
page 1May 1, 2011 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography

Lecture 8

Benny Pinkas

page 2May 1, 2011 Introduction to Cryptography, Benny Pinkas

Public Key-Exchange

• Goal: Two parties who do not share any secret
information, perform a protocol and derive the same
shared key.

• No eavesdropper can obtain the new shared key (if it
has limited computational resources).

• The parties can therefore safely use the key as an
encryption key.

page 3May 1, 2011 Introduction to Cryptography, Benny Pinkas

The Diffie-Hellman Key Exchange Protocol

• Alice:
– picks a random a∈[0,q-1].
– Sends ga mod p to Bob.

– Computes k=(gb)a mod p

• Bob:
– picks a random b∈[0,q-1].
– Sends gb mod p to Alice.

– Computes k=(ga)b mod p

• Public parameters: a group where the DDH assumption
holds. For example, a subgroup H⊂ Zp* (where |p|= 768
or 1024, p=2q+1) of order q, and a generator g of H⊂ Zp*.

• K = gab is used as a shared key between Alice and Bob.
• DDH assumption ⇒ K is indistinguishable from a random key

page 4May 1, 2011 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman: security

• A (passive) adversary
– Knows Zp

*, g
– Sees ga, gb

– Wants to compute gab, or at least learn something about it
• Recall the Decisional Diffie-Hellman problem:

– Given random x,y∈Zp
*, such that x=ga and y=gb; and a pair

(gab,gc) (in random order, for a random c), it is hard to tell
which is gab.

– This is exactly the setting of the DH key exchange protocol

page 5May 1, 2011 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman key exchange: usage

• The DH key exchange can be used in any group in
which the Decisional Diffie-Hellman (DDH) assumption
is believed to hold.

• Currently, appropriate subgroups of Zp* and elliptic
curve groups.

– Why don’t we implement Diffie-Hellman in Zp* itself ?
(but rather in a subgroup H⊂ Zp*, for p=2q+1, of order q, and a
generator g of H⊂ Zp*)

– For the system to be secure, we need that the DDH assumption
holds.

– This assumption does not hold in Zp* (discussed in last lecture)

page 6May 1, 2011 Introduction to Cryptography, Benny Pinkas

Public key encryption

• Alice publishes a public key PKAlice.
• Alice has a secret key SKAlice.
• Anyone knowing PKAlice can encrypt messages using it.
• Message decryption is possible only if SKAlice is known.

• Compared to symmetric encryption:
– Easier key management: n users need n keys, rather than

O(n2) keys, to communicate securely.
• Compared to Diffie-Hellman key agreement:

– No need for an interactive key agreement protocol. (Think
about sending email…)

• Secure as long as we can trust the association of keys
with users.

page 7May 1, 2011 Introduction to Cryptography, Benny Pinkas

Notes on public key encryption

• Must use different keys for encryption and decryption.

• Public key encryption cannot provide perfect secrecy:
– Suppose Epk() is an algorithm that encrypts m=0/1, and

uses r random bits in operation.
– An adversary is given Epk(m). It can compare it to all

possible 2r encryptions of 0…

• Efficiency is the main drawback of public key
encryption.

page 8May 1, 2011 Introduction to Cryptography, Benny Pinkas

Defining a public key encryption

• The definition must include the following algorithms;

• Key generation: KeyGen(1k)→(PK,SK) (where k is a
security parameter, e.g. k=1024).

• Encryption: C = EPK(m) (E might be a randomized
algorithm)

• Decryption: M= DSK(C)

page 9May 1, 2011 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Public information (can be common to different public keys):
– A group in which the DDH assumption holds. Usually start with a

prime p=2q+1, and use H⊂Zp
* of order q. Define a generator g of H.

• Key generation: pick a random private key a in [1,|H|] (e.g.
0<a<q). Define the public key h=ga (h=ga mod p).

• Encryption of a message m∈ H⊂ Zp
*

– Pick a random 0 < r < q.
– The ciphertext is (gr, hr·m).

• Decryption of (s,t)
– Compute t /sa (m= hr·m / (gr)a)

Using public key alone

Using private key

page 10May 1, 2011 Introduction to Cryptography, Benny Pinkas

El Gamal and Diffie-Hellman

• ElGamal encryption is similar to DH key exchange
– DH key exchange: Adversary sees ga, gb. Cannot

distinguish the key gab from random.
– El Gamal:

• A fixed public key ga.

• Sender picks a random gr.

• Sender encrypts message using gar.

