Introduction to Cryptography

Lecture 3

Benny Pinkas

11111111111

Pseudo-random

seed ety output random|uj=2n
S G(s) u
(random, |s|=n) IG(s)| = 2n

Deterministic
function of s,

publicly known Distinguisher

D

D
?77?7

March 6, 2011 Introduction to Cryptography, Benny Pinkas page 2

. If P=NP then PRGs do not exist (why?)

S0 their existence can only be conjectured until the
P=NP question is resolved.

Using a PRG for Encryption

- Replace the one-time-pad with the output of the PRG

. Key: a (short) random key k[J{0,1}l.

- Message m=m,,...,my,.

- Use a PRG G : {0,1}X — {0O,1}Imi

- Key generation: choose k[1{0,1}X uniformly at random.

- Encryption:
— Use the output of the PRG as a one-time pad. Namely,
- Generate G(k) = gy,.--,0m
— Ciphertext C = g,0mg,..., g, UM,

- This is an example of a stream cipher.

Security of encryption against polynomial adversaries

. Perfect security (previous equivalent defs):

— (indistinguishability) [1 m,,m, LM, [c, the probability that c is
an encryption of m, is equal to the probability that c is an
encryption of m;.

— (semantic security) The distribution of m given the
encryption of m is the same as the a-priori distribution of m.

. Security of pseudo-random encryption (equivalent defs):
— (Indistinguishability) [1 my,m,LIM, no polynomial time
adversary D can distinguish between the encryptions of m,
and of m,;. Namely, Pr[D(E(m,))=1] = Pr[D(E(m,))=1)
— (semantic security) [J m,,m,[IM, a polynomial time
adversary which is given E(m,), where b[1{0,1}, succeeds
In finding b with probabllity = 4.

- A stream cipher designed by Ron Rivest. Intellectual
property belongs to RSA Inc.

— Designed in 1987.
— Kept secret until the design was leaked in 1994.

- Used in many protocols (SSL, etc.)

- Byte oriented operations.
- 8-16 machine operations per output byte.
- First output bytes are biased ®

Word size is a single byte.

Input: Kg;...;K 55c (if key has fewer bits, pad it to
itself sufficiently many times)

1. |=0
2. 5 =0;S 1 =105 55 =255
3. Let the key be k 0r+- 1K 255
4. Fori=0to 255
- j=({+S . +k ;) mod 256

+ SwapS; and S ;

(note that S is a permutation of 0,...,255)

An output byte B is generated as follows:

=1+ 1 mod 256

«|=]+S . mod 256
+ Swap S; and S |

- Output: B=S |

B is xored to the next byte of the plaintext.
(since S is a permutation, we want that B is uniformly distributed)

Bias: The probability that the first two output bytes are 0 is 2-16+2-23

- Plaintexts, ciphertexts of fixed length, |m|.
Usually, |m|=64 or |m|=128 bits.

- The encryption algorithm E, is a permutation
over {0,1}™, and the decryption D, is its
inverse. (They are not permutations of the
bit order, but rather of the entire string.)

- ldeally, use a random permutation.

— Can only be implemented using a table
with 2™l entries ®

- Instead, use a pseudo-random
permutation’, keyed by a key k.

— Implemented by a computer program
whose input is m,k.

— (*) will be explained shortly

March 6, 2011 Introduction to Cryptography, Benny Pinkas

My,...,Myy

Block cipher

CirevesCm

page 16

- Modeled as a pseudo-random permutation.

- Encrypt/decrypt whole blocks of bits

— Might provide better encryption by
simultaneously working on a block of bits

— One error in ciphertext affects whole block
— Delay in encryption/decryption

-~ There was more research on the security
of block ciphers than on the security of

stream ciphers.

— Avoid the synchronization problem of

stream cipher usage.

- Different modes of operation (for encrypting

longer inputs)

March 6, 2011

Introduction to Cryptography, Benny Pinkas

my,...

M)

Block cipher

Cqy...

Clm|

page 17

- A block cipher is a function F,(x) of a key k and an |m| bit
Input X, which has an |m| bit output.

- F(X) Is a keyed permutation

- How can we encrypt plaintexts longer than |m|?

- Different modes of operation were designed for this task.

Namely, encrypt each plaintext block separately.

March 6, 2011 Introduction to Cryptography, Benny Pinkas page 19

- Simple and efficient ©
- Parallel implementation is possible ©

- Does not conceal plaintext patterns @
- Enc(P,, P,, P, Py)

. Active attacks are easy ® (plaintext can be easily

manipulated by removing, repeating, or interchanging
blocks).

original encrypted using encrypted using
ECB mode a secure mode

CBC Encryption Mode (Cipher Block Chaining)

IP
V4L V4L D

LV LV IV

Previous ciphertext is XORed with current plaintext before

encrypting current block.
An initialization vector IV is used as a “seed” for the process.

IV can be transmitted in the clear (unencrypted).

CBC Mode

ey
e e

ryption:

= e

Properties of CBC

Asynchronous: the receiver can start decrypting from
any block in the ciphertext. ©

Errors in one ciphertext block propagate to the
decryption of the next block (but that’s it). ©

Conceals plaintext patterns (same block = different
ciphertext blocks) ©

- If IVis chosen at random, and E is a pseudo-random
permutation, CBC provides chosen-plaintext security.

— Butif IV is fixed, CBC does not even hide not common
prefixes.

No parallel implementation is known ®
Plaintext cannot be easily manipulated ©
Standard in most systems: SSL, IPSec, etc.

