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Perfect Cipher

• What type of security would we like to achieve?

• In an “ideal” world, the message will be delivered in a 
magical way, out of the reach of the adversary

– An encryption system will therefore be called secure if no 
adversary can learn any partial information about the 
plaintext from the ciphertext.

• Definition: a perfect cipher

– Pr( plaintext = P | ciphertext = C ) = Pr( plaintext = P)

– The ciphertext does not reveal any information about the 
plaintext

– Sometimes called “semantic security”.
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• “Perfect cipher” is a definition of a security property

• In the previous lecture, we saw an example of a perfect 
cipher, the one-time pad.

• When we want to discuss or prove general properties of 
perfect ciphers, we must refer to every encryption 
scheme that satisfies the definition.

– Not only the one-time pad.
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Perfect Ciphers

• A simple criteria for perfect ciphers. :

• The cipher is perfect if, and only if,

∀ m1,m2∈M, ∀cipher c, 

Pr(Enc(m1)=c) = Pr(Enc(m2)=c).
(one direction was proved in the recitation)

• This criterion is called “indistinguishability”.

• Idea: Regardless of the plaintext, the adversary sees 
the same distribution of ciphertexts and cannot 
distinguish between encryptions of different plaintexts.

• Indistinguishability is equivalent to semantic security.
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Proof

• Note that the proof cannot assume that the cipher is the 
one-time-pad

• We can only assume that Pr( plaintext = P | ciphertext = 
C) = Pr( plaintext = P)
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Proof (of one direction; the other direction was proved in 

the recitation)

• Perfect security:

– ∀ m∈M, ∀cipher c, Pr(plaintext=m / ciphertext=c) = 
Pr(plaintext=m).

• Indistinguishability criterion:

– ∀ m1,m2∈M, ∀cipher c,  Pr(Enc(m1)=c) = Pr(Enc(m2)=c).

• Perfect security ⇒ Indistinguishability criterion

Pr(Enc(m1)=c) = Pr(ciphertext=c / plaintext=m1) 

= Pr(ciphertext=c and plaintext=m1) / Pr(plaintext=m1)

= Pr(plaintext=m1 / ciphertext=c) · Pr(ciphertext=c) / 
Pr(plaintext=m1 )

= 1· Pr(ciphertext=c) / 1 = Pr(ciphertext=c)
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Size of key space

• Perfect security holds even against an adversary that 
has unlimited computational powers. It is also called 
“information theoretic security” or “unconditional 
security”.

• However, the key size is inefficient.

• Theorem: For a perfect encryption scheme, the number 
of possible keys is at least the number of possible 
plaintexts.

• Proof: 

– Given in class last week

• Corollary: Key length of one-time pad is optimal �
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Computational security

• The computation approach to security is more relaxed
– It only worries about polynomial adversaries

– Adversaries may succeed with very small probability

• Why are these relaxations required ?
– We want the number of possible keys to be smaller than 

the number of possible plaintexts, namely |K|<|M|. 

– (brute force attack) Given a ciphertext, an adversary can 
try to decrypt it with all possible keys. Since |K|<|M|, the 
results cannot contain all messages and this leaks some 
information about the plaintext.

– (key guess) Given a ciphertext c and a plaintext m, the 
adversary can guess at random a key k and check if 
Ek(m)=c. If this holds, the adversary can decrypt other 
ciphertexts which use k.
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Computational security

• How this works

– Define a family of cryptosystems, based on a parameter n
(often the key length).

– Each choice of n defines a specific cryptosystem.

– Encryption and decryption run in time polynomial in n.

– “negligible probability” = smaller than any inverse 
polynomial in n. (see below)

– The system is secure if any polynomial time adversary has 
a negligible probability of success.
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Negligible success probability

• A function f() is negligible if ∀ polynomial p(), ∃ N,      
s.t. ∀ n>N it holds that f(n) < 1/p(n).

• The functions 2-n, 2-n0.5
, and 2-log^2(n) are all negligible.

– 2-n is smaller than 10-6 for all n>20

– 2-n is smaller than n-4 for all n>16

– 2-n0.5
is smaller than 10-6 for all n>400

– 2-n0.5
is smaller than n-4 for all n>1900

– 2-log^2(n) is smaller than 10-6 for all n> ≈103

– 2-log^2(n) is smaller than n-4 for all n>16
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An example

• A cryptosystem

– Encryption and decryption take 220n2 cycles.

– An adversary (who doesn’t have the key) that runs 108n4

cycles, decrypts with probability at most 2202-n

• Suppose n=50, and 1Ghz computer

– Encryption and decryption take 2.5 seconds.

