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• Some practical issues in number theory

• Last week
– Primality testing
– Pollard’s rho method for factoring 
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Integer factorization

• The RSA and Rabin cryptosystems use a modulus N
and are insecure if it is possible to factor N.

• Factorization: given N find all prime factors of N. 

• Factoring is the search problem corresponding to the 
primality testing decision problem.
– Primality testing is easy
– What about factoring? 
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Pollard’s Rho method

• Factoring N

• Trivial algorithm: trial division by all integers < N1/2. 

• Pollard’s rho method:
– O(N1/4) computation. 
– O(1) memory.
– A heuristic algorithm.
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Modern factoring algorithms

• The number-theoretic running time function Ln(a,c)

– For a=0, the running time is polynomial in ln(n).
– For a=1, the running time is exponential in ln(n).
– For 0<a<1, the running time is subexponential. 

• Factoring algorithms
– Quadratic field sieve: Ln(1/2, 1)
– General number field sieve: Ln(1/3, 1.9323)
– Elliptic curve method Lp(1/2, 1.41)  (preferable only if 

p<<sqrt(n) )
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Modulus size recommendations

• Factoring algorithms are run on massively distributed 
networks of computers (running in their idle time).

• RSA published a list of factoring challenges. 
• A 512 bit challenge was factored in 1999.
• The largest factored number n=pq. 

– 768 bits (RSA-768)
– Factored on January 7, 2010 using the NFS

• Typical current choices:
– At least 1024-bit RSA moduli should be used
– For better security, longer RSA moduli are used
– For more sensitive applications, key lengths of 2048 bits 

(or higher) are used
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RSA with a modulus with more factors

• The best factoring algorithms:
– General number field sieve (NFS): Ln(1/3, 1.9323)
– Elliptic curve method Lp(1/2, 1.41)

• If n=pq, where |p|=|q|, then the NFS is faster.
– This is true even though p=n1/2.
– Common parameters: |p|=|q|=512 bits
– Factoring using the NFS is infeasible, but more likely than 

factoring using the elliptic curve method.
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RSA for paranoids

• Suppose N=pq, |p|=500 bits, |q|=4500 bits.
• Factoring is extremely hard.

– The NFS has to be applied to a much larger modulus. The 
elliptic curve method is still inefficient.  

• Decryption is also very slow. (Encryption is done using a 
short exponent, so it is pretty efficient.)

• However, in most applications RSA is used to transfer 
session keys, which are rather short.

• Assume message length is < 500 bits.
– In the decryption process, it is only required to decrypt the 

message modulo p. (As, or more, efficient, as a 1024 bit n.)
– Encryption must use a slightly longer e. Say, e=20.
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Discrete log algorithms

• Input: (g,y) in a finite group G. Output: x s.t. gx = y in G. 
• Generic vs. special purpose algorithms: generic algorithms do not 

exploit the representation of group elements. 

• Algorithms
– Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running 

time and memory. 
– Pollard’s rho method: Generic. |G| must be known. Sqrt(|G|) running time 

and O(1) memory. 
– No generic algorithm can do better than O(sqrt(q)), where q is the largest 

prime factor of |G|
– Pohlig-Hellman: Generic. |G| and its factorization must be known. 

O(sqrt(q) ln q), where q is largest prime factor of |G|.
– Therefore for Z*p, p-1 must have a large prime factor. 
– Index calculus algorithm for Z*p: L(1/2, c)
– Number field size for Z*p: L(1/3, 1.923)
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Elliptic Curves

• The best discrete log algorithm which works even if |G| 
can be unknown is the baby-step giant-step algorithm.
– Sqrt(|G|) running time and memory. 

• Other (more efficient) algorithms must know |G|.
– In Zp* we know that | Zp* |=p-1.

• Elliptic curves are groups G where
– The Diffie-Hellman assumption is assumed to hold, and 

therefore we can run DH an ElGamal encryption/sigs.
– |G| is unknown and therefore the best discrete log algorithm 

us pretty slow
– It is therefore believed that a small Elliptic Curve group is as 

secure as larger Zp* group.
– Smaller group -> smaller keys and more efficient operations.
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Baby-step giant-step DL algorithm

• Let t=sqrt(|G|).
• x can be represented as x=ut-v, where u,v < sqrt(|G|).

• The algorithm:
– Giant step: compute the pairs (j, g j·t), for 0 ≤ j ≤ t. Store in 

a table keyed by g j·t.
– Baby step: compute y·gi  for i=0,1,2…, until you hit an item 

(j, g j·t) in the table. x = jt - i.

