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Electronic cash
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Simple electronic checks

• A payment protocol:
– Sign a document transferring money from your account to 

another account
• This document goes to your bank
• The bank verifies that this is not a copy of  a previous 

check
• The bank checks your balance
• The bank transfers the sum 

• Problems:
• Requires online access to the bank (to prevent reusage)
• Expensive.
• The transaction is traceable (namely, the bank knows 

about the transaction between you and Alice).
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First try at a payment protocol

• Withdrawal
– User gets bank signature on {I am a $100 bill, #1234}
– Bank deducts $100 from user’s account

• Payment
– User gives the signature to a merchant
– Merchant verifies the signature, and checks online with the 

bank to verify that this is the first time that it is used.
• Problems:

– As before, online access to the bank, and lack of anonymity.
• Advantage:

– The bank doesn’t have to check online whether there is 
money in the user’s account.

– In fact, there is no real need for the signature, since the 
bank checks its own signature. 
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Anonymous cash via blind signatures

• In order to preserve payer’s anonymity the bank signs the bill 
without seeing it 
– (e.g. like signing on a carbon paper)

• RSA Blind signatures (Chaum)
• RSA signature:  (H(m))1/e mod n
• Blind RSA signature: 

– Alice sends Bob (r e H(m)) mod n, where r is a random value.
– Bob computes (r e H(m))1/e = r H(m)1/e mod n, and sends to Alice.
– Alice divides by r and computes H(m)1/e mod n

• Problem: Alice can get Bob to sign anything, Bob does not know 
what he is signing.
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Enabling the bank to verify the signed value

• “cut and choose” protocol
• Suppose Alice wants to sign a $20 bill.

– A $20 bill is defined as H(random index,$20).
– Alice sends to bank 100 different $20 bills for blind signature.
– The bank chooses 99 of these and asks Alice to unblind them 

(divide by the corresponding r values). It verifies that they are 
all $20 bills.

– The bank blindly signs the remaining bill and gives it to Alice.
– Alice can use the bill without being identified by the bank.

• If Alice tries to cheat she is caught with probability 99/100.
• 100 can be replaced by any parameter m.
• But we would like to have an exponentially small cheating 

probability.
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Exponentially small cheating probability

• Define that a $20 bill in a new way:
– The bill is valid if it is the RSA signature of the multiplication of 50 values 

of the form H(x), (where x=“random index,$20”).

• The withdrawal protocol:
– Alice sends to the Bank z1, z2, …, z100 (where zi= ri 

e·H(xi)). 
– The Bank asks Alice to reveal ½ of the values zi = ri 

e·H(xi).
– The Bank verifies them and extracts the eth root of the multiplication of all 

the other 50 values. Alice divides the results by the multiplication of the 
corresponding ri values.

• Payment: Alice sends the signed bill and reveals the 50 preimage 
values. The merchant sends them to the bank which verifies that 
they haven’t been used before. 

• Alice can only cheat if she guesses the 50 locations in which she will 
be asked to unblind the zis, which happens with probability ~2-100. 
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Online vs. offline digital cash

• We solved the anonymity problem, while verifying that 
Alice can only get signatures on bills of the right value.

• The bills can still be duplicated
• Merchants must check with the bank whenever they get 

a new bill, to verify that it wasn’t used before. 

• A new idea:
– During the payment protocol the user is forced to encode 

a random identity string (RIS) into the bill
– If the bill is used twice, the RIS reveals the user’s identity 

and she loses her anonymity. 
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Offline digital cash

Withdrawal protocol:
• Alice prepares 100 bills of the form

– {I am a $20 bill, #1234, y1,y’1,y2,y’2,…,ym,y’m}
– S.t. ∀ i yi=H(xi), y’i=H(x’i), and it holds that xi⊕x’i =Alice’s id, 

where H() is a collision resistant function.

• Alice blinds these bills and sends to the bank.

• The bank asks her to unblind 99 bills and show their  
xi,x’i values, and checks their validity.
– (Alternatively, as in the previous example, Alice can do a 

check with fails with only an exponential probability.)

