## Introduction to Cryptography Lecture 12

Benny Pinkas

- Some practical issues in number theory
- Last week
- Primality testing
- Pollard's rho method for factoring


## Integer factorization

- The RSA and Rabin cryptosystems use a modulus $N$ and are insecure if it is possible to factor $N$.
- Factorization: given $N$ find all prime factors of $N$.
- Factoring is the search problem corresponding to the primality testing decision problem.
- Primality testing is easy
- What about factoring?


## Pollard's Rho method

- Factoring $N$
- Trivial algorithm: trial division by all integers $<N^{1 / 2}$.
- Pollard's rho method:
- O( $\left.N^{1 / 4}\right)$ computation.
- O(1) memory.
- A heuristic algorithm.


## Modern factoring algorithms

- The number-theoretic running time function $\mathrm{L}_{\mathrm{n}}(\mathrm{a}, \mathrm{c})$

$$
L_{n}(a, c)=e^{c(\ln n)^{a}(\ln \ln n)^{1-a}}
$$

- For $\mathrm{a}=0$, the running time is polynomial in $\ln (\mathrm{n})$.
- For $a=1$, the running time is exponential in $\ln (n)$.
- For $0<a<1$, the running time is subexponential.
- Factoring algorithms
- Quadratic field sieve: $L_{n}(1 / 2,1)$
- General number field sieve: $L_{n}(1 / 3,1.9323)$
- Elliptic curve method $L_{p}(1 / 2,1.41)$ (preferable only if p<<sqrt(n) )


## Modulus size recommendations

- Factoring algorithms are run on massively distributed networks of computers (running in their idle time).
- RSA published a list of factoring challenges.
- A 512 bit challenge was factored in 1999.
- The largest factored number $n=p q$.
- 768 bits (RSA-768)
- Factored on January 7, 2010 using the NFS
- Typical current choices:
- At least 1024-bit RSA moduli should be used
- For better security, longer RSA moduli are used
- For more sensitive applications, key lengths of 2048 bits (or higher) are used


## RSA with a modulus with more factors

- The best factoring algorithms:
- General number field sieve (NFS): $L_{n}(1 / 3,1.9323)$
- Elliptic curve method $L_{p}(1 / 2,1.41)$
- If $n=p q$, where $|p|=|q|$, then the NFS is faster.
- This is true even though $p=n^{1 / 2}$.
- Common parameters: $|p|=|q|=512$ bits
- Factoring using the NFS is infeasible, but more likely than factoring using the elliptic curve method.


## RSA for paranoids

- Suppose $N=p q,|p|=500$ bits, $|q|=4500$ bits.
- Factoring is extremely hard.
- The NFS has to be applied to a much larger modulus. The elliptic curve method is still inefficient.
- Decryption is also very slow. (Encryption is done using a short exponent, so it is pretty efficient.)
- However, in most applications RSA is used to transfer session keys, which are rather short.
- Assume message length is < 500 bits.
- In the decryption process, it is only required to decrypt the message modulo p. (As, or more, efficient, as a 1024 bit n.)
- Encryption must use a slightly longer e. Say, e=20.


## Discrete log algorithms

- Input: $(g, y)$ in a finite group G. Output: $x$ s.t. $g^{x}=y$ in $G$.
- Generic vs. special purpose algorithms: generic algorithms do not exploit the representation of group elements.
- Algorithms
- Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running time and memory.
- Pollard's rho method: Generic. |G| must be known. Sqrt(|G|) running time and O(1) memory.
- No generic algorithm can do better than $\mathrm{O}(\mathrm{sqrt}(\mathrm{q}))$, where q is the largest prime factor of |G|
- Pohlig-Hellman: Generic. |G| and its factorization must be known. O (sqrt(q) In $q$ ), where $q$ is largest prime factor of $|\mathrm{G}|$.
- Therefore for $Z^{*}{ }_{p}, p-1$ must have a large prime factor.
- Index calculus algorithm for $Z^{*}$ : $\mathrm{L}(1 / 2, \mathrm{c})$
- Number field size for $Z_{p}^{*}: L(1 / 3,1.923)$


