Introduction to Cryptography Lecture 12

Benny Pinkas

- Some practical issues in number theory
- Last week
 - Primality testing
 - Pollard's rho method for factoring

Integer factorization

- The RSA and Rabin cryptosystems use a modulus N
 and are insecure if it is possible to factor N.
- Factorization: given N find all prime factors of N.
- Factoring is the search problem corresponding to the primality testing decision problem.
 - Primality testing is easy
 - What about factoring?

Pollard's Rho method

- Factoring N
- Trivial algorithm: trial division by all integers $< N^{1/2}$.
- Pollard's rho method:
 - $O(N^{1/4})$ computation.
 - O(1) memory.
 - A heuristic algorithm.

Modern factoring algorithms

• The number-theoretic running time function $L_n(a,c)$

$$L_n(a,c) = e^{c(\ln n)^a (\ln \ln n)^{1-a}}$$

- For a=0, the running time is polynomial in ln(n).
- For a=1, the running time is exponential in ln(n).
- For 0<a<1, the running time is subexponential.
- Factoring algorithms
 - Quadratic field sieve: L_n(1/2, 1)
 - General number field sieve: L_n(1/3, 1.9323)
 - Elliptic curve method L_p(1/2, 1.41) (preferable only if p<<sqrt(n))

Modulus size recommendations

- Factoring algorithms are run on massively distributed networks of computers (running in their idle time).
- RSA published a list of factoring challenges.
- A 512 bit challenge was factored in 1999.
- The largest factored number n=pq.
 - 768 bits (RSA-768)
 - Factored on January 7, 2010 using the NFS
- Typical current choices:
 - At least 1024-bit RSA moduli should be used
 - For better security, longer RSA moduli are used
 - For more sensitive applications, key lengths of 2048 bits (or higher) are used

RSA with a modulus with more factors

- The best factoring algorithms:
 - General number field sieve (NFS): L_n(1/3, 1.9323)
 - Elliptic curve method L_p(1/2, 1.41)
- If n=pq, where |p|=|q|, then the NFS is faster.
 - This is true even though $p=n^{1/2}$.
 - Common parameters: |p|=|q|=512 bits
 - Factoring using the NFS is infeasible, but more likely than factoring using the elliptic curve method.

RSA for paranoids

- Suppose N=pq, |p|=500 bits, |q|=4500 bits.
- Factoring is extremely hard.
 - The NFS has to be applied to a much larger modulus. The elliptic curve method is still inefficient.
- Decryption is also very slow. (Encryption is done using a short exponent, so it is pretty efficient.)
- However, in most applications RSA is used to transfer session keys, which are rather short.
- Assume message length is < 500 bits.
 - In the decryption process, it is only required to decrypt the message modulo p. (As, or more, efficient, as a 1024 bit n.)
 - Encryption must use a slightly longer e. Say, e=20.

Discrete log algorithms

- Input: (g,y) in a finite group G. Output: x s.t. $g^x = y$ in G.
- Generic vs. special purpose algorithms: generic algorithms do not exploit the representation of group elements.

Algorithms

- Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running time and memory.
- Pollard's rho method: Generic. |G| must be known. Sqrt(|G|) running time and O(1) memory.
- No generic algorithm can do better than O(sqrt(q)), where q is the largest prime factor of |G|
- Pohlig-Hellman: Generic. |G| and its factorization must be known.
 O(sqrt(q) In q), where q is largest prime factor of |G|.
- Therefore for Z_p^* , p-1 must have a large prime factor.
- Index calculus algorithm for Z*_p: L(1/2, c)
- Number field size for Z_p^* : L(1/3, 1.923)

Elliptic Curves

- The best discrete log algorithm which works even if |G| can be unknown is the baby-step giant-step algorithm.
 - Sqrt(|G|) running time and memory.
- Other (more efficient) algorithms must know |G|.
 - In Z_p^* we know that $|Z_p^*|=p-1$.
- Elliptic curves are groups G where
 - The Diffie-Hellman assumption is assumed to hold, and therefore we can run DH an ElGamal encryption/sigs.
 - |G| is unknown and therefore the best discrete log algorithm us pretty slow
 - It is therefore believed that a small Elliptic Curve group is as secure as larger Z_p* group.
 - Smaller group -> smaller keys and more efficient operations.