• El Gamal is like DH where
– The same ga is used for all communication
– There is no need to explicitly send this ga (it is already

known as the public key of Alice)

Known to the adversary

Used as a key

page 11May 1, 2011 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Setting the public information
• A large prime p, and a generator g of H⊂Zp

* of order q.
– |p| = 1024 bits or more.
– p-1 must have a large prime factor (e.g. p=2q+1)

• Otherwise it is easy to solve discrete logs in Zp
* (see

homework, relevant also to DH key agreement)

• This large prime factor is also needed for the DDH
assumption to hold (Legendre’s symbol).

– g must be a generator of a large subgroup of Zp
*, in which

the DDH assumption holds.

page 12May 1, 2011 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Encoding the message:
– m must be in the subgroup H generated by g.

– How can this be achieved?
• For example, p=2q+1, and H is the subgroup of quadratic

residues (which has (p-1)/2=q items). We can map each
message m∈{1,…,(p-1)/2} to the value m2 mod p, which is in H

• Encrypt m2 instead of m. Therefore decryption yields m2 and
not m. Must then compute a square root to obtain m.

– Alternatively, encrypt m using (gr, H(hr)⊕ m). Decryption is
done by computing H((gr)a). (H is a hash function that
preserves the pseudo-randomness of hr.)

page 13May 1, 2011 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Overhead:
– Encryption: two exponentiations; preprocessing possible.
– Decryption: one exponentiation.
– message expansion: m ⇒ (gr, hr·m).

• This is a randomized encryption
– Must use fresh randomness r for every message.
– Two different encryptions of the same message are

different! (this is crucial in order to provide semantic
security)

page 14May 1, 2011 Introduction to Cryptography, Benny Pinkas

Security proof

• Security by reduction
– Define what it means for the system to be “secure” (chosen

plaintext/ciphertext attacks, etc.)
– State a “hardness assumption” (e.g., that it is hard to extract discrete

logarithms in a certain group).
– Show that if the hardness assumption holds then the cryptosystem is

secure.
– Usually prove security by showing that breaking the cryptosystem

means that the hardness assumption is false.

• Benefits:
– To examine the security of the system it is sufficient to check whether

the assumption holds
– Similarly, for setting parameters (e.g. group size).

page 15May 1, 2011 Introduction to Cryptography, Benny Pinkas

Semantic security

• Semantic Security: knowing that an encryption is either
E(m0) or E(m1), (where m0,m1 are known, or even chosen by
the attacker) an adversary cannot decide with probability
better than ½ which is the case.

• More precisely:
– We generate a public key PK and give it to the adversary.
– The adversary outputs two messages m0,m1.
– We choose a random bit b, and give the ciphertext E(mb)

to the adversary.
– Adversary outputs a “guess” b’. It succeeds if b’=b.
– The encryption scheme is semantically secure if

|Prob(b’=b) – ½ | is negligible (as a function of the key length)
for any polynomial adversary.

page 16May 1, 2011 Introduction to Cryptography, Benny Pinkas

Semantic security

• This is a very strong security property. The adversary
cannot even distinguish the encryption of two messages of
its choice.

• Aka “security in the sense of indistinguishability”.

• Note that given the public key the adversary can generate
encryptions of any message that it chooses.

• Deterministic public key encryption?
• Suppose that a public key encryption system is

deterministic, then it cannot have semantic security.
– In this case, E(m) is a deterministic function of m and P.
– Therefore, if Eve suspects that Bob might encrypt either m0 or m1, she

can compute (by herself) E(m0) and E(m1) and compare them to the
encryption that Bob sends.

page 17May 1, 2011 Introduction to Cryptography, Benny Pinkas

Goal and method

• Goal
– Show that if the DDH assumption holds
– then the El Gamal cryptosystem is semantically secure

• Method:
– Show that if the El Gamal cryptosystem is not semantically

secure
– Then the DDH assumption does not hold

page 18May 1, 2011 Introduction to Cryptography, Benny Pinkas

El Gamal encryption: breaking semantic security
implies breaking DDH

• Proof by reduction:
– We can use an adversay that breaks El Gamal.
– We are given a DDH challenge: (g,ga,gr, (D0,D1)) where one

of D0,D1 is gar, and the other is gc. We need to identify gar.
– We give the adversay g and a public key: h=ga.
– The adversary chooses m0,m1.
– We give the adversay (gr,De·mb), using random b,e∈{0,1}.

(That is, choose mb randomly from {m0,m1}, choose De randomly from
{D0,D1}. The result is a valid El Gamal encryption if De=gar.)

– If the adversay guesses b correctly, we decide that De=gar.
Otherwise we decide that De=gc.

page 19May 1, 2011 Introduction to Cryptography, Benny Pinkas

El Gamal encryption: breaking semantic security
implies breaking DDH

• Analysis:
– Suppose that the adversary can break the El Gamal

encryption with prob 1.
– If De=gar then the adversary finds c with probability 1,

otherwise it finds c with probability ½.
– Our success probability ½ ⋅ 1 + ½ ⋅ ½ = 3/4.

