security of
stream ciphers.

– Avoids the synchronization problem of
stream cipher usage.

• Different modes of operation (for encrypting
longer inputs)

m1,…,m|m|

Block cipher

c1,…,c|m|

Block ciphers

• A block cipher is a function Fk(x) of a key k and an |m| bit
input x. It has an |m| bit output.

– Fk(x) is a keyed permutation

• How can we encrypt plaintexts longer than |m|?

• Different modes of operation were designed for this task.

page 19March 6, 2011 Introduction to Cryptography, Benny Pinkas

ECB Encryption Mode (Electronic Code Book)

P
1

E
k

C
1

P
2

E
k

C
2

P
3

E
k

C
3

Namely, encrypt each plaintext block separately.

Properties of ECB

• Simple and efficient ☺

• Parallel implementation is possible ☺

• Does not conceal plaintext patterns �

– Enc(P1, P2, P1, P3)

• Active attacks are easy � (plaintext can be easily
manipulated by removing, repeating, or interchanging
blocks).

Encrypting bitmap images in ECB mode

original encrypted using

ECB mode

encrypted using

a secure mode

page 22March 6, 2011 Introduction to Cryptography, Benny Pinkas

CBC Encryption Mode (Cipher Block Chaining)

P
1

E
k

C
1

P
2

E
k

C
2

P
3

E
k

C
3

IV

Previous ciphertext is XORed with current plaintext before

encrypting current block.

An initialization vector IV is used as a “seed” for the process.

IV can be transmitted in the clear (unencrypted).

CBC Mode

P
1

E
k

C
1

P
2

E
k

C
2

P
3

E
k

C
3

IV

P
1

D
k

C
1

P
2

D
k

C
2

P
3

D
k

C
3

IV

Encryption:

Decryption:

Properties of CBC

• Asynchronous: the receiver can start decrypting from
any block in the ciphertext. ☺

• Errors in one ciphertext block propagate to the
decryption of the next block (but that’s it). ☺

• Conceals plaintext patterns (same block ⇒ different
ciphertext blocks) ☺

– If IV is chosen at random, and EK is a pseudo-random
permutation, CBC provides chosen-plaintext security.

– But if IV is fixed, CBC does not even hide not common
prefixes.

• No parallel implementation of encryption is known �

• Plaintext cannot be easily manipulated ☺

• Standard in most systems: SSL, IPSec, etc.

A chosen-plaintext attack on CBC if IV is known

• Suppose that adversary can predict IV for next
message
– Bug in SSL/TLS 1.0: IV for record #i is the last ciphertext

block of record #(i-1)

• Attacker
– Asks to receive encryption of X=0

• Receives (IV’, E(k, 0⊕IV’)) = (IV’, E(k,IV’)

– Attacker knows IV for next ciphertext

– Attacker can now distinguish between encryption of
m0=IV⊕IV’ and any other m1.
• Encryption of m0 is (IV, E(k, IV ⊕ (IV⊕IV’))) = (IV, E(k, IV’))

page 25March 6, 2011 Introduction to Cryptography, Benny Pinkas

page 26March 6, 2011 Introduction to Cryptography, Benny Pinkas

OFB Mode (Output FeedBack)

• An initialization vector IV is used as a “seed” for generating a

sequence of “pad” blocks

• Ek(IV), Ek(Ek(IV)), Ek(Ek(Ek(IV))),…

• Essentially a stream cipher.

• IV can be sent in the clear. Must never be repeated.

IV E
k

E
k

E
k

P
1

P
2

P
3

C
1

C
2

C
3

Properties of OFB

• Essentially implements a synchronous stream cipher. I.e., the two
parties must know s0 and the current bit position.

– A block cipher can be used instead of a PRG.

– The parties must synchronize the location they are
encrypting/decrypting. �

• Conceals plaintext patterns. If IV is chosen at random, and EK is a
pseudo-random permutation, OFB provides chosen-plaintext
security. ☺

• Errors in ciphertext do not propagate ☺

• Implementation:

– Pre-processing is possible ☺

– No parallel implementation is known �

• Active attacks (by manipulating the plaintext) are possible �

page 28March 6, 2011 Introduction to Cryptography, Benny Pinkas

CTR (counter) Encryption Mode

IV

E
k

IV+1

E
k

IV+2

E
k

P
1

P
2

P
3

C
1

C
2

C
3

IV is selected

as a random

value

• easy parallel

implementation

• random access

• preprocessing

• no message expansion

• if E is a PRF then ECTR provides chosen plaintext security

Pseudo-random functions

Pseudo-random functions - definition

• F : {0,1}* × {0,1}* → {0,1}*

– The first input is the key, and once chosen it is kept fixed.

