
page 1June 5, 2011 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 13

Benny Pinkas

page 2June 5, 2011 Introduction to Cryptography, Benny Pinkas

Electronic cash

page 3June 5, 2011 Introduction to Cryptography, Benny Pinkas

Simple electronic checks

• A payment protocol:
– Sign a document transferring money from your account to

another account
• This document goes to your bank
• The bank verifies that this is not a copy of a previous

check
• The bank checks your balance
• The bank transfers the sum

• Problems:
• Requires online access to the bank (to prevent reusage)
• Expensive.
• The transaction is traceable (namely, the bank knows

about the transaction between you and Alice).

page 4June 5, 2011 Introduction to Cryptography, Benny Pinkas

First try at a payment protocol

• Withdrawal
– User gets bank signature on {I am a $100 bill, #1234}
– Bank deducts $100 from user’s account

• Payment
– User gives the signature to a merchant
– Merchant verifies the signature, and checks online with the

bank to verify that this is the first time that it is used.
• Problems:

– As before, online access to the bank, and lack of anonymity.
• Advantage:

– The bank doesn’t have to check online whether there is
money in the user’s account.

– In fact, there is no real need for the signature, since the
bank checks its own signature.

page 5June 5, 2011 Introduction to Cryptography, Benny Pinkas

Anonymous cash via blind signatures

• In order to preserve payer’s anonymity the bank signs the bill
without seeing it
– (e.g. like signing on a carbon paper)

• RSA Blind signatures (Chaum)
• RSA signature: (H(m))1/e mod n
• Blind RSA signature:

– Alice sends Bob (r e H(m)) mod n, where r is a random value.
– Bob computes (r e H(m))1/e = r H(m)1/e mod n, and sends to Alice.
– Alice divides by r and computes H(m)1/e mod n

• Problem: Alice can get Bob to sign anything, Bob does not know
what he is signing.

page 6June 5, 2011 Introduction to Cryptography, Benny Pinkas

Enabling the bank to verify the signed value

• “cut and choose” protocol
• Suppose Alice wants to sign a $20 bill.

– A $20 bill is defined as H(random index,$20).
– Alice sends to bank 100 different $20 bills for blind signature.
– The bank chooses 99 of these and asks Alice to unblind them

(divide by the corresponding r values). It verifies that they are
all $20 bills.

– The bank blindly signs the remaining bill and gives it to Alice.
– Alice can use the bill without being identified by the bank.

• If Alice tries to cheat she is caught with probability 99/100.
• 100 can be replaced by any parameter m.
• But we would like to have an exponentially small cheating

probability.

page 7June 5, 2011 Introduction to Cryptography, Benny Pinkas

Exponentially small cheating probability

• Define that a $20 bill in a new way:
– The bill is valid if it is the RSA signature of the multiplication of 50 values

of the form H(x), (where x=“random index,$20”).

• The withdrawal protocol:
– Alice sends to the Bank z1, z2, …, z100 (where zi= ri

e·H(xi)).
– The Bank asks Alice to reveal ½ of the values zi = ri

e·H(xi).
– The Bank verifies them and extracts the eth root of the multiplication of all

the other 50 values. Alice divides the results by the multiplication of the
corresponding ri values.

• Payment: Alice sends the signed bill and reveals the 50 preimage
values. The merchant sends them to the bank which verifies that
they haven’t been used before.

• Alice can only cheat if she guesses the 50 locations in which she will
be asked to unblind the zis, which happens with probability ~2-100.

page 8June 5, 2011 Introduction to Cryptography, Benny Pinkas

Online vs. offline digital cash

• We solved the anonymity problem, while verifying that
Alice can only get signatures on bills of the right value.

• The bills can still be duplicated
• Merchants must check with the bank whenever they get

a new bill, to verify that it wasn’t used before.

• A new idea:
– During the payment protocol the user is forced to encode

a random identity string (RIS) into the bill
– If the bill is used twice, the RIS reveals the user’s identity

and she loses her anonymity.

page 9June 5, 2011 Introduction to Cryptography, Benny Pinkas

Offline digital cash

Withdrawal protocol:
• Alice prepares 100 bills of the form

– {I am a $20 bill, #1234, y1,y’1,y2,y’2,…,ym,y’m}
– S.t. ∀ i yi=H(xi), y’i=H(x’i), and it holds that xi⊕x’i =Alice’s id,

where H() is a collision resistant function.

• Alice blinds these bills and sends to the bank.

• The bank asks her to unblind 99 bills and show their
xi,x’i values, and checks their validity.
– (Alternatively, as in the previous example, Alice can do a

check with fails with only an exponential probability.)