– Adversary runs 1 week and decrypts with probability 2-30

• Suppose we have 16Ghz computers, and set n=100.

– Encryption and decryption take 0.625 seconds.

– Adversary runs 1 week and decrypts with probability 2-80 .



Negligible success probability

• In practice

– An event that happens with probability 2-30 is non-
negligible (likely to happen over 1GB of data)

– An event that happens with probability 2-80 is negligible 
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Computational security

• We should only worry about polynomial adversaries

• Idea: Generate a string which “looks random” to any 
polynomial adversary. Use it instead of a OTP.

• What does it mean for a string to look random?

– Fraction of bits set to 1 is ≈ 50%

– Longest run of 0’s is of length ≈ log(n), 

– Is that sufficient?...

• Enumerating a set of statistical tests that the string 
should pass is not enough.
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Computational security – Pseudo-randomness

• Pseudo-random string:

– No efficient observer can distinguish it from a uniformly 
random string of the same length

– It “looks” random as long as the observer runs in 
polynomial time

• Motivation: Indistinguishable objects are equivalent

– So, can use the pseudo-random string instead of a 
random one

• The foundation of modern cryptography

• (Note that no fixed string can be pseudo-random, or random. We 
consider a distribution of strings. A distribution of strings of length 
m is pseudo-random if it is indistinguishable from the uniform 
distribution of m bit strings.)
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Pseudo-random generators

• Pseudo-random generator (PRG) 

– G: {0,1}n ⇒ {0,1}m

• A deterministic function, computable in polynomial time.

• It must hold that m > n. Let us assume m=2n.

• The function has only 2n possible outputs.

• Pseudo-random property:

– If we choose inputs s∈R{0,1}n, u∈R{0,1}m,  (in other words, 
choose s and u uniformly at random), then no polynomial 
adversary can distinguish between G(s) and u.

– In other words, it holds ∀ polynomial time adversary D, 
(whose output is 0/1) that D(G(s)) is indistinguishable from 
D(u))

| Pr[D(G(s))=1] - Pr[D(u)=1] | is negligible.
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Pseudo-random generator
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Properties of PRGs

• How can the adversary distinguish the PRG’s output from a 

random one? (Exhaustive search?)

• Claim (to be proved in the recitation): If G is a PRG then it 

passes all statistical tests (e.g., the probability that the number of 1 

bits in the PRG’s output is < |m|/3 is negligible).
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Properties of PRGs

• The value | Pr[D(G(s))=1] - Pr[D(u)=1] | is called the 

advantage of the algorithm D. 

• The PRG is secure if ∀poly D the advantage is negligible.

• Can G(seed) be such that the xor of all its bits is always 1?

• Can the output of G contain its input?

– G(seed)= seed | G’(seed)



page 19November 6, 2012 Introduction to Cryptography, Benny Pinkas      

Properties of PRGs

• The value | Pr[D(G(s))=1] - Pr[D(u)=1] | is called the 

advantage of the algorithm D. 

• The PRG is secure if ∀poly D the advantage is negligible.

• Can G(seed) be such that the xor of all its bits is always 1?

• Can the output of G contain its input?

– G(seed)= seed | G’(seed)

• Implementation of PRGs:

– Based on mathematical/computational assumptions

– Ad-hoc constructions



Predictability

• The output of a PRG is unpredictable

• There is no efficient alg A() that given the first j bits of 
G() can predict the next bit with non-negligible prob.

• Proof:

– Suppose that ∃poly A() s.t. Probseed(A( G(seed)|1…j ) = 
G(seed)|j+1 ) is ½+δ, where δ is non-negligible.

– Define a distinguisher, as D(X)=1 iff X|j+1 = A( X|1…j ).

• If X is uniform, then Prob(D(X)=1) = ½.

• If X=G(seed) then Prob(D(X)=1) = ½+δ.

• The advantage of D() is δ and is non-negligible.
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Using a PRG for Encryption

• Replace the one-time-pad with the output of the PRG

• Key: a (short) random key k∈{0,1}|k|.

• Message m= m1,…,m|m|.

• Use a PRG G : {0,1}|k| → {0,1}|m|

• Key generation: choose k∈{0,1}|k| uniformly at random.

• Encryption:

– Use the output of the PRG as a one-time pad. Namely,

– Generate G(k) = g1,…,g|m|

– Ciphertext C = g1⊕m1,…, g|m| ⊕m|m|

• This is an example of a stream cipher.
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Definitions of security of encryption against polynomial 

adversaries

• Perfect security (previous equivalent defs):

– (indistinguishability) ∀ m0,m1∈M, ∀c, the probability that c is 
an encryption of m0 is equal to the probability that c is an 
encryption of m1.

