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- Some practical issues in number theory

. Last week
— Primality testing
— Pollard’s rho method for factoring
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- The RSA and Rabin cryptosystems use a modulus N
and are insecure if it is possible to factor N.

- Factorization: given N find all prime factors of N.

- Factoring is the search problem corresponding to the
primality testing decision problem.

— Primality testing is easy
— What about factoring?
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- Factoring N

. Trivial algorithm: trial division by all integers < N2,

« Pollard’s rho method:

— O(NY4) computation.
- O(1) memory.

— A heuristic algorithm.
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- The number-theoretic running time function L (a,c)

— For a=0, the running time is polynomial in In(n).
— For a=1, the running time is exponential in In(n).
— For O<a<1, the running time is subexponential.

1 a(1nl I—a
Ln(a,c) :ec(nn) (Inlnn)

- Factoring algorithms
— Quadratic field sieve: L (1/2, 1)

— General number field sieve: L (1/3, 1.9323)
— Elliptic curve method L(1/2, 1.41) (preferable only if

p<<sqrt(n) )
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Modulus size recommendations

- Factoring algorithms are run on massively distributed
networks of computers (running in their idle time).

- RSA published a list of factoring challenges.
- A 512 bit challenge was factored in 1999.
- The largest factored number n=pq.

— 768 bits (RSA-768)
— Factored on January 7, 2010 using the NFS

. Typical current choices:
— At least 1024-bit RSA moduli should be used
— For better security, longer RSA moduli are used

— For more sensitive applications, key lengths of 2048 bits
(or higher) are used



RSA with a modulus with more factors

- The best factoring algorithms:
— General number field sieve (NFS): L (1/3, 1.9323)
— Elliptic curve method L, (1/2, 1.41)

- If n=pg, where |p|=|q|, then the NFS Is faster.
— This is true even though p=n'?2,
— Common parameters: |p|=|q|=512 bits

— Factoring using the NFS is infeasible, but more likely than
factoring using the elliptic curve method.



RSA for paranoids

Suppose N=pq, |p|=500 bits, |g|=4500 bits.

Factoring is extremely hard.

— The NFS has to be applied to a much larger modulus. The
elliptic curve method is still inefficient.

Decryption is also very slow. (Encryption is done using a
short exponent, so it is pretty efficient.)

However, in most applications RSA is used to transfer
session keys, which are rather short.
Assume message length is < 500 bits.

— In the decryption process, it is only required to decrypt the
message modulo p. (As, or more, efficient, as a 1024 bit n.)

— Encryption must use a slightly longer e. Say, e=20.



Discrete log algorithms

- Input: (g,y) in a finite group G. Output: x s.t. gx=y Iin G.

- Generic vs. special purpose algorithms: generic algorithms do not
exploit the representation of group elements.

- Algorithms

Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running
time and memory.

Pollard’s rho method: Generic. |G| must be known. Sqgrt(|G|) running time
and O(1) memory.

No generic algorithm can do better than O(sqrt(q)), where g Is the largest
prime factor of |G|

Pohlig-Hellman: Generic. |G| and its factorization must be known.
O(sqgrt(q) In g), where q is largest prime factor of |G]|.

Therefore for Z*,, p-1 must have a large prime factor.
Index calculus algorithm for Z*: L(1/2, c)
Number field size for Z*;: L(1/3, 1.923)



Elliptic Curves

- The best discrete log algorithm which works even if |G|
can be unknown is the baby-step giant-step algorithm.

— Sgrt(|G|) running time and memory.
- Other (more efficient) algorithms must know |G|.
- In Z;* we know that | Z,* |=p-1.

- Elliptic curves are groups G where

— The Diffie-Hellman assumption is assumed to hold, and
therefore we can run DH an ElGamal encryption/sigs.

— |G| i1s unknown and therefore the best discrete log algorithm
us pretty slow

— It is therefore believed that a small Elliptic Curve group is as
secure as larger Z,* group.