• The bank signs the remaining blinded bill.

page 10June 5, 2011 Introduction to Cryptography, Benny Pinkas

Offline digital cash

Payment protocol:
• Alice gives a signed bill to the vendor

– {I am a $20 bill, #1234, y1,y’1,y2,y’2,…,ym,y’m}
• The vendor verifies the signature, and if it is valid sends

to Alice a random bit string b=b1b2…bm of length m.
• ∀ i if bi=0 Alice returns xi, otherwise (bi=1) she returns x’I
• The vendor checks that yi=H(xi) or y’i=H(x’i) (depending

on bi). If this check is successful it accepts the bill. (Note
that Alice’s identity is kept secret.)

• Note that the merchant does not need to contact the
bank during the payment protocol.

page 11June 5, 2011 Introduction to Cryptography, Benny Pinkas

Offline digital cash

• The merchant must deposit the bill in the bank. It
cannot use the bill to pay someone else.
– Because it cannot answer challenges b* different than the

challenge b it sent to Alice.

• How can the bank detect double spenders?
– Suppose two merchants M and M* receive the same bill
– With very high probability, they ask Alice different queries

b,b*
– There is an index i for which bi=0, b*i =1. Therefore M

receives xi and M* receives x’i.
– When they deposit the bills, the bank receives xi and x*i,

and can compute xi ⊕ x’i =Alice’s id.

page 12January 19, 2007 Topics in Cryptography, Benny Pinkas

Secure multi-party computation

• Problem statement:
– n players P1, P2,…, Pn

– Player Pi has input xi

– There is a known function f(x1,…,xn)= (y1,…yn)
• Goals:

– Pi should learn yi, and nothing else (except for what can
be computed from xi and yi)

– This property should also hold for coalitions of corrupt
parties (e.g., P1,…,Pn/3 should learn nothing but
x1,…,xn/3,y1,…,yn/3)

– Security should hold even against malicious parties
• Examples…

page 13January 19, 2007 Topics in Cryptography, Benny Pinkas

More on MPC

• Generality: MPC is extremely general, covers almost all
protocol problems.

• We will define a protocol, which tells each party which
messages to send to other parties.

• Adversaries:
– Semi-honest vs. malicious

• Semi-honest (“honest but curious”) follow the protocol but try
to deduce information from it

• Malicious adversaries can behave arbitrarily

– Static (decide in advance which parties to corrupt) vs.
adaptive (decide on the fly which parties to corrupt)

– Unbounded vs. probabilistic polynomial-time

page 14January 19, 2007 Topics in Cryptography, Benny Pinkas

Defining security

• It is not sufficient to list the desired properties that the
protocol should satisfy
– How can we be sure that we covered all properties?

• Basic security definition: comparison to an ideal
scenario
– In the ideal scenario there is a trusted party which

receives x1,…,xn, computes the function and sends yi to
Pi.

– The real protocol is secure if its execution reveals no more
than in the ideal scenario.

• The actual definition is much more complicated, in
particular if we consider multiple invocations of the
same protocol.

page 15January 19, 2007 Topics in Cryptography, Benny Pinkas

What is known

• Information theoretic scenario:
– Semi-honest, adaptive adversary: any function can be

computed iff adversary controls up to t<n/2 parties.
– Malicious, adaptive adversary: any function can be

computed iff adversary controls up to t<n/3 parties.
• If broadcast is available, can withstand up to t<n/2.

• Cryptographic scenario:
– Semi-honest, adaptive, polynomial-time adversary:

assuming one-way trapdoor permutations exist, any
function can be computed if t<n.

– Malicious, adaptive, polynomial-time adversary: assuming
one-way trapdoor permutations exist, any function can be
computed if t<n/2.

page 16January 19, 2007 Topics in Cryptography, Benny Pinkas

An MPC protocol for semi-honest parties

• We will show a construction in the unconditional
security scenario, against semi-honest, adaptive
adversaries which control up to t<n/2 parties.

• The basic idea:
– Any input value can be shared between the n participants,

such that no t of them can reconstruct it.
– It is possible to make computations on shared values.

• Initial step:
– Write the function as an arithmetic circuit modulo a prime

number p.

page 17January 19, 2007 Topics in Cryptography, Benny Pinkas

Arithmetic circuits

• Circuits where
– Wires transfer values defined over a field
– Gates implement + and *

• Note that arithmetic circuits can be much more compact
than combinatorial (Boolean) circuits (with AND and OR
gates). For example, for computing a+b or a⋅b.

• Any Boolean circuit can be implemented as a arithmetic
circuit
– True is represented as 1, false as 0.
– AND(x,y) is implemented as x*y
– OR(x,y) is implemented as x+y-x*y
– NOT(x) is implemented as 1-x

page 18January 19, 2007 Topics in Cryptography, Benny Pinkas

t-out-of-n secret sharing

• Shamir’s secret sharing scheme:
– Choose a large prime and work in the field Zp.
– The secret S is an element in the field.
– Define a polynomial P of degree t-1 by choosing random

coefficients a1,…,at-1 and defining
P(x) = at-1x t-1+…+a1x+S.