– (semantic security) The distribution of m given the 
encryption of m is the same as the a-priori distribution of m. 

• Security of pseudo-random encryption (equivalent defs):

– (indistinguishability) ∀ m0,m1∈M, no polynomial time 
adversary D can distinguish between the encryptions of m0

and of m1. Namely, Pr[D(E(m0))=1] ≈ Pr[D(E(m1))=1)

– (semantic security) ∀ m0,m1∈M, a polynomial time 
adversary which is given E(mb), where b∈r{0,1}, succeeds 
in finding b with probability ≈ ½.
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Proofs by reduction

• We don’t know how to prove unconditional proofs of 
computational security; we must rely on assumptions.

– We can simply assume that the encryption scheme is 
secure. This is bad.
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Proofs by reduction

• We don’t know how to prove unconditional proofs of 
computational security; we must rely on assumptions.

– We can simply assume that the encryption scheme is 
secure. This is bad.

– Instead, we will assume that some low-level problem is 
hard to solve, and then prove that the cryptosystem is 
secure under this assumption.

– (For example, the assumption might be that a certain 
function G is a pseudo-random generator.)

– Advantages of this approach:

• It is easier to design a low-level function.

• There are (very few) “established” assumptions in 
cryptography, and people prove the security of cryptosystem 
based on these assumptions.



page 25November 6, 2012 Introduction to Cryptography, Benny Pinkas      

Using a PRG for Encryption: Security

• The output of a pseudo-random generator is used 
for the encryption.

• Proof of security by reduction: 
– The assumption is that the PRG is strong (its output is 

indistinguishable from random).

– We want to prove that in this case the encryption is strong 
(it satisfies the indistinguishability definition above).

– In other words, prove that if one can break the security of 
the encryption (distinguish between encryptions of m0 and 
of m1), then it is also possible to break the security of the 
PRG (distinguish its output from random).
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Proof of Security

Enc(m0) with

PRG

Enc(m0) with

one-time pad

Enc(m1) with

one-time pad

Enc(m1) with

PRG

Polynomially indistinguishable? Same distribution

• Suppose that there is a distinguisher algorithm D’() which distinguishes 
between (1) and (2) (for now, assume that D’ always succeeds)

• We know that no D’() can distinguish between (3) and (4)

• We are given a string S and need to decide whether it is drawn from a 
pseudorandom distribution or from a uniformly random distribution

• We will use S as a pad to encrypt a message.

(1) (2) (3) (4)
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Proof of Security

Enc(m0) with

PRG

Enc(m0) with

one-time pad

Enc(m1) with

one-time pad

Enc(m1) with

PRG

Polynomially indistinguishable? Same distribution

• Recall: we assume that there is a D’() which always distinguishes between 
(1) and (2). D’ cannot distinguish between (3) and (4) with probability > ½. 

• Choose a random b∈{0,1} and compute mb⊕S. Give the result to D’().

• if S was chosen uniformly, D’() must distinguish (3) from (4). (prob=½)

• if S is pseudorandom, D’() must distinguish (1) from (2).      (prob=1)

• If D’() outputs b then declare “pseudorandom”, otherwise declare “random”.

• if S was chosen uniformly we output “pseudorandom” with prob ½.

• if S is pseudorandom we output “pseudorandom” with prob 1.

(1) (2) (3) (4)
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Proof of Security

Enc(m0) with

PRG

Enc(m0) with

one-time pad

Enc(m1) with

one-time pad

Enc(m1) with

PRG

Polynomially indistinguishable? Same distribution

• Recall: we assume that there is a D’() which distinguishes between (1) and 
(2) with prob ½+δ. D’ cannot distinguish between (3) and (4) with probability>½ 

• Choose a random b∈{0,1} and compute mb⊕S. Give the result to D’().

• if S was chosen uniformly, D’() must distinguish (3) from (4). (prob=½)

• if S is pseudorandom, D’() must distinguish (1) from (2).      (prob=½+δ)

• If D’() outputs b then declare “pseudorandom”, otherwise declare “random”.

• if S was chosen uniformly we output “pseudorandom” with prob ½.

• if S is pseudorandom we output “pseudorandom” with prob ½+δ.

(1) (2) (3) (4)
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Stream ciphers

• Stream ciphers are based on pseudo-random 
generators.

– Usually used for encryption in the same way as OTP

• Examples: A5, SEAL, RC4.

– Very fast implementations.

– RC4 is popular and secure when used correctly, but it was 
shown that its first output bytes are biased. This resulted 
in breaking WEP encryption in 802.11.

• Some technical issues:

– Stream ciphers require synchronization (for example, if 
some packets are lost in transit).