## Elliptic Curves

- The best discrete log algorithm which works even if |G| can be unknown is the baby-step giant-step algorithm.
- Sqrt(|G|) running time and memory.
- Other (more efficient) algorithms must know |G|.
- $\ln Z_{p}{ }^{*}$ we know that $\left|Z_{p}{ }^{*}\right|=p-1$.
- Elliptic curves are groups $G$ where
- The Diffie-Hellman assumption is assumed to hold, and therefore we can run DH an EIGamal encryption/sigs.
- |G| is unknown and therefore the best discrete log algorithm us pretty slow
- It is therefore believed that a small Elliptic Curve group is as secure as larger $\mathrm{Z}_{\mathrm{p}}{ }^{*}$ group.
- Smaller group -> smaller keys and more efficient operations.


## Baby-step giant-step DL algorithm

- Let $\mathrm{t}=$ sqrt(|G|).
- $x$ can be represented as $x=u t-v$, where $u, v<\operatorname{sqrt}(|\mathrm{G}|)$.
- The algorithm:
- Giant step: compute the pairs (j, g ${ }^{j \cdot t}$ ), for $0 \leq j \leq t$. Store in a table keyed by $g^{j \cdot t}$.
- Baby step: compute $y \cdot g^{i}$ for $i=0,1,2 \ldots$, until you hit an item $\left(j, g^{j \cdot t}\right)$ in the table. $x=j t-i$.
- Memory and running time are $\mathrm{O}(\mathrm{sqrt}|\mathrm{G}|)$.


## Baby-step giant-step DL algorithm



## Secret sharing

## Secret Sharing

-3-out-of-3 secret sharing:

- Three parties, A, B and C.
- Secret S.
- No two parties should know anything about $S$, but all three together should be able to retrieve it.
- In other words
$-A+B+C \Rightarrow S$
- But,
- $A+B \nRightarrow S$
- $A+C \neq S$
- $\mathrm{B}+\mathrm{C} \neq \mathrm{S}$


## Secret Sharing

-3-out-of-3 secret sharing:

- How about the following scheme:
- Let $S=s_{1} s_{2} \ldots s_{m}$ be the bit representation of $S$. ( $m$ is a multiple of 3)
- Party A receives $s_{1}, \ldots, s_{m / 3}$.
- Party B receives $s_{m / 3+1}, \ldots, s_{2 m / 3}$.
- Party C receives $s_{2 m / 3+1}, \ldots, s_{m}$.
- All three parties can recover $S$.
- Why doesn't this scheme satisfy the definition of secret sharing?
- Why does each share need to be as long as the secret?


## Secret Sharing

- Solution:
- Define shares for $A, B, C$ in the following way
- $\left(S_{A}, S_{B}, S_{C}\right)$ is a random triple, subject to the constraint that
- $S_{A} \oplus S_{B} \oplus S_{C}=S$
- or, $S_{A}$ and $S_{B}$ are random, and $S_{C}=S_{A} \oplus S_{B} \oplus S$.
- What if it is required that any one of the parties should be able to compute $S$ ?
- Set $S_{A}=S_{B}=S_{C}=S$
- What if each pair of the three parties should be able to compute S?


