Introduction to Cryptography

Lecture 3

Benny Pinkas

Pseudo-random generator

Pseudo-random generators

- Pseudo-random generator (PRG)
 - $G: \{0,1\}^n \Rightarrow \{0,1\}^m$
 - A deterministic function, computable in polynomial time.
 - It must hold that m > n. Let us assume m=2n.
 - The function has only 2ⁿ possible outputs.
- Pseudo-random property:
 - \forall polynomial time adversary D, (whose output is 0/1) if we choose inputs s∈_R{0,1}ⁿ, u∈_R{0,1}^m, (in other words, choose s and u uniformly at random), then it holds that D(G(s)) is similar to D(u) namely, | Pr[D(G(s))=1] | Pr[D(u)=1] | is negligible

Do PRGs exist?

- If P=NP then PRGs do not exist (why?)
- So their existence can only be conjectured until the P=NP question is resolved.

Using a PRG for Encryption

- Replace the one-time-pad with the output of the PRG
- Key: a (short) random key $k \in \{0,1\}^{|k|}$.
- Message $m = m_1, \dots, m_{|m|}$.
- Use a PRG G: $\{0,1\}^{|k|} \to \{0,1\}^{|m|}$
- Key generation: choose $k \in \{0,1\}^{|k|}$ uniformly at random.
- Encryption:
 - Use the output of the PRG as a one-time pad. Namely,
 - Generate $G(k) = g_1, ..., g_{|m|}$
 - Ciphertext C = $g_1 \oplus m_1, ..., g_{|m|} \oplus m_{|m|}$
- This is an example of a stream cipher.

Security of encryption against polynomial adversaries

- Perfect security (previous equivalent defs):
 - (indistinguishability) \forall $m_0, m_1 \in M$, \forall c, the probability that c is an encryption of m_0 is equal to the probability that c is an encryption of m_1 .
 - (semantic security) The distribution of m given the encryption of m is the same as the a-priori distribution of m.
- Security of pseudo-random encryption (equivalent defs):
 - (indistinguishability) \forall m₀,m₁∈M, no *polynomial time* adversary D can distinguish between the encryptions of m₀ and of m₁. Namely, $Pr[D(E(m_0))=1] \approx Pr[D(E(m_1))=1)$
 - (semantic security) \forall m₀,m₁ \in M, a polynomial time adversary which is given E(m_b), where b \in _r{0,1}, succeeds in finding b with probability \approx ½.

Proofs by reduction

- We don't know how to prove unconditional proofs of computational security; we must rely on assumptions.
 - We can simply assume that the encryption scheme is secure. This is bad.
 - Instead, we will assume that some low-level problem is hard to solve, and then prove that the cryptosystem is secure under this assumption.
 - (For example, the assumption might be that a certain function G is a pseudo-random generator.)
 - Advantages of this approach:
 - It is easier to design a low-level function.
 - There are (very few) "established" assumptions in cryptography, and people prove the security of cryptosystem based on these assumptions.

Using a PRG for Encryption: Security

- The output of a pseudo-random generator is used instead of a one-time pad.
- Proof of security by reduction:
 - The assumption is that the PRG is strong (its output is indistinguishable from random).
 - We want to prove that in this case the encryption is strong (it satisfies the indistinguishability definition above).
 - In other words, prove that if one can break the security of the encryption (distinguish between encryptions of m₀ and of m₁), then it is also possible to break the security of the PRG (distinguish its output from random).

Proof of Security

- Suppose that there is a distinguisher algorithm D'() which distinguishes between (1) and (2)
- We know that no D'() can distinguish between (3) and (4)
- We are given a string S and need to decide whether it is drawn from a pseudorandom distribution or from a uniformly random distribution
- We will use S as a pad to encrypt a message.

Proof of Security

- Recall: we assume that there is a D'() which always distinguishes between (1) and (2), and which distinguishes between (3) and (4) with probability $\frac{1}{2}$.
- Choose a random $b \in \{0,1\}$ and compute $m_b \oplus S$. Give the result to D'().
 - if S was chosen uniformly, D'() must distinguish (3) from (4). (prob=1/2)
 - if S is pseudorandom, D'() must distinguish (1) from (2). (prob=1)
- If D'() outputs b then declare "pseudorandom", otherwise declare "random".
 - if S was chosen uniformly we output "pseudorandom" with prob ½.
 - if S is pseudorandom we output "pseudorandom" with prob 1.