OFB Mode (output FeedBack)

\ 4
\ 4
v

I N N
LV IV AN

 An initialization vector IV is used as a “seed” for generating a
sequence of “pad” blocks
* Ei(IV), EL(E((IV)), Ex(E(E((IV)))....
» Essentially a stream cipher.
|V can be sent in the clear. Must never be repeated.

-\

Properties of OFB

- Essentially implements a synchronous stream cipher. l.e., the two
parties must know s, and the current bit position.

— A block cipher can be used instead of a PRG.

— The parties must synchronize the location they are
encrypting/decrypting. ®

- Conceals plaintext patterns. If IV is chosen at random, and E, Is a
pseudo-random permutation, CBC provides chosen-plaintext
security. ©

- Errors in ciphertext do not propagate ©
 Implementation:
— Pre-processing is possible ©
— No parallel implementation is known ®
- Active attacks (by manipulating the plaintext) are possible ®

CTR (counter) Encryption Mode
IV Is selected “ m m
as a random
4L 4L 4L
N N N

value
» easy parallel
Implementation

e random access

* preprocessing

- A pseudo-random function is a function which cannot
be distinguished from a random function.

— The possible number of functions f : {0,1}"- {0,1}* is
22"1

— A random function is one which is chosen at random from
that range. Its representation must be at least 2™ bits.

— Alternatively, we can say that the random function
chooses the value of f(x) independently at random for
every X.

Pseudo-random functions - definition

« F:{0,1} x{0,1} - {0,1}
— The first input is the key, and once chosen it is kept fixed.
— For simplicity, assume F : {0,1}" x {0,1}" - {0,1}"
- F(k,x) is written as F,(X)

 F iIs pseudo-random if F () (where k is chosen uniformly at random) IS
Indistinguishable (to a polynomial distinguisher D) from a function f
chosen at random from all functions mapping {0,1}" to {0,1}"

— There are 2" choices of F,, whereas there are (22" choices for f.
— The distinguisher D’s task:

- We choose a function G. With probability ¥2 G is F, (where k Ug
{0,1}"), and with probability Y2 it is a random function f.

- D can compute G(x;),G(X,),... for any X;,X,,... It chooses.
« D must output 1 if G=F,.
« F, is pseudo-random if |Pr(D(Fk)=1)-Pr(D(G)=1)| < negligible.

Pseudo-random permutations

- F.(X) Is a keyed permutation If for every choice of k,
F.() Is one-to-one.

— Note that in this case F,(x) has an inverse, namely for
every y there is exactly one x for which F, (x)=y.

 F.(x) Is a pseudo-random permutation If
— Itis a keyed permutation

— It Is indistinguishable (to a polynomial distinguisher D) from a
permutation f chosen at random from all permutations
mapping {0,1}" to {0,1}"

— 2" possible values for F,
— (2M)! possible values for a random permutation

. Block ciphers are modeled as pseudo-random
permutations.

- However, even a random permutation leaks some
Information if it Is used to encrypt longer messages

— Identical blocks result in identical ciphertexts.

. A stronger definition of security, and an appropriate
construction are needed to prevent this information
leakage.

CPA security of block ciphers

- CPA (chosen-plaintext attack) indistinguishability
-~ A key k is chosen at random

- The adversary is given access to E,(), and can encrypt
any message it wants.

— The adversary A chooses two messages my,m,.
— Arandom message m, is chosen, b € {0,1}.

— A is given a challenge ciphertext E,(m,).

— A can continue to compute E,() on any message.
— A must output b’.

— A succeeds if b=Db".

- The encryption scheme is (t,e)-CPA-secure if for all A
that runs at most t steps, Pr(b=b’) < 1/2+e.

- Note that the encryption must be probabilistic.

- Let F: {0,1}"*— {0,1}" be a pseudo-random function.

- The construction
— Choose a random key k € {0,1}"
— Encryption of m € {0,1}"*: choose random r € {0,1}",
output ¢ = (r, F,(r) © m).
— Decryption of ¢ = (r, f): compute m = F,(r) ® f.

— Intuitively, F,(r) is indistinguishable from a random
message, and therefore ciphertext is like a one-time pad.

Security

- Theorem: If F, Is a pseudo-random function then the
encryption scheme is (t,£)-CPA-indistinguishable.
- Proof sketch:

- If F, Is random, then the adversary learns something only
If the challenge ciphertext is (r, F.(r) Ll m), and r was used
In one of the encryptions asked by the adversary.

— The prob. of this happening is <t/ 2",
— Replace the random function with a pseudo-random one.

- Need to show that this change does not affect the probability
of success in more than a negligible €. (see next page)

— Therefore total success probability is < %2 + t/2" + €.

Security (contd.)

Background:
- If F, Is random, then the adversary succeeds with prob <t/ 2",

— Replace the random function with a pseudo-random F,.
— Suppose that now success probability is > Y2 + t/2" + p(n).

— Then we found a distinguisher D between F, and a random
function, which succeeds with prob > p(n).

- D has oracle access to a function G which is either random or is
the prf F, , and to an attacker A against the encryption.

D constructs an encryption according to the construction, and
lets A attack it. Whenever A asks for an encryption, D asks for a
value of G and encrypts.

- If A succeeds in decryption, D claims that G is the prf. Otherwise
D claims that G is random. |Pr(D(Fk)=1)-Pr(D(G)=1)| = p(n) > neg.