## $t$-out-of- $n$ secret sharing

- Provide shares to $n$ parties, satisfying
- Recoverability: any $t$ shares enable the reconstruction of the secret.
- Secrecy: any $t-1$ shares reveal nothing about the secret.
- We saw 1 -out-of- $n$ and $n$-out-of- $n$ secret sharing.
- Consider 2-out-of-n secret sharing.
- Define a line which intersects the Y axis at $S$
- The shares are points on the line
- Any two shares define $S$
- A single share reveals nothing



## $t$-out-of- $n$ secret sharing

- Fact: Let $F$ be a field. Any $d+1$ pairs $\left(a_{i}, b_{i}\right)$ define a unique polynomial $P$ of degree $\leq d$, s.t. $P\left(a_{i}\right)=b_{i}$. (assuming $d<|F|$ ).
- Shamir's secret sharing scheme:
- Choose a large prime and work in the field $Z p$.
- The secret $S$ is an element in the field.
- Define a polynomial $P$ of degree $t-1$ by choosing random coefficients $a_{1}, \ldots, a_{t-1}$ and defining
$P(x)=a_{t-1} x^{t-1}+\ldots+a_{1} x+\underline{S}$.
- The share of party $j$ is $(j, P(j))$.


## $t$-out-of- $n$ secret sharing

- Reconstruction of the secret:
- Assume we have $P\left(x_{1}\right), \ldots, P\left(x_{t}\right)$.
- Use Lagrange interpolation to compute the unique polynomial of degree $\leq t-1$ which agrees with these points.
- Output the free coefficient of this polynomial.
- Lagrange interpolation
- $P(x)=\sum_{i=1 . . t} P\left(x_{i}\right) \cdot L_{i}(x)$
- where $L_{i}(x)=\prod_{j \neq i}\left(x-x_{j}\right) / \prod_{j \neq i}\left(x_{i}-x_{j}\right)$
- (Note that $L_{i}\left(x_{i}\right)=1, L_{i}\left(x_{j}\right)=0$ for $j \neq i$.)
- I.e., $S=\sum_{i=1 . . t} P\left(x_{i}\right) \cdot \prod_{j \neq i}-x_{j} / \prod_{j \neq i}\left(x_{i}-x_{j}\right)$


## Properties of Shamir's secret sharing

- Perfect secrecy: Any $t-1$ shares give no information about the secret: $\operatorname{Pr}($ secret $=s \mid P(1), \ldots, P(t-1))=\operatorname{Pr}($ secret $=s)$. (Security is not based on any assumptions.)
- Proof:
- Let's get intuition from 2-out-of-n secret sharing
- The polynomial is generated by choosing a random coefficient $a$ and defining $P(x)=a \cdot x+s$.
- Suppose that the adversary knows $P\left(x_{1}\right)=a \cdot x_{1}+s$.
- For any value of $s$, the value of $a$ is uniquely defined by $P\left(x_{1}\right)$ and $s$.
- Namely, $\forall s$ there is one-to-one correspondence between $a$ and $P\left(x_{1}\right)$.
- Since a is uniformly distributed, so is the value of $P\left(x_{1}\right)$ (any assignment to a results in exactly one value of $\left.P\left(x_{1}\right)\right)$.
- Therefore $P\left(x_{1}\right)$ does not reveal any information about $s$.


## Properties of Shamir's secret sharing

- Perfect secrecy: Any $t-1$ shares give no information about the secret: $\operatorname{Pr}($ secret $=s / P(1), \ldots, P(t-1))=\operatorname{Pr}($ secret $=s)$. (Security is not based on any assumptions.)
- Proof:
- The polynomial is generated by choosing a random polynomial of degree $t-1$, subject to $P(0)=$ secret.
- Suppose that the adversary knows the shares $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$.
- The values of $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$ are defined by $t-1$ linear equations of $a_{1}, \ldots, a_{t-1}, s$.
- $P\left(x_{i}\right)=\Sigma_{i=1, \ldots, t-1}\left(x_{i}\right)^{j} a_{j}+s$.


