
page 1January 7, 2013 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 11

Benny Pinkas

page 2January 7, 2013 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• A method to bootstrap trust

– Start by trusting a single party and knowing its public key

– Use this to establish trust with other parties (and associate
them with public keys)

• The Certificate Authority (CA) is trusted party.

– All users have a copy of the public key of the CA

– The CA signs Alice’s digital certificate. A simplified
certificate is of the form (Alice, Alice’s public key).

page 3January 7, 2013 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• News about CAs used for MiTM attacks.

page 4January 7, 2013 Introduction to Cryptography, Benny Pinkas

Revocation

• Revocation is a key component of PKI

– Each certificate has an expiry date

– But certificates might get stolen, employees might leave
companies, etc.

– Certificates might therefore need to be revoked before
their expiry date

– New problem: before using a certificate we must verify that
it has not been revoked

• Often the most costly aspect of running a large scale public
key infrastructure (PKI)

• How can this be done efficiently?

page 5January 7, 2013 Introduction to Cryptography, Benny Pinkas

Certificate Revocation Lists (CRLs)

• A revocation agency (RA) issues a list of revoked
certificates (i.e., “bad” certificates)

– The list is updated and published regularly (e.g. daily)

– Before trusting a certificate, users must consult the most
recent CRL in addition to checking the expiry date.

• Advantages: simple.

• Drawbacks:

– Scalability. CRLs can be huge. There is no short proof that
a certificate is valid.

– There is a vulnerability windows between a compromise of
certificate and the next publication of a CRL.

– Need a reliable way of distributing CRLs.

• Improving scalability using “delta CRLs”: a CRL that only
lists certificates which were revoked since the issuance of a
specific, previously issued CRL.

page 6January 7, 2013 Introduction to Cryptography, Benny Pinkas

Explicit revocation: OCSP

• OCSP (Online Certificate Status Protocol)

– RFC 2560, June 1999.

• OCSP can be used in place, or in addition, to CRLs

• Clients send a request for certificate status information.

– An OCSP server sends back a response of "current",
"expired," or "unknown“.

– The response is signed (by the CA, or a Trusted Responder,
or an Authorized Responder certified by the CA).

• Provides instantaneous status of certificates

– Overcomes the chief limitation of CRL: the fact that updates
must be frequently downloaded and parsed by clients to
keep the list current

page 7January 7, 2013 Introduction to Cryptography, Benny Pinkas

Certificate Revocation System (CRS)

• Certificate Revocation System (Micali’96)

• Puts the burden of proof on the certificate holder (who
must prove that the certificate is still valid).

• In theory, we could limit the lifetime of certificates to a
single day, and require the certificate holder to ask for a
new certificate every day.
– This would result in a high overhead at the CA

page 8January 7, 2013 Introduction to Cryptography, Benny Pinkas

Certificate Revocation System (CRS)

• It is possible to reduce the overhead of the CA by using
a hash chain

– The certificate includes Y365 = f 365(Y0). This value is part
of the information signed by the CA. f is one-way.

– On day d,

• If the certificate is valid, then Y365-d = f 365-d(Y0) is sent by the
CA to the certificate holder or to a directory.

• The certificate receiver uses the daily value (f 365-d(Y0)) to
verify that the certificate is still valid. (how?)

• Advantage: A short, individual, proof per certificate.

• Disadvantage: Daily overhead, even when a cert is valid.

CA’s work

• How can the server can compute f i(Y0)

• There are two straightforward methods

– Storing all n values

– Storing Y0 and computing f i(Y0) on the fly.

• Another option is to store sqrt(n) intermediate points
and do sqrt(n) work per computation of each f i(Y0)

• There are also more advanced methods requiring
log(n) storage and O(1) amortized work per
computation

page 9January 7, 2013 Introduction to Cryptography, Benny Pinkas

page 10January 7, 2013 Introduction to Cryptography, Benny Pinkas

Merkle Hash Tree (will be useful later)

• A method of committing to (by hashing together) n
values, x1,…,xn, such that

– The result is a single hash value

– For any xi, it is possible to prove that it appeared in the
original list, using a proof of length O(log n).

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

page 11January 7, 2013 Introduction to Cryptography, Benny Pinkas

Merkle Hash Tree

• H is a collision intractable hash function

• Any change to a leaf results in a change to the root

• To sign the set of values it is sufficient to sign the root
(a single signature instead of n).

• How do we verify that an element appeared in the
signed set?

