Introduction to Cryptography

Lecture 2

Benny Pinkas

Perfect Cipher

- What type of security would we like to achieve?
- In an "ideal" world, the message will be delivered in a magical way, out of the reach of the adversary
- An encryption system will therefore be called secure if no adversary can learn any partial information about the plaintext from the ciphertext.
- Definition: a perfect cipher
$-\operatorname{Pr}($ plaintext $=P \mid$ ciphertext $=C)=\operatorname{Pr}($ plaintext $=P)$
- The ciphertext does not reveal any information about the plaintext
- Sometimes called "semantic security".
- "Perfect cipher" is a definition of a security property
- In the previous lecture, we saw an example of a perfect cipher, the one-time pad.
- When we want to discuss or prove general properties of perfect ciphers, we must refer to every encryption scheme that satisfies the definition.
- Not only the one-time pad.

Perfect Ciphers

- A simple criteria for perfect ciphers. :
- The cipher is perfect if, and only if, $\forall \mathrm{m}_{1}, \mathrm{~m}_{2} \in \mathrm{M}, \forall$ cipher c ,

$$
\operatorname{Pr}\left(\operatorname{Enc}\left(m_{1}\right)=c\right)=\operatorname{Pr}\left(\operatorname{Enc}\left(m_{2}\right)=c\right)
$$

(one direction was proved in the recitation)

- This criterion is called "indistinguishability".
- Idea: Regardless of the plaintext, the adversary sees the same distribution of ciphertexts and cannot distinguish between encryptions of different plaintexts.
- Indistinguishability is equivalent to semantic security.

Proof

- Note that the proof cannot assume that the cipher is the one-time-pad
- We can only assume that $\operatorname{Pr}($ plaintext $=P /$ ciphertext $=$ C) $=\operatorname{Pr}($ plaintext $=P)$

Proof (of one direction; the other direction was proved in

 the recitation)- Perfect security:
- $\forall \mathrm{m} \in \mathrm{M}, \forall$ cipher $\mathrm{c}, \operatorname{Pr}($ plaintext $=\mathrm{m} /$ ciphertext=c) $=$ Pr(plaintext=m).
- Indistinguishability criterion:
$-\forall m_{1}, m_{2} \in M, \forall$ cipher $c, \operatorname{Pr}\left(E n c\left(m_{1}\right)=c\right)=\operatorname{Pr}\left(E n c\left(m_{2}\right)=c\right)$.
- Perfect security \Rightarrow Indistinguishability criterion $\operatorname{Pr}\left(\operatorname{Enc}\left(m_{1}\right)=c\right)=\operatorname{Pr}\left(\right.$ ciphertext=c $/$ plaintext=$\left.m_{1}\right)$
$=\operatorname{Pr}\left(\right.$ ciphertext $=c$ and plaintext $\left.=m_{1}\right) / \operatorname{Pr}\left(\right.$ plaintext $\left.=m_{1}\right)$
$=\operatorname{Pr}\left(\right.$ plaintext $=m_{1} /$ ciphertext=c) $\cdot \operatorname{Pr}($ ciphertext=c) $/$
$\operatorname{Pr}\left(\right.$ plaintext $=m_{1}$)
$=1 \cdot \operatorname{Pr}($ ciphertext $=c) / 1=\operatorname{Pr}($ ciphertext $=c)$

Size of key space

- Perfect security holds even against an adversary that has unlimited computational powers. It is also called "information theoretic security" or "unconditional security".
- However, the key size is inefficient.
- Theorem: For a perfect encryption scheme, the number of possible keys is at least the number of possible plaintexts.
- Proof:
- Given in class last week
- Corollary: Key length of one-time pad is optimal $:$

Computational security

- The computation approach to security is more relaxed
- It only worries about polynomial adversaries
- Adversaries may succeed with very small probability
- Why are these relaxations required ?
- We want the number of possible keys to be smaller than the number of possible plaintexts, namely $|\mathrm{K}|<|\mathrm{M}|$.
- (brute force attack) Given a ciphertext, an adversary can try to decrypt it with all possible keys. Since $|\mathrm{K}|<|\mathrm{M}|$, the results cannot contain all messages and this leaks some information about the plaintext.
- (key guess) Given a ciphertext c and a plaintext m, the adversary can guess at random a key k and check if $\mathrm{E}_{\mathrm{k}}(\mathrm{m})=\mathrm{c}$. If this holds, the adversary can decrypt other ciphertexts which use k.

