Introduction to Cryptography Lecture 13

Benny Pinkas

Electronic cash

Simple electronic checks

- A payment protocol:
 - Sign a document transferring money from your account to another account
 - This document goes to your bank
 - The bank verifies that this is not a copy of a previous check
 - The bank checks your balance
 - The bank transfers the sum
- Problems:
 - Requires online access to the bank (to prevent reusage)
 - Expensive.
 - The transaction is traceable (namely, the bank knows about the transaction between you and Alice).

First try at a payment protocol

Withdrawal

- User gets bank signature on {I am a \$100 bill, #1234}
- Bank deducts \$100 from user's account

Payment

- User gives the signature to a merchant
- Merchant verifies the signature, and checks online with the bank to verify that this is the first time that it is used.

Problems:

As before, online access to the bank, and lack of anonymity.

Advantage:

- The bank doesn't have to check online whether there is money in the user's account.
- In fact, there is no real need for the signature, since the bank checks its own signature.

Anonymous cash via blind signatures

- In order to preserve payer's anonymity the bank signs the bill without seeing it
 - (e.g. like signing on a carbon paper)
- RSA Blind signatures (Chaum)
- RSA signature: $(H(m))^{1/e} \mod n$
- Blind RSA signature:
 - Alice sends Bob (r e H(m)) mod n, where r is a random value.
 - Bob computes $(r e H(m))^{1/e} = r H(m)^{1/e} \mod n$, and sends to Alice.
 - Alice divides by r and computes $H(m)^{1/e} \mod n$
- Problem: Alice can get Bob to sign anything, Bob does not know what he is signing.

Enabling the bank to verify the signed value

- "cut and choose" protocol
- Suppose Alice wants to sign a \$20 bill.
 - A \$20 bill is defined as H(random index,\$20).
 - Alice sends to bank 100 different \$20 bills for blind signature.
 - The bank chooses 99 of these and asks Alice to unblind them (divide by the corresponding r values). It verifies that they are all \$20 bills.
 - The bank blindly signs the remaining bill and gives it to Alice.
 - Alice can use the bill without being identified by the bank.
- If Alice tries to cheat she is caught with probability 99/100.
- 100 can be replaced by any parameter *m*.
- But we would like to have an exponentially small cheating probability.

Exponentially small cheating probability

- Define that a \$20 bill in a new way:
 - The bill is valid if it is the RSA signature of the multiplication of 50 values of the form H(x), (where x="random index,\$20").
- The withdrawal protocol:
 - Alice sends to the Bank $z_1, z_2, ..., z_{100}$ (where $z_i = r_i e \cdot H(x_i)$).
 - The Bank asks Alice to reveal ½ of the values $z_i = r_i^e \cdot H(x_i)$.
 - The Bank verifies them and extracts the e^{th} root of the multiplication of all the other 50 values. Alice divides the results by the multiplication of the corresponding r_i values.
- Payment: Alice sends the signed bill and reveals the 50 preimage values. The merchant sends them to the bank which verifies that they haven't been used before.
- Alice can only cheat if she guesses the 50 locations in which she will be asked to unblind the z_i s, which happens with probability $\sim 2^{-100}$.

Online vs. offline digital cash

- We solved the anonymity problem, while verifying that Alice can only get signatures on bills of the right value.
- The bills can still be duplicated
- Merchants must check with the bank whenever they get a new bill, to verify that it wasn't used before.
- A new idea:
 - During the payment protocol the user is forced to encode a random identity string (RIS) into the bill
 - If the bill is used twice, the RIS reveals the user's identity and she loses her anonymity.

Offline digital cash

Withdrawal protocol:

- Alice prepares 100 bills of the form
 - {I am a \$20 bill, #1234, $y_1,y'_1,y_2,y'_2,...,y_m,y'_m$ }
 - S.t. $\forall i \ y_i = H(x_i), \ y'_i = H(x'_i), \ and it holds that <math>x_i \oplus x'_i = Alice's \ id,$ where H() is a collision resistant function.
- Alice blinds these bills and sends to the bank.
- The bank asks her to unblind 99 bills and show their x_i, x_i' values, and checks their validity.
 - (Alternatively, as in the previous example, Alice can do a check with fails with only an exponential probability.)
- The bank signs the remaining blinded bill.

