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Classical symmetric ciphers

• Alice and Bob share a private key k.

• System is secure as long as k is secret.

• Major problem: generating and distributing k.
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Alice Bob

k k



Diffie and Hellman: “New Directions in 

Cryptography”, 1976.

• “We stand today on the brink of a revolution in 
cryptography. The development of cheap digital 
hardware has freed it from the design limitations of 
mechanical computing5

5such applications create a need for new types of 
cryptographic systems which minimize the necessity of 
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cryptographic systems which minimize the necessity of 
secure key distribution5

5theoretical developments in information theory and 
computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science.”



Diffie-Hellman

• Came up with the idea of public key cryptography

Alice Bob

public keyBob secret keyBob

Everyone can learn Bob’s public key and encrypt messages to Bob. 
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Everyone can learn Bob’s public key and encrypt messages to Bob. 

Only Bob knows the decryption key and can decrypt. 

Key distribution is greatly simplified. 



Plan

• Basic number theory

– Divisors, modular arithmetic

– The GCD algorithm

– Groups

page 6April 3, 2011 Introduction to Cryptography, Benny Pinkas      

• References:
– Many books on number theory

– Almost all books on cryptography

– Cormen, Leiserson, Rivest, (Stein), “Introduction to 
Algorithms”,  chapter on Number-Theoretic Algorithms.



Divisors, prime numbers

• We work over the integers

• A non-zero integer b divides an integer a if there exists 
an integer c s.t. a=c�b.

– Denoted as b|a

– I.e. b divides a with no remainder 

Examples
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• Examples

– Trivial divisors: 1|a,  a|a

– Each of {1,2,3,4,6,8,12,24} divides 24

– 5 does not divide 24

• Prime numbers

– An integer a is prime if it is only divisible by 1 and by itself.

– 23 is prime, 24 is not.



Modular Arithmetic

• Modular operator:

– a mod b,  (or a%b) is the remainder of a when divided by b

– I.e., the smallest r ≥ 0 s.t. ∃ integer q for which a = qb+r.

– (Thm: there is a single choice for such q,r)
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– Examples

• 12 mod 5 = 2

• 10 mod 5 = 0

• -5 mod 5 = 0

• -1 mod 5 = 4



Modular congruency

• a is congruent to b modulo n (a ≡ b mod n) if 

– (a-b) = 0 mod n

– Namely, n divides a-b

– In other words, (a mod n) = (b mod n)
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• E.g.,

– 23 ≡ 12 mod 11

– 4 ≡ -1 mod 5

• There are n equivalence classes modulo n

– [3]7 = {),-11,-4,3,10,17,)}



Greatest Common Divisor (GCD)

• d is a common divisor of a and b, if d|a and d|b. 

• gcd(a,b) (Greatest Common Divisor), is the largest 
integer that divides both a and b. (a,b >= 0)

– gcd(a,b) = max k s.t. k|a and k|b.

page 10April 3, 2011 Introduction to Cryptography, Benny Pinkas      

• Examples:

– gcd(30,24) = 6

– gcd(30,23) = 1

• If gcd(a,b)=1 then a and b are denoted relatively prime. 



Facts about the GCD

• gcd(a,b) = gcd(b, a mod b)    (interesting when a>b)

• Since
– If c|a and c|b then c|(a mod b)

– If c|b and c|(a mod b) then c|a

• If a mod b = 0, then gcd(a,b)=b.

(e.g., a=33, b=15)
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• If a mod b = 0, then gcd(a,b)=b.

• Therefore, 
gcd(19,8) = 

gcd(8, 3) =  

gcd(3,2) =  

gcd(2,1) = 1

gcd(20,8) =

gcd(8, 4) = 4 



Euclid’s algorithm

Input: a>b>0

Output: gcd(a,b)

Algorithm:

1. if (a mod b) = 0 return (b)

2. else return( gcd(b, a mod b) )
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else return( gcd(b, a mod b) )

Complexity: 

– O(log a) rounds

– Each round requires O(log2 a) bit operations

– Actually, the total overhead can be shown to be O(log2 a)



The extended gcd algorithm

Finding s, t such that gcd(a,b) = a⋅ s + b ⋅ t

Extended-gcd(a,b)  /* output is (gcd(a,b), s, t)