– The share of party j is (j, P(j)).

page 19January 26, 2007 Topics in Cryptography, Benny Pinkas

An MPC protocol for n semi-honest parties,
secure against t<n/2 parties.

• Each party Pi has an input xi.
• The first step of the protocol:

– Each Pi generates a (t+1)-out-of-n sharing of its input xi
• Namely, chooses a random polynomial fi() over Zp

* such that
fi(0)=xi.

• Any subset of t shares does not leak any information about xi

• t+1 shares enable to reconstruct xi using polynomial
interpolation

– Every Pi sends to each Pj (j≠ i) the value fi(j)
• The protocol continues by induction from the input

wires to the output wires.
– We will show that for every gate, if the parties know

shares of the input values, they can compute shares of the
output values.

page 20January 26, 2007 Topics in Cryptography, Benny Pinkas

Computation stage

• All parties participate in the computation of every gate
• Addition gate: c= a+b

– The parties must generate a sharing of c.
– Namely, there should be a polynomial fc() of degree t,

such that fc() is random except for fc(0)=c
– (Note that defining fc(x)=fa(x)+fb(x) will be fine)
– Each Pi must receive the share ci=fc(i)

• The protocol:
– Each player Pi already has shares of a and b.
– Namely, Pi has shares ai=fa(i) and bi=fb(i) of polynomials

fa() and fb() of degree t, for which fa(0)=a and fb(0)=b.
– Pi sets ci=ai+bi = fa(i)+fb(i) = fc(i)
– No communication is needed for this computation.

• Easier to describe than the protocol for
multiplication gates

• Output wires
– If output wire yi must be learned by Pi, then all

parties send it their shares of yi.
– Pi reconstructs the secret and learns the output

value.

Output phase

page 22January 26, 2007 Topics in Cryptography, Benny Pinkas

Computation stage: multiplication gate

• Each player Pi already has shares ai=fa(i) and bi=fb(i).
• Needs to have a share di of d=a⋅b.
• First attempt:

– Pi sets di=ai⋅bi = fd(i).
– Obtains a share of fa() ⋅ fb()
– Indeed, fd(0) = d = a⋅b.
– But fd() is of degree 2t and not t.

• If we do this twice, the degree becomes 4t>n and n parties
will not be able to reconstruct the secret.

page 23January 26, 2007 Topics in Cryptography, Benny Pinkas

Computing multiplication gates

• Pi sets di=ai⋅bi = fd(i).
• fd(i) is of degree 2t < n.
• We know the values of (Lagrange) coefficients r1,..,rn

such that d=fd(0)=a⋅b = r1fd(1)+…+rnfd(n) = r1d1+…+rndn.

• Each Pi creates a random polynomial gi of degree t
such that gi(0)=di .

• Consider G(x)=∑i=1
n ri ⋅ gi(x)

– This a polynomial of degree t.
– G(0) = ∑i=1

n ri ⋅ gi(0) = ∑i=1
n ri ⋅ di = d.

• Now, if only we could provide each Pj with G(j)= ∑i=1
n ri ⋅

gi(j) …

page 24January 26, 2007 Topics in Cryptography, Benny Pinkas

Computing multiplication gates

• Pi sends to every Pj the value gi(j)

• Every Pj receives g1(j),…,gn(j), and computes
Gj = ∑i=1

n ri⋅gi(j) = G(j)

• This is the desired share of a⋅b:
– it is a value of the polynomial G(x)=∑i=1

n ri ⋅ gi(x),
– of degree t,
– for which G(0)= a⋅b.

page 25January 26, 2007 Topics in Cryptography, Benny Pinkas

Computing the entire circuit

• The parties do this computation for every gate

• Opening the outputs
– At the end of the circuit, for each output yj which should be

known to Pj, it holds that the parties hold shares of a
polynomial f(x) of degree t such that f(0)=yj.

• Each party Pi sends f(i) to Pj.

• Pj interpolates f(0)=yj.

page 26January 26, 2007 Topics in Cryptography, Benny Pinkas

Properties

• Correctness: straightforward
• Privacy: For every set of t players, it holds that all

values they see in the protocol are shares of (t+1)-out-
of-n secret sharing schemes.
– Therefore all their t shares are uniformly distributed.
– The proof needs to make sure that this property holds

even if adversary gets shares of a,b, and a⋅b

• Overhead:
– O(n2) messages for every multiplication gate.
– Number of communication rounds is linear in the depth of

the circuit (where only multiplication gates are counted).