• The bank signs the remaining blinded bill. 
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Offline digital cash

Payment protocol:
• Alice gives a signed bill to the vendor

– {I am a $20 bill, #1234, y1,y’1,y2,y’2,…,ym,y’m}
• The vendor verifies the signature, and if it is valid sends 

to Alice a random bit string b=b1b2…bm of length m.
• ∀ i if bi=0 Alice returns xi, otherwise (bi=1) she returns x’I
• The vendor checks that yi=H(xi) or y’i=H(x’i) (depending 

on bi ). If this check is successful it accepts the bill. (Note 
that Alice’s identity is kept secret.)

• Note that the merchant does not need to contact the 
bank during the payment protocol.
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Offline digital cash

• The merchant must deposit the bill in the bank. It 
cannot use the bill to pay someone else.
– Because it cannot answer challenges b* different than the 

challenge b it sent to Alice. 

• How can the bank detect double spenders?
– Suppose two merchants M and M* receive the same bill
– With very high probability, they ask Alice different queries 

b,b*
– There is an index i for which bi=0, b*i =1. Therefore M 

receives xi and M* receives x’i.
– When they deposit the bills, the bank receives xi and x*i, 

and can compute xi ⊕ x’i =Alice’s id.
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Secure multi-party computation

• Problem statement:
– n players P1, P2,…, Pn

– Player Pi has input xi

– There is a known function f(x1,…,xn)= (y1,…yn)
• Goals:

– Pi should learn yi, and nothing else (except for what can 
be computed from xi and yi)

– This property should also hold for coalitions of corrupt 
parties (e.g., P1,…,Pn/3 should learn nothing but 
x1,…,xn/3,y1,…,yn/3)

– Security should hold even against malicious parties
• Examples… 
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More on MPC

• Generality: MPC is extremely general, covers almost all 
protocol problems.

• We will define a protocol, which tells each party which 
messages to send to other parties.

• Adversaries:
– Semi-honest vs. malicious

• Semi-honest (“honest but curious”) follow the protocol but try 
to deduce information from it

• Malicious adversaries can behave arbitrarily

– Static (decide in advance which parties to corrupt) vs. 
adaptive (decide on the fly which parties to corrupt)

– Unbounded vs. probabilistic polynomial-time
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Defining security

• It is not sufficient to list the desired properties that the 
protocol should satisfy
– How can we be sure that we covered all properties?

• Basic security definition: comparison to an ideal 
scenario
– In the ideal scenario there is a trusted party which 

receives x1,…,xn, computes the function  and sends yi to 
Pi.

– The real protocol is secure if its execution reveals no more 
than in the ideal scenario.

• The actual definition is much more complicated, in 
particular if we consider multiple invocations of the 
same protocol.
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What is known

• Information theoretic scenario:
– Semi-honest, adaptive adversary: any function can be 

computed iff adversary controls up to t<n/2 parties. 
– Malicious, adaptive adversary: any function can be 

computed iff adversary controls up to t<n/3 parties.
• If broadcast is available, can withstand up to t<n/2.

• Cryptographic scenario:
– Semi-honest, adaptive, polynomial-time adversary: 

assuming one-way trapdoor permutations exist, any 
function can be computed if t<n.

– Malicious, adaptive, polynomial-time adversary: assuming 
one-way trapdoor permutations exist, any function can be 
computed if t<n/2.
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An MPC protocol for semi-honest parties

• We will show a construction in the unconditional 
security scenario, against semi-honest, adaptive 
adversaries which control up to t<n/2 parties.

• The basic idea:
– Any input value can be shared between the n participants, 

such that no t of them can reconstruct it.
– It is possible to make computations on shared values.

• Initial step:
– Write the function as an arithmetic circuit modulo a prime 

number p.
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Arithmetic circuits

• Circuits where
– Wires transfer values defined over a field
– Gates implement + and *

• Note that arithmetic circuits can be much more compact 
than combinatorial (Boolean) circuits (with AND and OR 
gates). For example, for computing a+b or a⋅b.

• Any Boolean circuit can be implemented as a arithmetic 
circuit
– True is represented as 1, false as 0.
– AND(x,y) is implemented as x*y
– OR(x,y) is implemented as x+y-x*y
– NOT(x) is implemented as 1-x
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t-out-of-n secret sharing

• Shamir’s secret sharing scheme:
– Choose a large prime and work in the field Zp.
– The secret S is an element in the field.
– Define a polynomial P of degree t-1 by choosing random 

coefficients a1,…,at-1 and defining 
P(x) = at-1x t-1+…+a1x+S.