1. If (a mod b=0) then return(b,0,1)

2. (d’,s’,t’) = Extended-gcd(b, a mod b)
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2. (d’,s’,t’) = Extended-gcd(b, a mod b)

3. (d,s,t) = (d’, t’, s’- a/b�t’)

4. return(d,s,t)

Note that the overhead is as in the basic GCD algorithm



• Extended gcd algorithm

– Given a,b finds s,t such that gcd(a,b) = a⋅s + b⋅t
– In particular, if p is prime and a<p then gcd(a,p)=1, and 

therefore a⋅s+p⋅t=1. 
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• Extended gcd algorithm

– Given a,b finds s,t such that gcd(a,b) = a⋅s + b⋅t
– In particular, if p is prime and a<p then gcd(a,p)=1, and 

therefore a⋅s+p⋅t=1. This implies that (a⋅s ≡ 1 mod p)
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• Extended gcd algorithm

– Given a,b finds s,t such that gcd(a,b) = a⋅s + b⋅t
– In particular, if p is prime and a<p then gcd(a,p)=1, and 

therefore a⋅s+p⋅t=1. This implies that (a⋅s ≡ 1 mod p)

• THM: There is no positive integer smaller than gcd(a,b) 
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• THM: There is no positive integer smaller than gcd(a,b) 
which can be represented as a linear combination of a,b.

– For example, a=12, b=8.

– 4= 1⋅12 - 1⋅8
– There are no s,t for which 2=s⋅12 + t⋅8

• Therefore if we find s,t such that as+tb=1, then we know  
that gcd(a,b)=1
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Groups

• Definition: a set G with a binary operation °:G×G→G is 
called a group if:

– (closure) ∀ a,b ∈ G, it holds that a° b ∈ G. 

– (associativity) ∀a,b,c ∈ G, (a° b)° c = a° (b° c).

– (identity element) ∃ e ∈ G, s.t.∀ a ∈ G it holds that a° e 
=a.
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=a.

– (inverse element) ∀ a ∈ G ∃ a-1∈ G, s.t. a ° a-1 = e.

• A group is Abelian (commutative) if ∀ a,b ∈ G, it holds 
that a° b = b° a.

• Examples:

– Integers under addition 

• (Z,+) = {5,-3,-2,-1,0,1,2,3,5}



More examples of groups

• Addition modulo N

– (G,° )  = ({0,1,2,),N-1}, +)
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More examples of groups

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,),p-1}, ×)

– E.g., Z7
* = ( {1,2,3,4,5,6} , ×)

• Closure  (the result of the multiplication is never divisible by p):

s�a+t�p = 1
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• s�a+t�p = 1

• s’�b+t’�p = 1

• ss’�(ab)+(sat’+s’bt+ tt’p)�p = 1

• Therefore 1=gcd(ab,p).

• Trivial: associativity, existence of identity element.

• The extended GCD algorithm shows that an inverse always 

exists: s�a+t�p = 1    ⇒ s�a = 1-t�p ⇒ s�a ≡1 mod p



More examples of groups

• ZN
*  Multiplication modulo a composite number N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)

– E.g., Z10
* = ( {1,3,7,9}, ×)

– Closure: 
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• s�a+t�N = 1

• s’�b+t’�N = 1

• ss’�(ab)+(sat’+s’bt+ tt’N)�N = 1

• Therefore 1=gcd(ab,N).

– Associativity: trivial

– Existence of identity element: 1. 

– Inverse element: as in Zp
*



Subgroups

• Let (G,° ) be a group. 

– (H,° ) is a subgroup of G if

• (H,° ) is a group

• H ⊆ G 

– For example, H = ( {1,2,4}, ×) is a subgroup of Z7
*.
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For example, H = ( {1,2,4}, ×) is a subgroup of Z7 .

• Lagrange’s theorem:

If (G,° ) is finite and (H,° ) is a subgroup of (G,° ), then 
|H| divides |G|

In our example: 3|6.



Cyclic Groups

• Exponentiation is repeated application of °
– a3 = a° a° a.

– a0 = 1.

– a-x = (a-1)x

• A group G is cyclic if there exists a generator g, s.t.          
∀ a∈G, ∃ i s.t. gi=a. 
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∀ a∈G, ∃ i s.t. g =a. 
– I.e., G= <g> = {1, g, g2, g3, 5} 

– For example Z7
* = <3> = {1,3,2,6,4,5}

• Not all a∈G are generators of G, but they all generate a 
subgroup of G.
– E.g. 2 is not a generator of Z7

* 

• The order of a group element a is the smallest j>0 s.t.       
a j=1

• Lagrange’s theorem ⇒ for x∈Zp
*,   ord(x) | p-1.