• Memory and running time are O(sqrt|G|).
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Baby-step giant-step DL algorithm



Secret sharing
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Secret Sharing

• 3-out-of-3 secret sharing:
– Three parties, A, B and C. 
– Secret S.
– No two parties should know anything about S, but all three 

together should be able to retrieve it.
• In other words

– A + B + C  ⇒ S
– But,

• A + B ⇒ S

• A + C ⇒ S

• B + C ⇒ S

/

/

/



page 15June 5, 2011 Introduction to Cryptography, Benny Pinkas      

Secret Sharing

• 3-out-of-3 secret sharing:
• How about the following scheme:

– Let S=s1s2…sm be the bit representation of S. (m is a 
multiple of 3)
• Party A receives s1,…,sm/3.

• Party B receives sm/3+1,…,s2m/3.

• Party C receives s2m/3+1,…,sm. 

– All three parties can recover S.

– Why doesn’t this scheme satisfy the definition of secret 
sharing?

– Why does each share need to be as long as the secret?
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Secret Sharing

• Solution:
– Define shares for A,B,C in the following way
– (SA, SB, SC) is a random triple, subject to the constraint 

that 
• SA⊕ SB ⊕ SC = S
• or, SA and SB are random, and SC = SA⊕ SB ⊕ S.

• What if it is required that any one of the parties should 
be able to compute S?
– Set SA = SB = SC = S

• What if each pair of the three parties should be able to 
compute S?
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t-out-of-n secret sharing

• Provide shares to n parties, satisfying
– Recoverability: any t shares enable the reconstruction of

the secret.
– Secrecy: any t-1 shares reveal nothing about the secret.

• We saw 1-out-of-n and n-out-of-n secret sharing.

• Consider 2-out-of-n secret sharing.
– Define a line which intersects the 

Y axis at S
– The shares are points on the line
– Any two shares define S
– A single share reveals nothing

s

1 2 3
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t-out-of-n secret sharing

• Fact: Let F be a field. Any d+1 pairs (ai , bi ) define a 
unique polynomial P of degree ≤ d, s.t. P(ai )=bi.  
(assuming d < |F|).

• Shamir’s secret sharing scheme:
– Choose a large prime and work in the field Zp.
– The secret S is an element in the field.
– Define a polynomial P of degree t-1 by choosing random 

coefficients a1,…,at-1 and defining 
P(x) = at-1x t-1+…+a1x+S.

– The share of party j is ( j, P(j) ).
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t-out-of-n secret sharing

• Reconstruction of the secret:
– Assume we have P(x1),…,P(xt ).
– Use Lagrange interpolation to compute the unique 

polynomial of degree ≤ t-1 which agrees with these points.
– Output the free coefficient of this polynomial. 

• Lagrange interpolation
– P(x) = ∑i=1..t P(xi )·Li(x)
– where Li(x)=∏j≠i(x-xj ) / ∏j≠i(xi-xj )  
– (Note that Li (xi )=1, Li (xj )=0 for j≠i.)

– I.e., S = ∑i=1..t P(xi ) · ∏j≠i -xj / ∏j≠i(xi - xj ) 
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Properties of Shamir’s secret sharing

• Perfect secrecy: Any t-1 shares give no information 
about the secret: Pr(secret=s | P(1),…,P(t-1)) = Pr(secret=s). 
(Security is not based on any assumptions.)

• Proof: 
– Let’s get intuition from 2-out-of-n secret sharing
– The polynomial is generated by choosing a random coefficient a and 

defining P(x)= a⋅x+s.
– Suppose that the adversary knows P(x1)=a⋅x1+s.

– For any value of s, the value of a is uniquely defined by P(x1) and s. 
– Namely, ∀s there is one-to-one correspondence between a and P(x1).

– Since a is uniformly distributed, so is the value of P(x1) (any 
assignment to a results in exactly one value of P(x1)).
• Therefore P(x1) does not reveal any information about s.
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Properties of Shamir’s secret sharing

• Perfect secrecy: Any t-1 shares give no information 
about the secret: Pr(secret=s | P(1),…,P(t-1)) = Pr(secret=s). 
(Security is not based on any assumptions.)

• Proof: 
– The polynomial is generated by choosing a random 

polynomial of degree t-1, subject to P(0)=secret.

– Suppose that the adversary knows the shares 
P(x1),…,P(xt-1).

– The values of P(x1),…,P(xt-1) are defined by t-1 linear 
equations of a1,…,at-1, s.
• P(xi) = Σi=1,…,t-1 ( xi ) j aj + s.
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Properties of Shamir’s secret sharing

• Proof (cont.): 
– The values of P(x1),…,P(xt-1) are defined by t-1 linear 

equations of a1,…,at-1, s.
• P(xi) = Σ j=1,…,t-1 ( xi ) j aj + s.