Computational security

- How this works
- Define a family of cryptosystems, based on a parameter n (often the key length).
- Each choice of n defines a specific cryptosystem.
- Encryption and decryption run in time polynomial in n.
- "negligible probability" = smaller than any inverse polynomial in n. (see below)
- The system is secure if any polynomial time adversary has a negligible probability of success.

Negligible success probability

- A function $f()$ is negligible if \forall polynomial $p(), \exists \mathrm{N}$, s.t. $\forall \mathrm{n}>\mathrm{N}$ it holds that $\mathrm{f}(\mathrm{n})<1 / \mathrm{p}(\mathrm{n})$.
- The functions $2^{-n}, 2^{-n^{0.5}}$, and $2^{-\log \wedge 2(n)}$ are all negligible.
-2^{-n} is smaller than 10^{-6} for all $n>20$
-2^{-n} is smaller than n^{-4} for all $n>16$
$-2^{-n} 0.5$ is smaller than 10^{-6} for all $n>400$
$-2^{-n} 0.5$ is smaller than n^{-4} for all $n>1900$
$-2^{-\log \wedge 2(n)}$ is smaller than 10^{-6} for all $n>\approx 10^{3}$
$-2^{-\log ^{\wedge} 2(n)}$ is smaller than n^{-4} for all $n>16$

An example

- A cryptosystem
- Encryption and decryption take $2^{20} n^{2}$ cycles.
- An adversary (who doesn't have the key) that runs $10^{8} n^{4}$ cycles, decrypts with probability at most $2^{202} 2^{-n}$
- Suppose n=50, and 1Ghz computer
- Encryption and decryption take 2.5 seconds.
- Adversary runs 1 week and decrypts with probability 2^{-30}
- Suppose we have 16Ghz computers, and set $\mathrm{n}=100$.
- Encryption and decryption take 0.625 seconds.
- Adversary runs 1 week and decrypts with probability 2^{-80}.

Negligible success probability

- In practice
- An event that happens with probability 2^{-30} is nonnegligible (likely to happen over 1GB of data)
- An event that happens with probability 2^{-80} is negligible

Computational security

- We should only worry about polynomial adversaries
- Idea: Generate a string which "looks random" to any polynomial adversary. Use it instead of a OTP.
-What does it mean for a string to look random?
- Fraction of bits set to 1 is $\approx 50 \%$
- Longest run of 0 's is of length $\approx \log (n)$,
- Is that sufficient?...
- Enumerating a set of statistical tests that the string should pass is not enough.

Computational security - Pseudo-randomness

- Pseudo-random string:
- No efficient observer can distinguish it from a uniformly random string of the same length
- It "looks" random as long as the observer runs in polynomial time
- Motivation: Indistinguishable objects are equivalent
- So, can use the pseudo-random string instead of a random one
- The foundation of modern cryptography
- (Note that no fixed string can be pseudo-random, or random. We consider a distribution of strings. A distribution of strings of length m is pseudo-random if it is indistinguishable from the uniform distribution of m bit strings.)

Pseudo-random generators

- Pseudo-random generator (PRG)
- G: $\{0,1\}^{\mathrm{n}} \Rightarrow\{0,1\}^{\mathrm{m}}$
- A deterministic function, computable in polynomial time.
- It must hold that $m>n$. Let us assume $m=2 n$.
- The function has only 2^{n} possible outputs.
- Pseudo-random property:
- If we choose inputs $s \in_{R}\{0,1\}^{n}, u \in_{R}\{0,1\}^{m}$, (in other words, choose s and u uniformly at random), then no polynomial adversary can distinguish between $\mathrm{G}(s)$ and u.
- In other words, it holds \forall polynomial time adversary D, (whose output is $0 / 1$) that $\mathrm{D}(\mathrm{G}(s))$ is indistinguishable from D(u))
$|\operatorname{Pr}[\mathrm{D}(\mathrm{G}(s))=1]-\operatorname{Pr}[\mathrm{D}(u)=1]|$ is negligible.