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

page 12January 7, 2013 Introduction to Cryptography, Benny Pinkas

Verifying that a appears in the signed set

• Provide a’s leaf, and the siblings of the nodes in the path
from a to the root. (O(log n) values)

• The verifier can use H to compute the values of the
nodes in the path from the leaf to the root.

• It then compares the computed root to the signed value.

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

page 13January 7, 2013 Introduction to Cryptography, Benny Pinkas

Using hash trees to improve the overhead of CRS

• Originally (for a year long certificate)

– the certificate includes f 365(Y0)

– On day d, certificate holder obtains f 365-d(Y0)

– The certificate receiver computes f 365(Y0) from f 365-d(Y0)
by invoking f() d times.

• Slight improvement:

– The CA assigns a different leaf for every day, constructs a
hash tree, and signs the root.

– On day d, it releases node d and the siblings of the path
from it to the root.

– This is the proof that the certificate is valid on day d

– The overhead of verification is O(log 365).

page 14January 7, 2013 Introduction to Cryptography, Benny Pinkas

Certificate Revocation Tree (CRT) [Kocher]

• (A different usage of a hash tree)

• A CRT is a hash tree with leaves corresponding to
statements about ranges of certificates

– Statements describe regions of certificate ids, in which
only the smallest id is revoked.

• For example, a leaf might read: “if 100 ≤ id <234, then cert is
revoked iff id=100”.

– Each certificate matches exactly one statement.

– The statements are the leaves of a signed hash tree,
ordered according to the ranges of certificate values.

– To examine the state of a certificate we retrieve the
statement for the corresponding region.

– A single hash tree is used for all certs.

page 15January 7, 2013 Introduction to Cryptography, Benny Pinkas

Certificate Revocation Tree (CRT)

– Preferred operation mode:
• Every day the CA constructs an updated tree.

• The CA signs a statement including the root of the tree and
the date.

• It is Alice’s responsibility to retrieve the leaf which shows that
her certificate is valid, the route from this leaf to the root, and
the CA’s signature of the root.

• To prove the validity of her cert, Alice sends this information.

• The receiver verifies the value in the leaf, the route to the
tree, and the signature.

– Advantage:
• a short proof for the status of a certificate.

• The CA does not have to handle individual requests.

– Drawback: the entire hash tree must be updated daily.

page 16January 7, 2013 Introduction to Cryptography, Benny Pinkas

SSL / TLS

page 17January 7, 2013 Introduction to Cryptography, Benny Pinkas

SSL/TLS

• General structure of secure HTTP connections

– To connect to a secure web site using SSL or TLS, we
send an https:// command

– The web site sends back a public key(1), and a certificate.

– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.

page 18January 7, 2013 Introduction to Cryptography, Benny Pinkas

SSL/TLS

• SSL (Secure Sockets Layer)

– SSL v2

• Released in 1995 with Netscape 1.1

• A flaw found in the key generation algorithm

– SSL v3

• Improved, released in 1996

• Public design process

• TLS (Transport Layer Security)

– IETF standard, RFC 2246

• Common browsers support all these protocols

page 19January 7, 2013 Introduction to Cryptography, Benny Pinkas

SSL Protocol Stack

• SSL/TLS operates over TCP, which ensures reliable
transport.

• Supports any application protocol (usually used with
http).

page 20January 7, 2013 Introduction to Cryptography, Benny Pinkas

SSL/TLS Overview

• Handshake Protocol - establishes a session
– Agreement on algorithms and security parameters

– Identity authentication

– Agreement on a key

– Report error conditions to each other

• Record Protocol - Secures the transferred data
– Message encryption and authentication

• Alert Protocol – Error notification (including “fatal”
errors).

• Change Cipher Protocol – Activates the pending crypto
suite

page 21January 7, 2013 Introduction to Cryptography, Benny Pinkas

Simplified SSL Handshake

Client Server

I want to talk, ciphers I support, RC

Certificate (PKServer), cipher I choose, RS

{S}PKserver , {keyed hash of handshake message}

{keyed hash of handshake message}

Data protected by keys derived from K

K= f (S,RC,RS) K= f (S,RC,RS)

compute compute

page 22January 7, 2013 Introduction to Cryptography, Benny Pinkas

A typical run of a TLS protocol

• C ⇒ S
– ClientHello.protocol.version = “TLS version 1.0”

– ClientHello.random = TC, NC

– ClientHello.session_id = “NULL”

– ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”

– ClientHello.compression_method = “NULL”

• S ⇒ C
– ServerHello.protocol.version = “TLS version 1.0”

– ServerHello.random = TS, NS

– ServerHello.session_id = “1234”

– ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”

– ServerHello.compression_method = “NULL”

– ServerCertificate = pointer to server’s certificate

– ServerHelloDone

page 23January 7, 2013 Introduction to Cryptography, Benny Pinkas

Some additional issues

• More on S ⇒ C

– The ServerHello message can also contain Certificate
Request Message

– I.e., server may request client to send its certificate

– Two fields: certificate type and acceptable CAs

• Negotiating crypto suites

– The crypto suite defines the encryption and authentication
algorithms and the key lengths to be used.