Proof of Security

- Recall: we assume that there is a D'() which always distinguishes between (1) and (2), and which distinguishes between (3) and (4) with probability ½.
- Choose a random $b \in \{0,1\}$ and compute $m_b \oplus S$. Give the result to D'().
 - if S was chosen uniformly, D'() must distinguish (3) from (4). (prob=1/2)
 - if S is pseudorandom, D'() must distinguish (1) from (2). (prob= $\frac{1}{2}+\delta$)
- If D'() outputs b then declare "pseudorandom", otherwise declare "random".
 - if S was chosen uniformly we output "pseudorandom" with prob ½.
 - if S is pseudorandom we output "pseudorandom" with prob $\frac{1}{2}+\delta$.

Stream ciphers

- Stream ciphers are based on pseudo-random generators.
 - Usually used for encryption in the same way as OTP
- Examples: A5, SEAL, RC4.
 - Very fast implementations.
 - RC4 is popular and secure when used correctly, but it was shown that its first output bytes are biased. This resulted in breaking WEP encryption in 802.11.
- Some technical issues:
 - Stream ciphers require synchronization (for example, if some packets are lost in transit).

RC4

- A stream cipher designed by Ron Rivest. Intellectual property belongs to RSA Inc.
 - Designed in 1987.
 - Kept secret until the design was leaked in 1994.
- Used in many protocols (SSL, WEP, etc.)
- Byte oriented operations.
- 8-16 machine operations per output byte.
- First output bytes are biased ③

RC4 initialization

Word size is a single byte.

```
Input: k_0;...; k_{255} (if key has fewer bits, pad it to itself sufficiently many times)
```

- 1. j = 0
- 2. $S_0 = 0$; $S_1 = 1$;...; $S_{255} = 255$
- 3. Let the key be k_0 ;...; k_{255}
- 4. For i = 0 to 255
 - $j = (j + S_i + k_i) \mod 256$
 - Swap S_i and S_j

(note that S is a permutation of 0,...,255)

RC4 keying stream generation

An output byte B is generated as follows:

- $\bullet i = i + 1 \mod 256$
- $\bullet j = j + S_i \mod 256$
- \bullet Swap S_i and S_j
- $\cdot r = S_i + S_j \mod 256$
- Output: $B = S_r$

B is xored to the next byte of the plaintext. (since S is a permutation, we want that B is uniformly distributed)

Bias: The probability that the first two output bytes are 0 is 2⁻¹⁶+2⁻²³ ⊗

Block Ciphers

- Plaintexts, ciphertexts of fixed length, |m|.
 Usually, |m|=64 or 128 bits.
- The encryption algorithm E_k is a *permutation* over $\{0,1\}^{|m|}$, and the decryption D_k is its inverse. (They *are not* permutations of the bit order, but rather of the entire string.)
- Ideally, use a random permutation.
 - Implemented using a table with 2^{|m|} entries ☺
- Instead, use a pseudo-random permutation*, keyed by a key k.
 - Implemented by a computer program whose input is m,k.
 - (*) will be explained shortly

Block Ciphers

- Modeled as a pseudo-random permutation.
- Encrypt/decrypt whole blocks of bits
 - Might provide better encryption by simultaneously working on a block of bits
 - One error in ciphertext affects whole block
 - Delay in encryption/decryption
 - There was more research on the security of block ciphers than on the security of stream ciphers.
 - Avoids the synchronization problem of stream cipher usage.
- Different modes of operation (for encrypting longer inputs)

Block ciphers

- A block cipher is a function $F_k(x)$ of a key k and an |m| bit input x. It has an |m| bit output.
 - $-F_k(x)$ is a keyed permutation
- How can we encrypt plaintexts longer than |m|?
- Different modes of operation were designed for this task.

ECB Encryption Mode (Electronic Code Book)

Namely, encrypt each plaintext block separately.

Properties of ECB

- Simple and efficient ©
- Parallel implementation is possible ©
- Does not conceal plaintext patterns ②
 - $Enc(P_1, P_2, P_1, P_3)$

Encrypting bitmap images in ECB mode

original

encrypted using ECB mode

encrypted using a secure mode

CBC Encryption Mode (Cipher Block Chaining)

Previous *ciphertext* is XORed with current *plaintext* before encrypting current block.