Pseudo-random generator

Properties of PRGs

- How can the adversary distinguish the PRG's output from a random one? (Exhaustive search?)
- Claim (to be proved in the recitation): If G is a PRG then it passes all statistical tests (e.g., the probability that the number of 1 bits in the PRG's output is < $|\mathrm{m}| / 3$ is negligible).

Properties of PRGs

- The value $|\operatorname{Pr}[\mathrm{D}(\mathrm{G}(s))=1]-\operatorname{Pr}[\mathrm{D}(u)=1]|$ is called the advantage of the algorithm D .
- The PRG is secure if \forall poly D the advantage is negligible.
- Can G (seed) be such that the xor of all its bits is always 1 ?
- Can the output of G contain its input?
- G(seed) $=$ seed $\mid G^{\prime}($ seed $)$

Properties of PRGs

- The value $|\operatorname{Pr}[\mathrm{D}(\mathrm{G}(s))=1]-\operatorname{Pr}[\mathrm{D}(u)=1]|$ is called the advantage of the algorithm D .
- The PRG is secure if \forall poly D the advantage is negligible.
- Can G (seed) be such that the xor of all its bits is always 1 ?
- Can the output of G contain its input?
- G(seed) $=$ seed $\mid G^{\prime}($ seed $)$
- Implementation of PRGs:
- Based on mathematical/computational assumptions
- Ad-hoc constructions

Predictability

- The output of a PRG is unpredictable
- There is no efficient alg A() that given the first j bits of $G()$ can predict the next bit with non-negligible prob.
- Proof:
- Suppose that \exists poly $A()$ s.t. $\operatorname{Prob}_{\text {seed }}\left(A\left(\left.G(\right.\right.$ seed $\left.)\right|_{1 \ldots . . j}\right)=$ $\left.G($ seed $\left.)\right|_{j+1}\right)$ is $1 / 2+\delta$, where δ is non-negligible.
- Define a distinguisher, as $D(X)=1$ iff $\left.X\right|_{j+1}=A\left(\left.X\right|_{1 \ldots . . j}\right)$.
- If X is uniform, then $\operatorname{Prob}(D(X)=1)=1 / 2$.
- If $X=G($ seed $)$ then $\operatorname{Prob}(D(X)=1)=1 / 2+\delta$.
- The advantage of D() is δ and is non-negligible.

Using a PRG for Encryption

- Replace the one-time-pad with the output of the PRG
- Key: a (short) random key $\mathrm{k} \in\{0,1\}^{\mathrm{k} \mid}$.
- Message $m=m_{1}, \ldots, \mathrm{~m}_{|\mathrm{m}|}$.
- Use a PRG G: $\{0,1\}^{|k|} \rightarrow\{0,1\}^{|m|}$
- Key generation: choose $\mathrm{k} \in\{0,1\}^{|\mathrm{k}|}$ uniformly at random.
- Encryption:
- Use the output of the PRG as a one-time pad. Namely,
- Generate $G(k)=g_{1}, \ldots, g_{|m|}$
- Ciphertext C = $g_{1} \oplus m_{1}, \ldots, g_{|m|} \oplus m_{|m|}$
- This is an example of a stream cipher.

Definitions of security of encryption against polynomial adversaries

- Perfect security (previous equivalent defs):
- (indistinguishability) $\forall \mathrm{m}_{0}, \mathrm{~m}_{1} \in \mathrm{M}, \forall \mathrm{c}$, the probability that c is an encryption of m_{0} is equal to the probability that c is an encryption of m_{1}.
- (semantic security) The distribution of m given the encryption of m is the same as the a-priori distribution of m.
- Security of pseudo-random encryption (equivalent defs):
- (indistinguishability) $\forall \mathrm{m}_{0}, \mathrm{~m}_{1} \in \mathrm{M}$, no polynomial time adversary D can distinguish between the encryptions of m_{0} and of m_{1}. Namely, $\operatorname{Pr}\left[D\left(E\left(m_{0}\right)\right)=1\right] \approx \operatorname{Pr}\left[D\left(E\left(m_{1}\right)\right)=1\right)$
- (semantic security) $\forall \mathrm{m}_{0}, \mathrm{~m}_{1} \in \mathrm{M}$, a polynomial time adversary which is given $E\left(m_{b}\right)$, where $b \in\{0,1\}$, succeeds in finding b with probability $\approx 1 / 2$.