Baby-step giant-step DL algorithm

- Let t=sqrt(|G|).
- x can be represented as x=ut-v, where u,v < sqrt(|G|).
- The algorithm:
 - Giant step: compute the pairs $(j, g^{j \cdot t})$, for $0 \le j \le t$. Store in a table keyed by $g^{j \cdot t}$.
 - Baby step: compute $y \cdot g^i$ for i=0,1,2..., until you hit an item $(j, g^{j \cdot t})$ in the table. x = jt i.
- Memory and running time are O(sqrt|G|).

Baby-step giant-step DL algorithm

Secret sharing

Secret Sharing

- 3-out-of-3 secret sharing:
 - Three parties, A, B and C.
 - Secret S.
 - No two parties should know anything about S, but all three together should be able to retrieve it.
- In other words
 - $-A+B+C \Rightarrow S$
 - But,
 - A + B ⇒ S
 - A + C ⇒ S
 - B + C ⇒ S

Secret Sharing

- 3-out-of-3 secret sharing:
- How about the following scheme:
 - Let $S=s_1s_2...s_m$ be the bit representation of S. (m is a multiple of 3)
 - Party A receives $s_1, ..., s_{m/3}$.
 - Party B receives $s_{m/3+1}, \dots, s_{2m/3}$.
 - Party C receives $s_{2m/3+1},...,s_m$.
 - All three parties can recover S.
 - Why doesn't this scheme satisfy the definition of secret sharing?
 - Why does each share need to be as long as the secret?

Secret Sharing

- Solution:
 - Define shares for A,B,C in the following way
 - $-(S_A, S_B, S_C)$ is a random triple, subject to the constraint that
 - $S_A \oplus S_B \oplus S_C = S$
 - or, S_A and S_B are random, and $S_C = S_A \oplus S_B \oplus S_B$.
- What if it is required that any one of the parties should be able to compute S?
 - Set $S_A = S_B = S_C = S$
- What if each pair of the three parties should be able to compute S?

t-out-of-n secret sharing

- Provide shares to n parties, satisfying
 - Recoverability: any t shares enable the reconstruction of the secret.
 - Secrecy: any t-1 shares reveal nothing about the secret.
- We saw 1-out-of-n and n-out-of-n secret sharing.
- Consider 2-out-of-n secret sharing.
 - Define a line which intersects the Y axis at S
 - The shares are points on the line
 - Any two shares define S
 - A single share reveals nothing

t-out-of-n secret sharing

- Fact: Let F be a field. Any d+1 pairs (a_i, b_i) define a unique polynomial P of degree ≤ d, s.t. P(a_i)=b_i. (assuming d < |F|).
- Shamir's secret sharing scheme:
 - Choose a large prime and work in the field Zp.
 - The secret S is an element in the field.
 - Define a polynomial P of degree t-1 by choosing random coefficients a_1, \ldots, a_{t-1} and defining

$$P(x) = a_{t-1}x^{t-1} + ... + a_1x + \underline{S}.$$

– The share of party j is (j, P(j)).

t-out-of-n secret sharing

- Reconstruction of the secret:
 - Assume we have $P(x_1),...,P(x_t)$.
 - Use Lagrange interpolation to compute the unique polynomial of degree ≤ t-1 which agrees with these points.
 - Output the free coefficient of this polynomial.
- Lagrange interpolation

$$-P(x) = \sum_{i=1,i} P(x_i) \cdot L_i(x)$$

- where $L_i(x) = \prod_{i \neq i} (x x_i) / \prod_{i \neq i} (x_i x_i)$
- (Note that $L_i(x_i)=1$, $L_i(x_i)=0$ for $j\neq i$.)

- I.e.,
$$S = \sum_{i=1...t} P(x_i) \cdot \prod_{j \neq i} -x_j / \prod_{j \neq i} (x_i - x_j)$$

Properties of Shamir's secret sharing

 Perfect secrecy: Any t-1 shares give no information about the secret: Pr(secret=s | P(1),...,P(t-1)) = Pr(secret=s). (Security is not based on any assumptions.)

Proof:

- Let's get intuition from 2-out-of-n secret sharing
- The polynomial is generated by choosing a random coefficient a and defining $P(x)=a\cdot x+s$.
- Suppose that the adversary knows $P(x_1)=a \cdot x_1+s$.
- For any value of s, the value of a is uniquely defined by $P(x_1)$ and s.
- Namely, $\forall s$ there is one-to-one correspondence between a and $P(x_1)$.
- Since a is uniformly distributed, so is the value of $P(x_1)$ (any assignment to a results in exactly one value of $P(x_1)$).
 - Therefore $P(x_1)$ does not reveal any information about s.