– Suppose now that the adversary can break the El Gamal
encryption with prob ½+p.

– If De=gar then the adversary finds c with probability ½+p,
otherwise it finds c with probability ½.

– Our success probability ½ ⋅ (½+p) + ½ ⋅ ½ = ½+½p. QED

page 20May 1, 2011 Introduction to Cryptography, Benny Pinkas

Chosen ciphertext attacks

• In a chosen ciphertext attack, the adversary is allowed
to obtain decryptions of arbitrary ciphertexts of its
choice (except for the specific message it needs to
decrypt).

• El Gamal encryption is insecure against chosen
ciphertext attacks:
– Suppose the adversary wants to decrypt <c1,c2> which is an ElGamal

encryption of the form (gr,hrm).
– The adversary computes c’1=c1gr’, c’2=c2hr’m’, where it chooses r’,m’ at

random.
– It asks for the decryption of <c’1,c’2>. It multiplies the plaintext by (m’)-1

and obtains m.

page 21May 1, 2011 Introduction to Cryptography, Benny Pinkas

Homomorphic property

• The attack on chosen ciphertext security is
based on the homomorphic property of the
encryption

• Homomorphic property:
– Given encryptions of x,y, it is easy to generate an

encryption of x·y
• (gr, hr·x) × (gr’, hr’·y) → (gr’’, hr’’ ·x·y)

page 22May 1, 2011 Introduction to Cryptography, Benny Pinkas

Homomorphic encryption

• Homomorphic encryption is useful for performing
operations over encrypted data.

• Given E(m1) and E(m2) it is easy to compute E(m1m2),
even if you don’t know how to decrypt.

• For example, an election procedure:
– A “Yes” is E(2). A “No” vote is E(1).
– Take all the votes and multiply them. Obtain E(2j), where j is the

number of “Yes” votes.
– Decrypt only the result and find out how many “Yes” votes there

are, without identifying how each person voted.

page 23December 20, 2009 Introduction to Cryptography, Benny Pinkas

Integer Multiplication & Factoring as a One Way
Function.

p,q N=pq

hard

easy

Can a public key system be based
on this observation ?????

page 24December 20, 2009 Introduction to Cryptography, Benny Pinkas

Excerpts from RSA paper (CACM, 1978)

The era of “electronic mail” may soon be upon us; we must
ensure that two important properties of the current “paper
mail” system are preserved: (a) messages are private, and (b)
messages can be signed. We demonstrate in this paper how
to build these capabilities into an electronic mail system.

At the heart of our proposal is a new encryption method.
This method provides an implementation of a “public-key
cryptosystem,” an elegant concept invented by Diffie and
Hellman. Their article motivated our research, since they
presented the concept but not any practical implementation
of such system.

page 25December 20, 2009 Introduction to Cryptography, Benny Pinkas

The Multiplicative Group Zpq*

• p and q denote two large primes (e.g. 512 bits long).
• Denote their product as N = pq.
• The multiplicative group ZN

* =Zpq
* contains all integers

in the range [1,pq-1] that are relatively prime to both p
and q.

• The size of the group is
– φ(n) = φ(pq) = (p-1) (q-1) = N - (p+q) + 1

• For every x ∈ ZN
*, xφ(N)=x(p-1)(q-1) = 1 mod N.

page 26December 20, 2009 Introduction to Cryptography, Benny Pinkas

Exponentiation in ZN*

• Motivation: use exponentiation for encryption.

• Let e be an integer, 1 < e < φ(N) = (p-1)(q-1).
– Question: When is exponentiation to the eth power, (x → xe), a one-to-

one operation in ZN* ?

• Claim: If e is relatively prime to (p-1)(q-1) (namely gcd(e, (p-1)(q-
1))=1) then x → xe is a one-to-one operation in ZN*.

• Constructive proof:
– Since gcd(e, (p-1)(q-1))=1, e has a multiplicative inverse modulo (p-

1)(q-1).
– Denote it by d, then ed=1+c(p-1)(q-1)=1+cφ(N).
– Let y=xe, then yd = (xe)d = x1+cφ(N) = x.
– I.e., y → yd is the inverse of x → xe.

page 27December 20, 2009 Introduction to Cryptography, Benny Pinkas

The RSA Public Key Cryptosystem

• Public key:
– N=pq the product of two primes (we assume that factoring

N is hard)
– e such that gcd(e,φ(N))=1 (are these hard to find?)