– ~30 predefined standard crypto suites

– Selection (SSL v3): Client proposes a set of suites. Server
selects one.

page 24January 7, 2013 Introduction to Cryptography, Benny Pinkas

Key generation

• Key computation:

– The key is generated in two steps:

– pre-master secret S is exchanged during handshake

– master secret K is a 48 byte value calculated using pre-
master secret and the random nonces

• Session vs. Connection: a session is relatively long lived. Multiple
TCP connections can be supported under the same SSL/TSL
connection.

• For each connection: 6 keys are generated from the master
secret K and from the nonces. (For each direction: encryption
key, authentication key, IV.)

page 25January 7, 2013 Introduction to Cryptography, Benny Pinkas

TLS Record Protocol

page 26January 7, 2013 Introduction to Cryptography, Benny Pinkas

Some practical issues in number theory

page 27January 7, 2013 Introduction to Cryptography, Benny Pinkas

Primality testing

• Why do we need primality testing?

– Essentially all public key cryptographic algorithms use
large prime numbers

– We therefore need an algorithm for prime number
generation

– Suppose we have an algorithm “PrimalityTest” with a
binary output.

– We can generate random primes as follows
GeneratePrime(a,b)

1. Choose random number x ∈ [a,b]

2. If PrimalityTest(x) then output “x is

prime”; otherwise goto line 1.

page 28January 7, 2013 Introduction to Cryptography, Benny Pinkas

Density of prime numbers

• How long will GeneratePrime run?

• Let π(n) specify number of primes ≤ n.

• Prime number theorem:

– π(n) goes to n / ln n as n goes to infinity.

• Pretty accurate even for small n (e.g. for n=230 it is off
by 6%).

• Corollary: a random number in [1,n] is prime with
probability 1/ln n. (e.g. for n=2512, probability is 1/355).

– The GeneratePrime algorithm is expected to take ln n
rounds.

– If we skip even numbers, we cut running time by ½.

page 29January 7, 2013 Introduction to Cryptography, Benny Pinkas

Primality testing

• Primality testing is a decision problem: “is x prime or
composite?”

• Different than the search problem “find all prime factors
of x” (“factor x”).

• In this case, the decision problem has an efficient
solution while the search problem does not.

• First algorithm for primality testing: Trial division

– Try to divide x by every prime integer smaller than √x
(sqrt(x)).

– Infeasible for large x.

page 30January 7, 2013 Introduction to Cryptography, Benny Pinkas

Fermat’s test

• Fermat’s theorem: if p is prime then for all 1 ≤ a < p it
holds that ap-1 = 1 mod p.

• If we can find an a s.t ax-1 ≠1 mod x, then x is surely
composite.
– Surprisingly, the converse is almost always true, and for a

large percentage of the choices of a.

– Suppose we check only for a=2.
• If 2x-1 != 1 mod x

–Then return COMPOSITE /for sure

–Otherwise, return PRIME /we hope

– How accurate is this program?

page 31January 7, 2013 Introduction to Cryptography, Benny Pinkas

Fermat’s test

• Surprisingly, this test is almost always right

– Wrong for only 22 values of x smaller than 100,000

– Probability of error goes down to 0 as x grows
• For |x|=512 bits, probability of error is < 10-20 ≈ 2-66

• For |x|=1024 bits, probability of error is < 10-41 ≈ 2-136

• The test is therefore sufficient for randomly chosen
candidate primes

• But we need a better test if x is not chosen at random

• Cannot eliminate errors by checking for bases ≠ 2

– x is a Charmichael number if it is composite, but ax-1 = 1
mod x for all 1 ≤ a < x.

– There are infinitely many Charmichael numbers

– But they are very rare

page 32January 7, 2013 Introduction to Cryptography, Benny Pinkas

Miller-Rabin test

Works for all numbers (even Charmichael numbers).
– Checks several randomly chosen bases a

– If it finds out that ax-1 = 1 mod x, it checks whether the
process found a nontrivial root of 1 (≠ 1,-1). If so, it
outputs COMPOSITE.