An initialization vector IV is used as a "seed" for the process. IV can be transmitted in the clear (unencrypted).

CBC Mode

Properties of CBC

- Asynchronous: the receiver can start decrypting from any block in the ciphertext. ©
- Errors in one ciphertext block propagate to the decryption of the next block (but that's it). ©
- Conceals plaintext patterns (same block ⇒ different ciphertext blocks) ☺
 - If IV is chosen at random, and E_K is a pseudo-random permutation, CBC provides chosen-plaintext security.
 - But if IV is fixed, CBC does not even hide not common prefixes.
- No parallel implementation of encryption is known
- Plaintext cannot be easily manipulated ©
- Standard in most systems: SSL, IPSec, etc.

A chosen-plaintext attack on CBC if IV is known

- Suppose that adversary can predict IV for next message
 - Bug in SSL/TLS 1.0: IV for record #i is the last ciphertext block of record #(i-1)
- Attacker
 - Asks to receive encryption of X=0
 - Receives (IV', E(k, 0⊕IV')) = (IV', E(k,IV')
 - Attacker knows IV for next ciphertext
 - Attacker can now distinguish between encryption of m₀=IV⊕IV' and any other m₁.
 - Encryption of m_0 is $(IV, E(k, IV \oplus (IV \oplus IV'))) = (IV, E(k, IV'))$

OFB Mode (Output FeedBack)

- An initialization vector IV is used as a "seed" for generating a sequence of "pad" blocks
 - $E_k(IV)$, $E_k(E_k(IV))$, $E_k(E_k(E_k(IV)))$,...
- Essentially a stream cipher.
- IV can be sent in the clear. Must never be repeated.

Properties of OFB

- Essentially implements a synchronous stream cipher. I.e., the two parties must know s₀ and the current bit position.
 - A block cipher can be used instead of a PRG.
 - The parties must synchronize the location they are encrypting/decrypting. ☺
- Conceals plaintext patterns. If IV is chosen at random, and E_K is a pseudo-random permutation, OFB provides chosen-plaintext security. \circledcirc
- Errors in ciphertext do not propagate ©
- Implementation:
 - Pre-processing is possible ©
 - No parallel implementation is known ☺
- Active attacks (by manipulating the plaintext) are possible ⊗

CTR (counter) Encryption Mode

- preprocessing
- no message expansion
- if E is a PRF then E_{CTR} provides chosen plaintext security

Pseudo-random functions

- A pseudo-random function is a function which cannot be distinguished from a random function.
 - The possible number of functions $f: \{0,1\}^n \rightarrow \{0,1\}^l$ is $2^{2^n l}$
 - A random function is one which is chosen at random from that range. Its representation must be at least $2^n l$ bits.
 - Alternatively, we can say that the random function chooses the value of f(x) independently at random for every x.

Pseudo-random functions - definition

- $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$
 - The first input is the key, and once chosen it is kept fixed.
 - For simplicity, assume $F: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$
 - F(k,x) is written as $F_k(x)$
- F is pseudo-random if $F_k()$ (where k is chosen uniformly at random) is indistinguishable (to a polynomial distinguisher D) from a function f chosen at random from all functions mapping $\{0,1\}^n$ to $\{0,1\}^n$
 - There are 2^n choices of F_k , whereas there are $(2^n)^{2^n}$ choices for f.
 - The distinguisher D's task:
 - We choose a function G. With probability $\frac{1}{2}$ G is F_k (where $k \in \mathbb{R}$ $\{0,1\}^n$), and with probability $\frac{1}{2}$ it is a random function f.
 - D can ask to compute $G(x_1), G(x_2), ...$ for any $x_1, x_2, ...$ it chooses.
 - D must then output 1 if G=F_k.
 - F_k is pseudo-random if $|Pr(D(F_k)=1)-Pr(D(f)=1)| \le negligible$.