Offline digital cash

Payment protocol:

- Alice gives a signed bill to the vendor
 - {I am a \$20 bill, #1234, $y_1, y'_1, y_2, y'_2, ..., y_m, y'_m$ }
- The vendor verifies the signature, and if it is valid sends to Alice a random bit string $b=b_1b_2...b_m$ of length m.
- $\forall i$ if $b_i=0$ Alice returns x_i , otherwise $(b_i=1)$ she returns x'_i
- The vendor checks that $y_i=H(x_i)$ or $y'_i=H(x'_i)$ (depending on b_i). If this check is successful it accepts the bill. (Note that Alice's identity is kept secret.)
- Note that the merchant does not need to contact the bank during the payment protocol.

Offline digital cash

- The merchant must deposit the bill in the bank. It cannot use the bill to pay someone else.
 - Because it cannot answer challenges b* different than the challenge b it sent to Alice.
- How can the bank detect double spenders?
 - Suppose two merchants M and M* receive the same bill
 - With very high probability, they ask Alice different queries b,b*
 - There is an index *i* for which $b_i=0$, $b_i^*=1$. Therefore M receives x_i and M^* receives x_i^* .
 - When they deposit the bills, the bank receives x_i and x_i^* , and can compute $x_i \oplus x_i^* = Alice's id$.

Secure multi-party computation

Problem statement:

- n players P₁, P₂,..., P_n
- Player P_i has input x_i
- There is a known function $f(x_1,...,x_n)=(y_1,...y_n)$

Goals:

- P_i should learn y_i, and nothing else (except for what can be computed from x_i and y_i)
- This property should also hold for coalitions of corrupt parties (e.g., $P_1,...,P_{n/3}$ should learn nothing but $X_1,...,X_{n/3},Y_1,...,Y_{n/3}$)
- Security should hold even against malicious parties
- Examples...

More on MPC

- Generality: MPC is extremely general, covers almost all protocol problems.
- We will define a protocol, which tells each party which messages to send to other parties.
- Adversaries:
 - Semi-honest vs. malicious
 - Semi-honest ("honest but curious") follow the protocol but try to deduce information from it
 - Malicious adversaries can behave arbitrarily
 - Static (decide in advance which parties to corrupt) vs.
 adaptive (decide on the fly which parties to corrupt)
 - Unbounded vs. probabilistic polynomial-time

Defining security

- It is not sufficient to list the desired properties that the protocol should satisfy
 - How can we be sure that we covered all properties?
- Basic security definition: comparison to an ideal scenario
 - In the ideal scenario there is a trusted party which receives x₁,...,x_n, computes the function and sends y_i to P_i.
 - The real protocol is secure if its execution reveals no more than in the ideal scenario.
- The actual definition is much more complicated, in particular if we consider multiple invocations of the same protocol.

What is known

- Information theoretic scenario:
 - Semi-honest, adaptive adversary: any function can be computed iff adversary controls up to t<n/2 parties.
 - Malicious, adaptive adversary: any function can be computed iff adversary controls up to t<n/3 parties.
 - If broadcast is available, can withstand up to t<n/2.
- Cryptographic scenario:
 - Semi-honest, adaptive, polynomial-time adversary: assuming one-way trapdoor permutations exist, any function can be computed if t<n.
 - Malicious, adaptive, polynomial-time adversary: assuming one-way trapdoor permutations exist, any function can be computed if t<n/2.

An MPC protocol for semi-honest parties

 We will show a construction in the unconditional security scenario, against semi-honest, adaptive adversaries which control up to t<n/2 parties.

The basic idea:

- Any input value can be shared between the n participants, such that no t of them can reconstruct it.
- It is possible to make computations on shared values.

Initial step:

 Write the function as an arithmetic circuit modulo a prime number p.

Arithmetic circuits

- Circuits where
 - Wires transfer values defined over a field
 - Gates implement + and *
- Note that arithmetic circuits can be much more compact than combinatorial (Boolean) circuits (with AND and OR gates). For example, for computing a+b or a·b.
- Any Boolean circuit can be implemented as a arithmetic circuit
 - True is represented as 1, false as 0.
 - AND(x,y) is implemented as x*y
 - OR(x,y) is implemented as x+y-x*y
 - NOT(x) is implemented as 1-x

t-out-of-n secret sharing

- Shamir's secret sharing scheme:
 - Choose a large prime and work in the field Zp.
 - The secret S is an element in the field.
 - Define a polynomial P of degree t-1 by choosing random coefficients a_1, \ldots, a_{t-1} and defining

$$P(x) = a_{t-1}x^{t-1} + \dots + a_1x + \underline{S}.$$

– The share of party j is (j, P(j)).