– For simplicity, assume F : {0,1}n × {0,1}n → {0,1}n

– F(k,x) is written as Fk(x)

• F is pseudo-random if Fk() (where k is chosen uniformly at random) is
indistinguishable (to a polynomial distinguisher D) from a function f
chosen at random from all functions mapping {0,1}n to {0,1}n

– There are 2n choices of Fk, whereas there are (2n)2n
choices for f.

– The distinguisher D’s task:

• We choose a function G. With probability ½ G is Fk (where k ∈R

{0,1}n), and with probability ½ it is a random function f.

• D can ask to compute G(x1),G(x2),… for any x1,x2,… it chooses.

• D must then output 1 if G=Fk.

• Fk is pseudo-random if |Pr(D(Fk)=1)-Pr(D(f)=1)| ≤ negligible.

Pseudo-random permutations

• Fk(x) is a keyed permutation if for every choice of k,
Fk() is one-to-one.

– Note that in this case Fk(x) has an inverse, namely for
every y there is exactly one x for which Fk(x)=y.

• Fk(x) is a pseudo-random permutation if

– It is a keyed permutation

– It is indistinguishable (to a polynomial distinguisher D) from a
permutation f chosen at random from all permutations
mapping {0,1}n to {0,1}n

.

– 2n possible values for Fk

– (2n)! possible values for a random permutation

A PRF can be used to construct a PRG

• Given a PRF F(k,x), F : {0,1}n × {0,1}n → {0,1}n

The following G:{0,1}n → {0,1}n⋅t is a secure PRG:

G(k) = F(k,0) || F(k,1) || … || F(k,t-1)

(This is a parallelizable construction)

Proof: Suppose that an adversary can distinguish G(k) from a
random string from {0,1}n⋅t. Then after asking to compute
F(k,0),F(k,1),…,F(k,t) it can distinguish F() from a random
function.

page 32March 6, 2011 Introduction to Cryptography, Benny Pinkas

• Block ciphers are modeled as pseudo-random
permutations.

• However, even a random permutation leaks some
information if it is used to encrypt longer messages

– Identical blocks result in identical ciphertexts.

• A stronger definition of security, and an appropriate
construction are needed to prevent this information
leakage.

CPA security of block ciphers

Constructing CPA-secure encryption

Observations

• The encryption is probabilistic

• Encrypting the same message twice is likely to result in
different ciphertexts, since different r values will be used.

• This is secure as long it is unlikely that the same value of r
will be used twice.

• Instead of using a random r, one could use a nonce: a value
that changes from message to message. For example, a
counter.

• Ciphertext is longer than plaintext, since it must also include
the randomness

page 36March 6, 2011 Introduction to Cryptography, Benny Pinkas

Security

• Theorem: If Fk is a pseudo-random function then the
encryption scheme is (t,ε)-CPA-indistinguishable.

• Proof sketch:

– Lemma: If Fk is random, then the adversary can
distinguish between E(m0),E(m1) only if the challenge
ciphertext is (r, Fk(r) ⊕ mb), and r was used in one of the
encryptions asked by the adversary.

• The prob. of r being used in a previous encryption is ≤ t / 2n.

– Proof: If r was not used in one of these encryptions than
mb is encrypted with a random one-time pad.

– Replace the random function with a pseudo-random one.

• Need to show that this change does not affect the probability
of success in more than a negligible ε. (see next page)

– Therefore total success probability is < ½ + t/2n + ε.

Security (contd.)

Background:

• If Fk is random, then the adversary succeeds with prob ≤ t / 2n.

– Replace the random function with a pseudo-random Fk.

– Suppose that now success probability is > ½ + t/2n + p(n).

– Then we found a distinguisher D between Fk and a random
function, which succeeds with prob > p(n).

• D has oracle access to a function G which is either random or is
the prf Fk , and to an attacker A against the encryption.

• D constructs an encryption according to the construction, and
lets A attack it. Whenever A asks for an encryption, D asks for a
value of G and encrypts.

• If A succeeds in decryption, D claims that G is the prf. Otherwise
D claims that G is random. |Pr(D(Fk)=1)-Pr(D(G)=1)| = p(n) > neg.