Fermat’s theorem

• Corollary of Lagrange’s theorem: if (G,° ) is a finite 
group, then ∀a∈G, a|G|=1. 

• Proof:

– a∈G generates a subgroup H of G.

– A|H| = 1

Lagrange theorem:  |H| | |G|
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– Lagrange theorem:  |H| | |G|

– A|G| = (A|H|)|G|/ |H|= 1



Fermat’s theorem

• Corollary of Lagrange’s theorem: if (G,° ) is a finite 
group, then ∀a∈G, a|G|=1. 

• Corollary (Fermat’s theorem): ∀ a∈ Zp
*,  ap-1 =1 mod p. 

E.g., for all ∀a∈Z7
*, a6=1, a7=a.

• Computing inverses:

Given a∈G, how to compute a-1?
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• Given a∈G, how to compute a-1?

– Fermat’s theorem: a-1 = a|G|-1 (= ap-2 in Zp
* )

– Or, using the extended gcd algorithm (for Zp* or ZN*):

• gcd(a,p) = 1

• s�a + t�p = 1  ⇒ s�a = -t�p + 1 ⇒ s is a-1 !!

– Which is more efficient?



Computing in Zp
*
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Groups we will use

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,),p-1}, ×)

– E.g., Z7
* = ( {1,2,3,4,5,6} , ×)

• ZN
*  Multiplication modulo a composite number N
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N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)

– E.g., Z10
* = ( {1,3,7,9}, ×)



Euler’s phi function

• Lagrange’s Theorem: ∀a in a finite group G, a|G|=1.

• Euler’s phi function (aka, Euler’s totient function), 

– φ(n) = number of elements in Z*
n    (i.e. | {x | gcd(x,n)=1, 1≤x≤n} |

– φ(p) = p-1 for a prime p.

– n=∏i=1..k pi
e(i) ⇒ φ(n) = n�∏i=1..k (1-1/pi)
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i=1..k i i=1..k i

– φ(p2) = p(p-1) for a prime p. 

– n=p�q   ⇒ φ(n) =(p-1)(q-1) 

• Corollary: For Zn
* (n=p�q),    |Zn

*|= φ(n) =(p-1)(q-1).

• ∀a∈ Zn
* it holds that aφ(n) =1 mod n

– For Zp
* (prime p),   ap-1 =1 mod p    (Fermat’s theorem).

– For Zn
* (n=p�q),   a(p-1)(q-1) =1 mod n



Finding prime numbers
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Finding prime numbers

• Prime number theorem: #{primes ≤ x} ≈ x / lnx as x→∞

• How can we find a random k-bit prime?

– Choose x at random in {2k,),2k+1-1}

• (How many numbers in that range are prime?
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About 2k+1/ ln2k+1 - 2k/ ln2k numbers, i.e. ≈ a 1/ ln(2k) fraction.)

– Test if x is prime

• (more on this later in the course)

• The probability of success is ≈ 1/ln(2k) = O(1/k).

• The expected number of trials is O(k).



Finding generators

• How can we find a generator of Zp
*?

• Pick a random number a∈ [1,p-1], check if is a generator

– Naively, check whether ∀ 1≤i≤p-2 ai ≠ 1   �

– But we know that if ai=1 mod p then i | p-1.

– Therefore need to only check i for which i | p-1.
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• Easy if we know the factorization of (p-1). In that case

– For all a∈Zp
*, the order of a divides (p-1)

– For every integer divisor b of (p-1), check if ab=1 mod p.

– If none of these checks succeeds, then a is a generator, 
since its order must be p-1.



Finding prime numbers of the right form

• How can we know the factorization of p-1?

• Easy, for example, if p=2q+1, and q is prime.

• How can we find a k-bit prime of this form?

1. Search for a prime number q of length k-1 bits. (Will be 
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1. Search for a prime number q of length k-1 bits. (Will be 
successful after about O(k) attempts.)

2. Check if 2q+1 is prime (we will see how to do this later in the 
course).

3. If not, go to step 1.