An MPC protocol for n semi-honest parties, secure against t<n/2 parties.

- Each party P_i has an input x_i.
- The first step of the protocol:
 - Each P_i generates a (t+1)-out-of-n sharing of its input x_i
 - Namely, chooses a random polynomial $f_i()$ over Z_p^* such that $f_i(0)=x_i$.
 - Any subset of t shares does not leak any information about x_i
 - t+1 shares enable to reconstruct x_i using polynomial interpolation
 - Every P_i sends to each P_i (j≠ i) the value f_i(j)
- The protocol continues by induction from the input wires to the output wires.
 - We will show that for every gate, if the parties know shares of the input values, they can compute shares of the output values.

Computation stage

- All parties participate in the computation of every gate
- Addition gate: c= a+b
 - The parties must generate a sharing of c.
 - Namely, there should be a polynomial $f_c()$ of degree t, such that $f_c()$ is random except for $f_c(0)=c$
 - (Note that defining $f_c(x)=f_a(x)+f_b(x)$ will be fine)
 - Each P_i must receive the share c_i=f_c(i)
- The protocol:
 - Each player P_i already has shares of a and b.
 - Namely, P_i has shares $a_i=f_a(i)$ and $b_i=f_b(i)$ of polynomials $f_a(i)$ and $f_b(i)$ of degree t, for which $f_a(i)=a$ and $f_b(i)=b$.
 - P_i sets $c_i = a_i + b_i = f_a(i) + f_b(i) = f_c(i)$
 - No communication is needed for this computation.

Output phase

- Easier to describe than the protocol for multiplication gates
- Output wires
 - If output wire y_i must be learned by P_i, then all parties send it their shares of y_i.
 - P_i reconstructs the secret and learns the output value.

Computation stage: multiplication gate

- Each player P_i already has shares a_i=f_a(i) and b_i=f_b(i).
- Needs to have a share d_i of d=a·b.
- First attempt:
 - $P_i \text{ sets } d_i = a_i \cdot b_i = f_d(i).$
 - Obtains a share of $f_a() \cdot f_b()$
 - Indeed, $f_d(0) = d = a \cdot b$.
 - But f_d() is of degree 2t and not t.
 - If we do this twice, the degree becomes 4t>n and n parties will not be able to reconstruct the secret.

Computing multiplication gates

- P_i sets $d_i=a_i\cdot b_i=f_d(i)$.
- $f_d(i)$ is of degree 2t < n.
- We know the values of (Lagrange) coefficients $r_1,...,r_n$ such that $d=f_d(0)=a\cdot b=r_1f_d(1)+...+r_nf_d(n)=r_1d_1+...+r_nd_n$.
- Each P_i creates a random polynomial g_i of degree t such that g_i(0)=d_i.
- Consider $G(x) = \sum_{i=1}^{n} r_i \cdot g_i(x)$
 - This a polynomial of degree t.
 - $-G(0) = \sum_{i=1}^{n} r_i \cdot g_i(0) = \sum_{i=1}^{n} r_i \cdot d_i = d.$
- Now, if only we could provide each P_j with $G(j) = \sum_{i=1}^{n} r_i \cdot g_i(j) \dots$

Computing multiplication gates

- P_i sends to every P_i the value g_i(j)
- Every P_j receives $g_1(j),...,g_n(j)$, and computes $G_j = \sum_{i=1}^n r_i \cdot g_i(j) = G(j)$
- This is the desired share of a.b.
 - it is a value of the polynomial $G(x)=\sum_{i=1}^{n} r_i \cdot g_i(x)$,
 - of degree t,
 - for which $G(0) = a \cdot b$.

Computing the entire circuit

- The parties do this computation for every gate
- Opening the outputs
 - At the end of the circuit, for each output y_j which should be known to P_j, it holds that the parties hold shares of a polynomial f(x) of degree t such that f(0)=y_j.
- Each party P_i sends f(i) to P_j.
- P_j interpolates f(0)=y_j.

Properties

- Correctness: straightforward
- Privacy: For every set of t players, it holds that all values they see in the protocol are shares of (t+1)-outof-n secret sharing schemes.
 - Therefore all their t shares are uniformly distributed.
 - The proof needs to make sure that this property holds even if adversary gets shares of a,b, and a.b

Overhead:

- O(n²) messages for every multiplication gate.
- Number of communication rounds is linear in the depth of the circuit (where only multiplication gates are counted).