– The share of party j is ( j, P(j) ).
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An MPC protocol for n semi-honest parties, 
secure against t<n/2 parties.

• Each party Pi has an input xi.
• The first step of the protocol:

– Each Pi generates a (t+1)-out-of-n sharing of its input xi
• Namely, chooses a random polynomial fi() over Zp

* such that 
fi(0)=xi.

• Any subset of t shares does not leak any information about xi

• t+1 shares enable to reconstruct xi using polynomial 
interpolation 

– Every Pi sends to each Pj (j≠ i) the value fi(j)
• The protocol continues by induction from the input 

wires to the output wires.
– We will show that for every gate, if the parties know 

shares of the input values, they can compute shares of the 
output values. 
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Computation stage

• All parties participate in the computation of every gate
• Addition gate: c= a+b

– The parties must generate a sharing of c. 
– Namely, there should be a polynomial fc() of degree t, 

such that fc() is random except for fc(0)=c
– (Note that defining fc(x)=fa(x)+fb(x) will be fine) 
– Each Pi must receive the share ci=fc(i)

• The protocol:
– Each player Pi already has shares of a and b.
– Namely, Pi has shares ai=fa(i) and bi=fb(i) of polynomials 

fa() and fb() of degree t, for which fa(0)=a and fb(0)=b.
– Pi sets ci=ai+bi = fa(i)+fb(i) = fc(i)
– No communication is needed for this computation.



• Easier to describe than the protocol for 
multiplication gates

• Output wires
– If output wire yi must be learned by Pi, then all 

parties send it their shares of yi.
– Pi reconstructs the secret and learns the output 

value.

Output phase
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Computation stage: multiplication gate

• Each player Pi already has shares ai=fa(i) and bi=fb(i).
• Needs to have a share di of d=a⋅b.
• First attempt:

– Pi sets di=ai⋅bi = fd(i).
– Obtains  a share of fa() ⋅ fb()
– Indeed, fd(0) = d = a⋅b.
– But fd() is of degree 2t and not t.

• If we do this twice, the degree becomes 4t>n and n parties 
will not be able to reconstruct the secret.
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Computing multiplication gates

• Pi sets di=ai⋅bi = fd(i).
• fd(i) is of degree 2t < n.
• We know the values of (Lagrange) coefficients r1,..,rn

such that d=fd(0)=a⋅b = r1fd(1)+…+rnfd(n) = r1d1+…+rndn.

• Each Pi creates a random polynomial gi of degree t 
such that gi(0)=di .

• Consider G(x)=∑i=1
n ri ⋅ gi(x)

– This a polynomial of degree t. 
– G(0) = ∑i=1

n ri ⋅ gi(0) = ∑i=1
n ri ⋅ di = d.

• Now, if only we could provide each Pj with G(j)= ∑i=1
n ri ⋅

gi(j) … 
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Computing multiplication gates

• Pi sends to every Pj the value gi(j)

• Every Pj receives g1(j),…,gn(j), and computes                   
Gj = ∑i=1

n ri⋅gi(j) = G(j)

• This is the desired share of a⋅b:
– it is a value of the polynomial G(x)=∑i=1

n ri ⋅ gi(x),
– of degree t,
– for which G(0)= a⋅b.
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Computing the entire circuit

• The parties do this computation for every gate

• Opening the outputs 
– At the end of the circuit, for each output yj which should be 

known to Pj, it holds that the parties hold shares of a 
polynomial f(x) of degree t such that f(0)=yj.

• Each party Pi sends f(i) to Pj.

• Pj interpolates f(0)=yj.
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Properties

• Correctness: straightforward
• Privacy: For every set of t players, it holds that all 

values they see in the protocol are shares of (t+1)-out-
of-n secret sharing schemes.
– Therefore all their t shares are uniformly distributed.
– The proof needs to make sure that this property holds 

even if adversary gets shares of a,b, and a⋅b

• Overhead:
– O(n2) messages for every multiplication gate.
– Number of communication rounds is linear in the depth of 

the circuit (where only multiplication gates are counted).