– For any possible value of s, there is a exactly one set of 
values of a1,…,at-1 which gives the values P(x1),…,P(xt-1).
• This set of a1,…,at-1 can be found by solving a linear system 

of equations. 

– Since a1,…,at-1 are uniformly distributed, so are the values 
of P(x1),…,P(xt-1). 
• Therefore P(x1),…,P(xt-1) reveal nothing about s.
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Additional properties of Shamir’s secret sharing

• Ideal size: Each share is the same size as the secret.

• Extendable: Additional shares can be easily added.

• Flexible: different weights can be given to different 
parties by giving them more shares.

• Homomorphic property: Suppose P(1),…,P(n) are 
shares of S, and P’(1),…,P’(n) are shares of S’, then 
P(1)+P’(1),…,P(n)+P’(n) are shares for S+S’.
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General secret sharing

• P is the set of users (say, n users).
• A ∈ {1,2,…,n} is an authorized subset if it is authorized to 

access the secret.
• Γ is the set of authorized subsets.
• For example,

– P = {1,2,3,4}
– Γ = Any set containing one of {  {1,2,4}, {1,3,4,}, {2,3} }
– Not supported by threshold secret sharing

• If A∈Γ and A ⊆ B, then B∈Γ .
• A∈Γ is a minimal authorized set if there is no C ⊆ A such 

that C∈Γ.
• The set of minimal subsets Γ0 is called the basis of Γ.
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Why should we examine general access 
structures?

• Some general access structures can be implemented using 
threshold access structures. 

• But not all access structures can be represented by threshold 
access structures 

• For example, consider the access structure Γ={{1,2},{3,4}}
– Any threshold based secret sharing scheme with threshold t gives 

weights to parties, such that w1+w2≥ t, and w3+w4 ≥ t. 
– Therefore either w1≥ t/2, or w2 ≥ t/2. Suppose that this is w1.
– Similarly either w3≥ t/2, or w4 ≥ t/2. Suppose that this is w3.
– In this case parties 1 and 3 can reveal the secret, since w1+w3≥ t.
– Therefore, this access structure cannot be realized by a threshold 

scheme.
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The monotone circuit construction (Benaloh-Leichter)

• Given Γ construct a circuit C s.t. C(A)=1 iff A∈Γ.
– Γ 0 =  {  {1,2,4}, {1,3,4,}, {2,3} }

• This Boolean circuit can be constructed from OR and AND 
gates, and is monotone. Namely, if C(x)=1, then changing 
bits of x from 0 to 1 doesn’t change the result to 0. 

x1 x2 x3 x4

^ ^ ^

v
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Handling OR gates

x1 x2 x3 x4

^ ^ ^

v
S

SSS

Starting from the output gate and going backwards

An OR  gate is a 
1-out-of-N 
scheme 
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Handling AND gates

x1 x2 x3 x4

^ ^ ^

v
S

SSS

a1 a2S⊕a1⊕a2
b1 S⊕b1 c1

c2 S⊕c1⊕c2

An AND  gate is 
an N-out-of-N 
scheme 
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Handling AND gates

x1 x2 x3 x4

^ ^ ^

v
S

SSS

a1 a2S⊕a1⊕a2
b1 S⊕b1 c1

c2 S⊕c1⊕c2

Final step: each user gets the keys of the 
wires going out from its variable

Proof of security: 
by induction
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A graph based construction

• Represent the access structure by an undirected graph.
• An authorized set corresponds to a path from s to t in 

an undirected graph.
• Γ 0 =  {  {1,2,4}, {1,3,4,}, {2,3} }

s t

1
4

2

3

2 3
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A graph based construction

R

R1 R2

R’

R3

1
4

2

3

2 3

Assign random values to nodes, s.t. R’-R= shared secret 
(R’=R+shared secret)
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A graph based construction

• Assign to edge R1→R2 the value R2-R1

• Give to each user the values associated with its edges

R

R1 R2

R’

R3

1
4

2

3

2 3

R1-R R2-R1
R’-R2

R’-R2

R’-R3
R3-R
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A graph based construction

• Consider the set {1,2,4}

• why can an authorized set reconstruct the secret? Why 
can’t a unauthorized set do that? 

R

R1 R2

R’

R3

1
4

2

3

2 3

R1-R R2-R1
R’-R2

R’-R2

R’-R3
R3-R