— Smaller group -> smaller keys and more efficient operations.



. Let t=sqgrt(|G|).
. X can be represented as x=ut-v, where u,v < sqgrt(|G]).

. The algorithm:

— Giant step: compute the pairs (j, g !'f), for 0 <j <t. Store in
a table keyed by g I't.

— Baby step: compute y-g¢ for i=0,1,2..., until you hit an item
(i, g 1Y in the table. x = jt - i.

- Memory and running time are O(sqrt|G|).
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Secret sharing
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. 3-out-of-3 secret sharing:
— Three parties, A, B and C.
- Secret S.

— No two parties should know anything about S, but all three
together should be able to retrieve it.

. |n other words
-A+B+C = S
— But,

«cA+B S
«cA+C+ S
«-B+C# S
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. 3-out-of-3 secret sharing:

- How about the following scheme:

— Let S=s;5S,...S,,, be the bit representation of S. (m Is a
multiple of 3)

- Party A receives s,...,Ss-

- Party B receives S, 3.:1:---1Som/3-
- Party C receives S, /3+1:---:Sm-

— All three parties can recover S.

- Why doesn’t this scheme satisfy the definition of secret
sharing?
- Why does each share need to be as long as the secret?
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« Solution:

— Define shares for A,B,C in the following way

— (Sas Sg, S¢) Is a random triple, subject to the constraint
that

« S\LUSg[JS:-=S
. or, S, and Sg are random, and S = S,//Sg [/ S.

- What If it Is required that any one of the parties should
be able to compute S?

_SetS,=Sy=S.=S

- What if each pair of the three parties should be able to
compute S?
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t-out-of-n secret sharing

- Provide shares to n parties, satisfying

— Recoverability: any t shares enable the reconstruction of
the secret.

— Secrecy: any t-1 shares reveal nothing about the secret.

- We saw 1-out-of-n and n-out-of-n secret sharing.

- Consider 2-out-of-n secret sharing.
— Define a line which intersects the
Y axis at S
— The shares are points on the line
— Any two shares define S
— A single share reveals nothing




t-out-of-n secret sharing

- Fact: Let F be a field. Any d+1 pairs (a;, b;) define a
unique polynomial P of degree < d, s.t. P(a;)=b..
(assuming d < |F|).

- Shamir’s secret sharing scheme:
— Choose a large prime and work in the field Zp.
— The secret S is an element in the field.

— Define a polynomial P of degree t-1 by choosing random
coefficients a,,...,a,, and defining

P(x) = a_x"+...+a,x+S.

— The share of party jis (|, P(j) ).



« Reconstruction of the secret:

— Assume we have P(x,),...,P(X;).

— Use Lagrange interpolation to compute the unique
polynomial of degree < t-1 which agrees with these points.

— Output the free coefficient of this polynomial.

- Lagrange interpolation
- P(X) = 21,4 P(X)-Li(x)
- where Li(X)=[14(x-%;) / [4(Xi-%;)

- (Note that L; (x;)=1, L; (x;)=0 for j#i.)
- 1.6, S=2i21 + POG) - [ =X 1 Tla(%i- %)
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Properties of Shamir’s secret sharing

- Perfect secrecy: Any t-1 shares give no information

about the secret: Pr(secret=s | P(1),...,P(t-1)) = Pr(secret=s).
(Security is not based on any assumptions.)

« Proof:

Let’s get intuition from 2-out-of-n secret sharing

The polynomial is generated by choosing a random coefficient a and
defining P(X)= axHs.

Suppose that the adversary knows P(x;)=a;+s.

For any value of s, the value of a is uniquely defined by P(x,) and s.
Namely, Us there is one-to-one correspondence between a and P(x,).

Since a is uniformly distributed, so is the value of P(x;) (any
assignment to a results in exactly one value of P(x,)).

- Therefore P(x,) does not reveal any information about s.