## Properties of Shamir's secret sharing

- Proof (cont.):
- The values of $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$ are defined by $t-1$ linear equations of $a_{1}, \ldots, a_{t-1}, s$.
- $P\left(x_{j}\right)=\sum_{j=1, \ldots, t-1}\left(x_{i}\right)^{j} a_{j}+s$.
- For any possible value of $s$, there is a exactly one set of values of $a_{1}, \ldots, a_{t-1}$ which gives the values $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$.
- This set of $a_{1}, \ldots, a_{t-1}$ can be found by solving a linear system of equations.
- Since $a_{1}, \ldots, a_{t-1}$ are uniformly distributed, so are the values of $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$.
- Therefore $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$ reveal nothing about $s$.


## Additional properties of Shamir's secret sharing

- Ideal size: Each share is the same size as the secret.
- Extendable: Additional shares can be easily added.
- Flexible: different weights can be given to different parties by giving them more shares.
- Homomorphic property: Suppose $P(1), \ldots, P(n)$ are shares of $S$, and $P^{\prime}(1), \ldots, P^{\prime}(n)$ are shares of $S^{\prime}$, then $P(1)+P^{\prime}(1), \ldots, P(n)+P^{\prime}(n)$ are shares for $S+S^{\prime}$.


## General secret sharing

- $P$ is the set of users (say, $n$ users).
- $A \in\{1,2, \ldots, n\}$ is an authorized subset if it is authorized to access the secret.
- $\Gamma$ is the set of authorized subsets.
- For example,
- $P=\{1,2,3,4\}$
$-\Gamma=$ Any set containing one of $\{\{1,2,4\},\{1,3,4\},,\{2,3\}\}$
- Not supported by threshold secret sharing
- If $A \in \Gamma$ and $A \subseteq B$, then $B \in \Gamma$.
- $A \in \Gamma$ is a minimal authorized set if there is no $C \subseteq A$ such that $C \in \Gamma$.
- The set of minimal subsets $\Gamma_{0}$ is called the basis of $\Gamma$.


## Why should we examine general access structures?

- Some general access structures can be implemented using threshold access structures.
- But not all access structures can be represented by threshold access structures
- For example, consider the access structure $\Gamma=\{\{1,2\},\{3,4\}\}$
- Any threshold based secret sharing scheme with threshold t gives weights to parties, such that $w_{1}+w_{2} \geq t$, and $w_{3}+w_{4} \geq t$.
- Therefore either $w_{1} \geq t / 2$, or $w_{2} \geq t / 2$. Suppose that this is $w_{1}$.
- Similarly either $w_{3} \geq t / 2$, or $w_{4} \geq t / 2$. Suppose that this is $w_{3}$.
- In this case parties 1 and 3 can reveal the secret, since $w_{1}+w_{3} \geq t$.
- Therefore, this access structure cannot be realized by a threshold scheme.


## The monotone circuit construction (Benaloh-Leichter)

- Given $\Gamma$ construct a circuit $C$ s.t. $C(A)=1$ iff $A \in \Gamma$.
$-\Gamma_{0}=\{\{1,2,4\},\{1,3,4\},,\{2,3\}\}$
- This Boolean circuit can be constructed from OR and AND gates, and is monotone. Namely, if $C(x)=1$, then changing bits of $x$ from 0 to 1 doesn't change the result to 0 .



## Handling OR gates

Starting from the output gate and going backwards


## Handling AND gates



## Handling AND gates

Final step: each user gets the keys of the wires going out from its variable


## A graph based construction

- Represent the access structure by an undirected graph.
- An authorized set corresponds to a path from s to $t$ in an undirected graph.
- $\Gamma_{0}=\{\{1,2,4\},\{1,3,4\},,\{2,3\}\}$



## A graph based construction

Assign random values to nodes, s.t. $R^{\prime}-R=$ shared secret ( $R^{\prime}=R+$ shared secret)


## A graph based construction



- Assign to edge R1 $\rightarrow$ R2 the value R2-R1
- Give to each user the values associated with its edges


## A graph based construction

- Consider the set $\{1,2,4\}$
- why can an authorized set reconstruct the secret? Why can't a unauthorized set do that?