The Miller-Rabin test:
1. Write x-1=2cr for an odd r. set comp=0.

2. For i=1 to T

• Pick random a ∈ [1,x-1]. If gcd(a,x)> 1
set comp=1.

• Compute y0=a
r mod x, yi=(yi-1)

2 mod x for
i=1..c. If yc≠1, or ∃i, yi=1, yi-1≠±1, set
comp=1.

3. If comp=1 return COMPOSITE, else PRIME.

page 33January 7, 2013 Introduction to Cryptography, Benny Pinkas

Miller-Rabin test

• Possible values for the sequence y0=ar, y1=a2r… yc=ax-1
.

• <…,d>, where d≠1, decide COMPOSITE.

• <1,1,…,1>, decide PRIME.

• <..,-1,1,..,1>, decide PRIME.

• <…,d,1,…,1>, where d≠±1, decide COMPOSITE.

– For a composite number x, we denote a base a as a non-
witness if it results in the output being “PRIME”.

• Lemma: if x is an odd composite number then the
number of non-witnesses is at most x/4.

• Therefore, for any odd integer x, T trials give the wrong
answer with probability < (1/4)T.

page 34January 7, 2013 Introduction to Cryptography, Benny Pinkas

Breaking News (some years ago)

• Primes ∈ P

– Agrawal, Kayal, Saxena (2004)

page 35January 7, 2013 Introduction to Cryptography, Benny Pinkas

Integer factorization

• The RSA and Rabin cryptosystems use a modulus N
and are insecure if it is possible to factor N.

• Factorization: given N find all prime factors of N.

• Factoring is the search problem corresponding to the
primality testing decision problem.

– Primality testing is easy

– What about factoring?

page 36January 7, 2013 Introduction to Cryptography, Benny Pinkas

Pollard’s Rho method

• Factoring N

• Trivial algorithm: trial division by all integers < N1/2.

• Pollard’s rho method:

– O(N1/4) computation.

– O(1) memory.

– A heuristic algorithm.

page 37January 7, 2013 Introduction to Cryptography, Benny Pinkas

Pollard’s rho method

1. i=1; x1∈[1,n-1]; y=x1;

2. i = i+1.

3. xi = ((xi-1)
2 - 1) mod n.

4. d = gcd(y-xi, n)

5. If d>1 then output d, and stop.

6. If i is a power of 2, then y=xi

7. Goto line 2.

• xi is a series of numbers in 0..n-1.

• y takes the values of x1, x2, x4, x8, …, x2^i,…

• If (y-xi) = 0 mod p, then most likely gcd(y-xi,n)=p.

Always a factor of n

page 38January 7, 2013 Introduction to Cryptography, Benny Pinkas

Pollard’s rho method

• The running time is not guaranteed, but is expected to
be sqrt(p) ≤ n1/4.

• The sequence xi is in 1..n.

– xi depends only on xi-1 (xi = ((xi-1)
2 - 1) mod n)

– The sequence is shaped like the letter Rho.

– Assume that fn(x)=x2-1 mod n behaves like a random
function. Then the tail and the circle are about sqrt(n) long.

• Let x’i = xi mod p, where p factors n.

• x’i+1 = xi+1 mod p = (xi
2-1 mod n) mod p = xi

2-1 mod p
= (xi’)

2-1 mod p

• The sequence x’i therefore follows xi, but is in 0..p-1.
Therefore, its tail and circle are about sqrt(p) long.

page 39January 7, 2013 Introduction to Cryptography, Benny Pinkas

Pollard’s rho method

• The sequence x’i:
– Let t be the first repeated value in x’i
– Let u be the length of the cycle

– ∀i x’t+i = x’t+i+u mod p

– Therefore xt+i = xt+i+u mod p

– gcd(xt+i - xt+i+u , n) = cp.

• Once the algorithm saves y=xj for j>t, it is on the circle.
If the circle length u is smaller than j, the algorithm
computes gcd(xj+u-xj, n) and factors n.

• The algorithm fails if
– The cycle and tail are long ⇒ running time is slow.

– The cycle and tail are of the same length for both p and q.

page 40January 7, 2013 Introduction to Cryptography, Benny Pinkas

Modern factoring algorithms

• The number-theoretic running time function Ln(a,c)

– For a=0, the running time is polynomial in ln(n).