Properties of Shamir's secret sharing

- Perfect secrecy: Any t-1 shares give no information about the secret: Pr(secret=s | P(1),...,P(t-1)) = Pr(secret=s). (Security is not based on any assumptions.)
- Proof:
 - The polynomial is generated by choosing a random polynomial of degree t-1, subject to P(0)=secret.
 - Suppose that the adversary knows the shares $P(x_1),...,P(x_{t-1})$.
 - The values of $P(x_1),...,P(x_{t-1})$ are defined by t-1 linear equations of $a_1,...,a_{t-1}$, s.
 - $P(x_i) = \sum_{i=1,...,t-1} (x_i)^j a_i + s.$

Properties of Shamir's secret sharing

- Proof (cont.):
 - The values of $P(x_1),...,P(x_{t-1})$ are defined by t-1 linear equations of $a_1,...,a_{t-1}$, s.
 - $P(x_i) = \Sigma_{j=1,...,t-1} (x_i)^j a_j + s.$
 - For any possible value of s, there is a exactly one set of values of a_1, \ldots, a_{t-1} which gives the values $P(x_1), \ldots, P(x_{t-1})$.
 - This set of $a_1, ..., a_{t-1}$ can be found by solving a linear system of equations.
 - Since $a_1, ..., a_{t-1}$ are uniformly distributed, so are the values of $P(x_1), ..., P(x_{t-1})$.
 - Therefore $P(x_1), ..., P(x_{t-1})$ reveal nothing about s.

Additional properties of Shamir's secret sharing

- Ideal size: Each share is the same size as the secret.
- Extendable: Additional shares can be easily added.
- Flexible: different weights can be given to different parties by giving them more shares.
- Homomorphic property: Suppose P(1),...,P(n) are shares of S, and P'(1),...,P'(n) are shares of S', then P(1)+P'(1),...,P(n)+P'(n) are shares for S+S'.

General secret sharing

- P is the set of users (say, n users).
- *A* ∈ {1,2,...,*n*} is an authorized subset if it is authorized to access the secret.
- Γ is the set of authorized subsets.
- For example,
 - $-P = \{1,2,3,4\}$
 - $-\Gamma = Any \text{ set containing one of } \{ \{1,2,4\}, \{1,3,4,\}, \{2,3\} \}$
 - Not supported by threshold secret sharing
- If $A \in \Gamma$ and $A \subseteq B$, then $B \in \Gamma$.
- $A \in \Gamma$ is a minimal authorized set if there is no $C \subseteq A$ such that $C \in \Gamma$.
- The set of minimal subsets Γ_0 is called the basis of Γ .

Why should we examine general access structures?

- Some general access structures can be implemented using threshold access structures.
- But not all access structures can be represented by threshold access structures
- For example, consider the access structure Γ={{1,2},{3,4}}
 - Any threshold based secret sharing scheme with threshold t gives weights to parties, such that $w_1+w_2 \ge t$, and $w_3+w_4 \ge t$.
 - Therefore either $w_1 \ge t/2$, or $w_2 \ge t/2$. Suppose that this is w_1 .
 - Similarly either $w_3 \ge t/2$, or $w_4 \ge t/2$. Suppose that this is w_3 .
 - In this case parties 1 and 3 can reveal the secret, since $w_1+w_3 \ge t$.
 - Therefore, this access structure cannot be realized by a threshold scheme.

The monotone circuit construction (Benaloh-Leichter)

- Given Γ construct a circuit C s.t. C(A)=1 iff A∈ Γ.
 - $-\Gamma_0 = \{ \{1,2,4\}, \{1,3,4,\}, \{2,3\} \}$
- This Boolean circuit can be constructed from OR and AND gates, and is monotone. Namely, if C(x)=1, then changing bits of x from 0 to 1 doesn't change the result to 0.

Handling OR gates

Starting from the output gate and going backwards

Handling AND gates

Handling AND gates

Final step: each user gets the keys of the wires going out from its variable

- Represent the access structure by an undirected graph.
- An authorized set corresponds to a path from s to t in an undirected graph.
- $\Gamma_0 = \{ \{1,2,4\}, \{1,3,4,\}, \{2,3\} \}$

Assign random values to nodes, s.t. *R'-R*= shared secret (*R'=R*+shared secret)

- Assign to edge R1→R2 the value R2-R1
- Give to each user the values associated with its edges

- Consider the set {1,2,4}
- why can an authorized set reconstruct the secret? Why can't a unauthorized set do that?