• Private key:
– d such that de≡1 mod φ(N)

• Encryption of M∈ZN*
– C=E(M)=Me mod N

• Decryption of C∈ZN*
– M=D(C)=Cd mod N (why does it work?)

page 28Januray 3, 2010 Introduction to Cryptography, Benny Pinkas

Constructing an instance of the RSA PKC

• Alice
– picks at random two large primes, p and q.
– picks (uniformly at random) a (large) d that is relatively

prime to (p-1)(q-1) (namely, gcd(d,φ(N))=1).
– Alice computes e such that de≡1 mod φ(N)

• Let N=pq be the product of p and q.
• Alice publishes the public key (N,e).
• Alice keeps the private key d, as well as the primes p, q

and the number φ(N), in a safe place.

A small example

• Let p=47, q=59, N=pq=2773. φ(N)=46·58=2668.

• Pick e=17. Since 157·17-2668=1, then d=157.
• e=17 is 10001 in binary.

• To encrypt a message m, compute
m17 = (((m2)2)2) · m mod 2773

Decryption is less efficient

page 29May 1, 2011 Introduction to Cryptography, Benny Pinkas

page 30Januray 3, 2010 Introduction to Cryptography, Benny Pinkas

Efficiency

• The public exponent e may be small.
– Instead of choosing a random d and setting e to be its

inverse, it is common to choose the public exponent e to
be either 3 or 216+1. The private key d must be long.

– Now, each encryption involves only a few modular
multiplications. Decryption requires a full exponentiation.

• Usage of a small e ⇒ Encryption is more efficient than
a full blown exponentiation.

• Decryption requires a full exponentiation (M=Cd mod N)
• Can this be improved?

page 31Januray 3, 2010 Introduction to Cryptography, Benny Pinkas

The Chinese Remainder Theorem (CRT)

• Thm:
– Let N=pq with gcd(p,q)=1.
– Then for every pair (y,z) ∈ Zp× Zq there exists a unique x∈Zn, s.t.

• x=y mod p
• x=z mod q

• Proof:
– The extended Euclidian algorithm finds a,b s.t. ap+bq=1.
– Define c=bq. Therefore c=1 mod p. c=0 mod q.
– Define d=ap. Therefore d=0 mod p. d=1 mod q.
– Let x=cy+dz mod N.

• cy+dz = 1y + 0 = y mod p.
• cy+dz = 0 + 1z = z mod q.

– (The inverse operation, finding (y,z) from x, is easy.)
– (How efficient is this? Why is there a unique such x∈Zn ?)

page 32Januray 3, 2010 Introduction to Cryptography, Benny Pinkas

More efficient RSA decryption

• CRT:
– Given p,q compute a,b s.t. ap+bq=1.
– c=bq; d=ap

• Decryption, given C:
– Compute y’=Cd mod p. (instead of d can use d’=d mod p-1)
– Compute z’=Cd mod q. (instead of d can use d’’=d mod q-1)
– Compute M=cy’+dz’ mod N.

• Overhead:
– Two exponentiations modulo p,q, instead of one

exponentiation modulo N.
– Overhead of exponentiation is cubic in length of modulus.
– I.e., save a factor of 23/2.

Once for all
messages

page 33Januray 3, 2010 Introduction to Cryptography, Benny Pinkas

RSA with a small exponent

• Setting e=3 enables efficient encryption
• Might be insecure if not used properly

– Assume that the message is short, for example |M|<|N|/3
– In this case, M3 < N, and therefore M3 mod N = M3 (over

the integers).
– For example, suppose that M=10. In this case M3 mod N =

1000. (If N>1000.)
– Extracting roots over the integers is easy, and therefore it

is easy to find M.

page 34Januray 3, 2010 Introduction to Cryptography, Benny Pinkas

RSA with a small exponent

• Another security problem with using short exponents
(for example, e=3)

• Assume three users with public keys N1, N2, N3.
– Alice encrypts the same (long) message to all of them

• C1 = m3 mod N1

• C2 = m3 mod N2

• C3 = m3 mod N3

• Can an adversary which sees C1,C2,C3 find m?
– m3 < N1N2N3
– N1, N2 and N3 are most likely relatively prime (otherwise

can factor).
– Chinese remainder theorem -> can find m3 mod N1N2N3
(and therefore m3 over the integers)
– Easy to extract 3rd root over the integers.

Random self reducibility of RSA

• Let (N,e) be an RSA public key.
• Suppose that there is a deterministic polynomial

algorithm A running in time |N|C which on input E(x)=xe

mod N outputs x for a fraction of ε of the inputs.

• Then A can be converted to a randomized algorithm R,
which runs in expected time |N|C / ε, which on input
E(x)=xe mod N outputs x for all inputs.

• Proof (on board): easy.
• Corollary: For any (N,e), inverting RSA is either hard for

all inputs or easy for all inputs.

page 35May 1, 2011 Introduction to Cryptography, Benny Pinkas