– For a=1, the running time is exponential in ln(n).

– For 0<a<1, the running time is subexponential.

• Factoring algorithms

– Quadratic field sieve: Ln(1/2, 1)

– General number field sieve: Ln(1/3, 1.9323)

– Elliptic curve method Lp(1/2, 1.41) (preferable only if
p<<sqrt(n))

page 41January 7, 2013 Introduction to Cryptography, Benny Pinkas

Modulus size recommendations

• Factoring algorithms are run on massively distributed
networks of computers (running in their idle time).

• RSA published a list of factoring challenges.

• A 512 bit challenge was factored in 1999.

• The largest factored number n=pq.
– 768 bits (RSA-768)

– Factored on January 7, 2010 using the NFS

• Typical current choices:
– At least 1024-bit RSA moduli should be used

– For better security, longer RSA moduli are used

– For more sensitive applications, key lengths of 2048 bits
(or higher) are used

page 42January 7, 2013 Introduction to Cryptography, Benny Pinkas

RSA with a modulus with more factors

• The best factoring algorithms:

– General number field sieve (NFS): Ln(1/3, 1.9323)

– Elliptic curve method Lp(1/2, 1.41)

• If n=pq, where |p|=|q|, then the NFS is faster.

– Common parameters: |p|=|q|=512 bits

– Factoring using the NFS is infeasible, but more likely than
factoring using the elliptic curve method.

• How about using N=pqr, where |p|=|q|=|r|=512?

– The factors are of the same length, so factoring using the
elliptic curve method is still infeasible. ☺

– The NFS method has to work on a larger modulus ☺

– Decryption time is slower (but not by much). �

page 43January 7, 2013 Introduction to Cryptography, Benny Pinkas

RSA for paranoids

• Suppose N=pq, |p|=500 bits, |q|=4500 bits.

• Factoring is extremely hard.

• Decryption is also very slow. (Encryption is done using a
short exponent, so it is pretty efficient.)

• However, in most applications RSA is used to transfer
session keys, which are rather short.

• Assume message length is < 500 bits.

– In the decryption process, it is only required to decrypt the
message modulo p. (As, or more, efficient, as a 1024 bit n.)

– Encryption must use a slightly longer e. Say, e=20.

page 44January 7, 2013 Introduction to Cryptography, Benny Pinkas

Discrete log algorithms

• Input: (g,y) in a finite group G. Output: x s.t. gx = y in G.
• Generic vs. special purpose algorithms: generic algorithms do not

exploit the representation of group elements.

• Algorithms
– Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running

time and memory.

– Pollard’s rho method: Generic. |G| must be known. Sqrt(|G|) running time
and O(1) memory.

– No generic algorithm can do better than O(sqrt(q)), where q is the largest
prime factor of |G|

– Pohlig-Hellman: Generic. |G| and its factorization must be known.
O(sqrt(q) ln q), where q is largest prime factor of |G|.

– Therefore for Z*p, p-1 must have a large prime factor.

– Index calculus algorithm for Z*p: L(1/2, c)

– Number field size for Z*p: L(1/3, 1.923)

page 45January 7, 2013 Introduction to Cryptography, Benny Pinkas

Elliptic Curves

• The best discrete log algorithm which works even if |G|
can be unknown is the baby-step giant-step algorithm.
– Sqrt(|G|) running time and memory.

• Other (more efficient) algorithms must know |G|.
– In Zp* we know that | Zp* |=p-1.

• Elliptic curves are groups G where
– The Diffie-Hellman assumption is assumed to hold, and

therefore we can run DH an ElGamal encryption/sigs.

– |G| is unknown and therefore the best discrete log algorithm
us pretty slow

– It is therefore believed that a small Elliptic Curve group is as
secure as larger Zp* group.

– Smaller group -> smaller keys and more efficient operations.

page 46January 7, 2013 Introduction to Cryptography, Benny Pinkas

Baby-step giant-step DL algorithm

• Let t=sqrt(|G|).

• x can be represented as x=ut-v, where u,v < sqrt(|G|).

• The algorithm:

– Giant step: compute the pairs (j, g j·t), for 0 ≤ j ≤ t. Store in
a table keyed by g j·t.

– Baby step: compute y·gi for i=0,1,2…, until you hit an item
(j, g j·t) in the table. x = jt - i.

• Memory and running time are O(sqrt|G|).

page 47January 7, 2013 Introduction to Cryptography, Benny Pinkas

Baby-step giant-step DL algorithm