Properties of Shamir’s secret sharing

Perfect secrecy: Any t-1 shares give no information

about the secret: Pr(secret=s | P(1),...,P(t-1)) = Pr(secret=s).
(Security is not based on any assumptions.)

« Proof:

— The polynomial is generated by choosing a random
polynomial of degree t-1, subject to P(0)=secret.

— Suppose that the adversary knows the shares
P(Xy),---,P(X¢.1)-

— The values of P(x,),...,P(X.,) are defined by t-1 linear
equations of a,,...,a,4, S.



Properties of Shamir’s secret sharing

Proof (cont.):

— The values of P(x,),...,P(X,,) are defined by t-1 linear
equations of a,,...,a,4, S.

— For any possible value of s, there is a exactly one set of
values of a,,...,a,; which gives the values P(x,),...,P(X,)-

- This set of a,,...,a,; can be found by solving a linear system
of equations.

- Since a,,...,a,, are uniformly distributed, so are the values
of P(Xy),...,P(X¢.1)-

 Therefore P(x,),...,P(X;,) reveal nothing about s.



Additional properties of Shamir’s secret sharing

 ldeal size: Each share is the same size as the secret.
- Extendable: Additional shares can be easily added.

- Flexible: different weights can be given to different
parties by giving them more shares.

- Homomorphic property: Suppose P(1),...,P(n) are
shares of S, and P’(1),...,P’(n) are shares of S’, then
P(1)+P’(1),...,P(n)+P’(n) are shares for S+S'.



General secret sharing

P is the set of users (say, n users).

A [/{1,2,...,n} Is an authorized subset If it Is authorized to
access the secret.

[ Is the set of authorized subsets.

For example,

-P={1,2,3,4}

- [~ = Any set containing one of { {1,2,4}, {1,3,4,}, {2,3}}
— Not supported by threshold secret sharing

If AL/ and A //B, then B/ .

« A/ 1S a minimal authorized set if there iIs no C //A such
that C/T.

- The set of minimal subsets 7/ is called the basis of /.



Why should we examine general access
structures?

- Some general access structures can be implemented using
threshold access structures.

. But not all access structures can be represented by threshold
access structures

. For example, consider the access structure /={{1,2},{3,4}}

— Any threshold based secret sharing scheme with threshold t gives
weights to parties, such that w;+w,>t, and ws+w, > t.

— Therefore either w;> t/2, or w, > t/2. Suppose that this is w;.
— Similarly either w,= t/2, or w, =2 t/2. Suppose that this is w;.
— In this case parties 1 and 3 can reveal the secret, since w,;+wg;>t.

— Therefore, this access structure cannot be realized by a threshold
scheme.



The monotone circuit construction (Benaloh-Leichter)

- Given /[ construct a circuit C s.t. C(A)=1 iff ALl/.
- o= {1{1,2,4},{1,3,4} {2,3}}

- This Boolean circuit can be constructed from OR and AND
gates, and is monotone. Namely, if C(x)=1, then changing
bits of x from O to 1 doesn’t change the result to O.

x1 X2 X3 x4



Starting from the output gate and going backwards

x1 X2 X3 x4

An OR gate is a
1-out-of-N

S scheme
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An AND gate is
an N-out-of-N
scheme
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Final step: each user gets the keys of the
wires going out from its variable

x1 X2 X3 x4

Proof of security:
by induction S
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- Represent the access structure by an undirected graph.
- An authorized set corresponds to a path from sto tin

an undirected graph.
- o= {{1,2,4}, {1,3,4,}, {2,3} }
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Assign random values to nodes, s.t. R’-R= shared secret
(R'=R+shared secret)

2
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2 R-R2
4 R2-R1

1 RL-

2  R3-R R3

» Assign to edge R1—R2 the value R2-R1

» Give to each user the values associated with its edges
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- Consider the set {1,2,4}

e why can an authorized set reconstruct the secret? Why
can’t a unauthorized set do that?

2 R-R2

. RL 4 R2-R1
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