Pseudo-random permutations

- $F_k(x)$ is a keyed permutation if for every choice of k, $F_k()$ is one-to-one.
 - Note that in this case $F_k(x)$ has an inverse, namely for every y there is exactly one x for which $F_k(x)=y$.
- $F_k(x)$ is a pseudo-random permutation if
 - It is a keyed permutation
 - It is indistinguishable (to a polynomial distinguisher D) from a permutation f chosen at random from all permutations mapping {0,1}ⁿ to {0,1}ⁿ
 - -2^n possible values for F_k
 - (2ⁿ)! possible values for a random permutation

A PRF can be used to construct a PRG

• Given a PRF F(k,x), $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$

The following $G:\{0,1\}^n \rightarrow \{0,1\}^{n\cdot t}$ is a secure PRG:

$$G(k) = F(k,0) || F(k,1) || ... || F(k,t-1)$$

(This is a parallelizable construction)

Proof: Suppose that an adversary can distinguish G(k) from a random string from $\{0,1\}^{n\cdot t}$. Then after asking to compute F(k,0),F(k,1),...,F(k,t) it can distinguish F() from a random function.

- Block ciphers are modeled as pseudo-random permutations.
- However, even a random permutation leaks some information if it is used to encrypt longer messages
 - Identical blocks result in identical ciphertexts.
- A stronger definition of security, and an appropriate construction are needed to prevent this information leakage.

CPA security of block ciphers

- CPA (chosen-plaintext attack) indistinguishability
 - A key k is chosen at random
 - The adversary is given access to E_k(), and can encrypt any message it wants.
 - The adversary A chooses two messages m₀,m₁.
 - A random message m_b is chosen, $b \in \{0,1\}$.
 - A is given a challenge ciphertext $E_k(m_b)$.
 - A can continue to compute $E_k()$ on any message.
 - A must output b'.
 - A succeeds if b=b'.
- The encryption scheme is (t,e)-CPA-secure if for all A that runs at most t steps, Pr(b=b') < 1/2+e.

Constructing CPA-secure encryption

- Note that the encryption must be probabilistic.
- Let $F: \{0,1\}^n \to \{0,1\}^n$ be a pseudo-random function.
- The construction
 - Choose a random key $k \in \{0,1\}^n$
 - Encryption of $m \in \{0,1\}^n$: choose random $r \in \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$.
 - Decryption of c = (r, f): compute $m = F_k(r) \oplus f$.
 - Intuitively, F_k(r) is indistinguishable from a random message, and therefore ciphertext is like a one-time pad.

Observations

- The encryption is probabilistic
- Encrypting the same message twice is likely to result in different ciphertexts, since different r values will be used.
- This is secure as long it is unlikely that the same value of r will be used twice.
- Instead of using a random r, one could use a nonce: a value that changes from message to message. For example, a counter.
- Ciphertext is longer than plaintext, since it must also include the randomness

Security

- Theorem: If F_k is a pseudo-random function then the encryption scheme is (t,ϵ) -CPA-indistinguishable.
- Proof sketch:
 - Lemma: If F_k is random, then the adversary can distinguish between $E(m_0)$, $E(m_1)$ only if the challenge ciphertext is $(r, F_k(r) \oplus m_b)$, and r was used in one of the encryptions asked by the adversary.
 - The prob. of r being used in a previous encryption is $\leq t / 2^n$.
 - Proof: If r was not used in one of these encryptions than m_b is encrypted with a random one-time pad.
 - Replace the random function with a pseudo-random one.
 - Need to show that this change does not affect the probability of success in more than a negligible ϵ . (see next page)
 - Therefore total success probability is $< \frac{1}{2} + \frac{t}{2^n} + \epsilon$.

Security (contd.)

Background:

- If F_k is random, then the adversary succeeds with prob $\leq t/2^n$.
- Replace the random function with a pseudo-random F_k .
- Suppose that now success probability is > $\frac{1}{2}$ + $\frac{t}{2^n}$ + p(n).
- Then we found a distinguisher D between F_k and a random function, which succeeds with prob > p(n).
 - D has oracle access to a function G which is either random or is the prf F_k, and to an attacker A against the encryption.
 - D constructs an encryption according to the construction, and lets A attack it. Whenever A asks for an encryption, D asks for a value of G and encrypts.
 - If A succeeds in decryption, D claims that G is the prf. Otherwise D claims that G is random. |Pr(D(Fk)=1)-Pr(D(G)=1)| = p(n) > neg.