Proofs by reduction

- We don't know how to prove unconditional proofs of computational security; we must rely on assumptions.
- We can simply assume that the encryption scheme is secure. This is bad.

Proofs by reduction

- We don't know how to prove unconditional proofs of computational security; we must rely on assumptions.
- We can simply assume that the encryption scheme is secure. This is bad.
- Instead, we will assume that some low-level problem is hard to solve, and then prove that the cryptosystem is secure under this assumption.
- (For example, the assumption might be that a certain function G is a pseudo-random generator.)
- Advantages of this approach:
- It is easier to design a low-level function.
- There are (very few) "established" assumptions in cryptography, and people prove the security of cryptosystem based on these assumptions.

Using a PRG for Encryption: Security

- The output of a pseudo-random generator is used for the encryption.
- Proof of security by reduction:
- The assumption is that the PRG is strong (its output is indistinguishable from random).
- We want to prove that in this case the encryption is strong (it satisfies the indistinguishability definition above).
- In other words, prove that if one can break the security of the encryption (distinguish between encryptions of m_{0} and of m_{1}), then it is also possible to break the security of the PRG (distinguish its output from random).

Proof of Security

- Suppose that there is a distinguisher algorithm $\mathrm{D}^{\prime}()$ which distinguishes between (1) and (2) (for now, assume that D' always succeeds)
- We know that no D'() can distinguish between (3) and (4)
- We are given a string S and need to decide whether it is drawn from a pseudorandom distribution or from a uniformly random distribution
- We will use S as a pad to encrypt a message.

Proof of Security

Polynomially indistinguishable?

Same distribution

- Recall: we assume that there is a $\mathrm{D}^{\prime}()$ which always distinguishes between
(1) and (2). D' cannot distinguish between (3) and (4) with probability > $1 / 2$.
- Choose a random $b \in\{0,1\}$ and compute $m_{b} \oplus S$. Give the result to $D^{\prime}()$.
- if S was chosen uniformly, $D^{\prime}()$ must distinguish (3) from (4). (prob=1/2)
- if S is pseudorandom, $D^{\prime}()$ must distinguish (1) from (2). (prob=1)
- If $\mathrm{D}^{\prime}()$ outputs b then declare "pseudorandom", otherwise declare "random".
- if S was chosen uniformly we output "pseudorandom" with prob $1 / 2$.
- if S is pseudorandom we output "pseudorandom" with prob 1.

Proof of Security

Polynomially indistinguishable?

Same distribution

- Recall: we assume that there is a D'() which distinguishes between (1) and
(2) with prob $1 / 2+\delta$. D' cannot distinguish between (3) and (4) with probability>1/2
- Choose a random $b \in\{0,1\}$ and compute $m_{b} \oplus S$. Give the result to $D^{\prime}()$.
- if S was chosen uniformly, $D^{\prime}()$ must distinguish (3) from (4). (prob=1⁄2)
- if S is pseudorandom, $D^{\prime}()$ must distinguish (1) from (2). $\quad(p r o b=1 / 2+\delta)$
- If $D^{\prime}()$ outputs b then declare "pseudorandom", otherwise declare "random".
- if S was chosen uniformly we output "pseudorandom" with prob ½.
- if S is pseudorandom we output "pseudorandom" with prob $1 / 2+\delta$.

ADD MY USUAL BLOCK DIAGRAM

Stream ciphers

- Stream ciphers are based on pseudo-random generators.
- Usually used for encryption in the same way as OTP
- Examples: A5, SEAL, RC4.
- Very fast implementations.
- RC4 is popular and secure when used correctly, but it was shown that its first output bytes are biased. This resulted in breaking WEP encryption in 802.11.
- Some technical issues:
- Stream ciphers require synchronization (for example, if some packets are lost in transit).

