Introduction to Cryptography
Lecture 10

Digital signatures,
Public Key Infrastructure (PKI)

Benny Pinkas

2222222222

- Associate a document with an signer (individual)

. Sighature can be verified against a different signature
of the individual

- It Is hard to forge the signature...

- It Is hard to change the document after it was signed...
. Signatures are legally binding

May 22, 2011 Introduction to Cryptography, Benny Pinkas

page

Desiderata for digital signatures

e Associate a document to an signer

A digital signature is attached to a document (rather
then be part of it)

- The signature Is easy to verify but hard to forge
— Signing is done using knowledge of a private key

— Verification is done using a public key associated with the
signer (rather than comparing to an original signature)

— It is Impossible to change even one bit in the signed
document

- A copy of a digitally signed document is as good as the
original sighed document.

- Digital signatures could be legally binding...

Non Repudiation

- Prevent signer from denying that it signed the message

. |.e., the receiver can prove to third parties that the
message was signed by the signer

. This Is different than message authentication (MACS)

— There the receiver is assured that the message was sent
by the receiver and was not changed in transit

— But the receiver cannot prove this to other parties
« MACs: sender and receiver share a secret key K

- If R sees a message MACed with K, it knows that it could
have only been generated by S

- But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R

Private signature key

signing

<
algorithm Signer

Document M

Public verification key

Signhature of M

verification

depends on M valid / invalid

May 22, 2011 Introduction to Cryptography, Benny Pinkas page 5

Diffie-Hellman
“New directions in cryptography” (1976)

- In public key encryption

— The encryption function is a trapdoor permutation f
- Everyone can encrypt = compute f(). (using the public key)

« Only Alice can decrypt = compute f -1(). (using her private key)
. Alice can use f for signing
— Alice signs m by computing s=f-1(m).
— Verification is done by computing m=f(s).

- Intuition: since only Alice can compute f (), forgery is
Infeasible.

- Caveat: none of the established practical signature
schemes following this paradigm is provably secure

- Key generation: (as in RSA)
— Alice picks random p,q. Finds e-d=1 mod (p-1)(g-1).
— Public verification key: (N,e)
— Private signature key: d

. Signing: Given m, Alice computes s=m9 mod N.

- Verification: given m,s and public key (N,e).
— Compute m’ = s® mod N.
— Output “valid” iff m’=m.

May 22, 2011 Introduction to Cryptography, Benny Pinkas page 7

Message lengths

. A technical problem:
— |[m| might be longer than |N|
— m might not be in the domain of f-1()

Solution “hash-and-sign” paradigm:

. Signing: First compute H(m), then compute the
signature f -1(H(M)). Where,

- The range of H() must be contained in the domain of f-1().
— H() must be collision intractable. l.e. it is hard to find (in
polynomial time) messages m, m’ s.t. H(m)=H(m’).
- Verification:
— Compute f(s). Compare to H(m).

. Using H() Is also good for security reasons. See below.

Security of using a hash function

- Intuitively
— Adversary can compute H(), f(), but not H -1(), f -1().
— Can only compute (m,H(m)) by choosing m and computing H().
— Adversary wants to compute (m ,f -1{(H(m))).
— To break signature needs to show s s.t. f(s)=H(m). (E.g. s®=H(m).)

— Failed attack strategy 1.
 Pick s, compute f(s), and look for m s.t. H(m)=f(s).

— Failed attack strategy 2:

« Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’
(which is also a signature of m).

« (If H() is not collision resistant, adversary could find m,m’
s.t. Him) = H(m’).)

— This does not mean that the scheme is secure, only that these attacks
fail.

Security definitions for digital signatures

. Attacks against digital signatures

— Key only attack: the adversary knows only the verification
key

— Known signature attack: in addition, the adversary has
some message/signature pairs.

— Chosen message attack: the adversary can ask for
sighatures of messages of its choice (e.g. attacking a
notary system).

(Seems even more reasonable than chosen message
attacks against encryption.)

Security definitions for digital signatures

- Several levels of success for the adversary

— Existential forgery: the adversary succeeds in forging the
sighature of one message.

— Selective forgery: the adversary succeeds in forging the
signature of one message of its choice.

— Universal forgery: the adversary can forge the signature of
any message.

— Total break: the adversary finds the private signature key.

Different levels of security, against different attacks, are
required for different scenarios.

Example: simple RSA based signatures

- Key generation: (as in RSA)

— Alice picks random p,q. Defines N=pg and finds e-d=1
mod (p-1)(g-1).

— Public verification key: (N,e)

— Private signature key: d

. Signing: Given m, Alice computes s=m9 mod N.
. (suppose that there is no hash function H())

- Verification: given m,s and public key (N,e).
— Compute m’ = s® mod N.
— Output “valid” iff m’=m.

Attacks against plain RSA signatures

. Signature of m is s=m9 mod N.

- Universally forgeable under a chosen message attack:

— Universal forgery: the adversary can forge the signature of
any message of its choice.

— Chosen message attack: the adversary can ask for
signatures of messages of its choice.

- Existentially forgeable under key only attack.

— Existential forgery: succeeds in forging the signature of at
least one message.

— Key only attack: the adversary knows the public
verification key but does not ask any queries.

RSA with a full domain hash function

. Signature is sig(m) = f -1(H(m)) = (H(m))mod N.
— H() i1s such that its range is [1,N]

- The system is no longer homomorphic
— sig(m) - sig(m’) # sig(m-m’)

- Seems hard to generate a random signature

— Computing s® is insufficient, since it is also required to
show m s.t. H(m) = s®.

- Proof of security in the random oracle model — where
H() is modeled as a random function

The random oracle model

 In the real world, an attacker has access to the actual code
that implements a hash function H.

- In our analysis attacker has only "oracle access" to H.

— Attacker sends input x.
— If this is the first query with this value, receives random H(Xx).

— Otherwise, receives the value previously given for H(x).

. Proof strategy:

— If there exists an attacker A that breaks a cryptosystem with random
oracle access, then there exists an attacker B that contradicts the RSA
assumption.

-~ Namely, if we believe in the RSA assumption, then if we use a random
oracle like hash function then the system is secure.

RSA with full domain hash —proof of security

- Claim: Assume that H() is a random function, then if there is
a polynomial-time A() which performs existential forgery with
non-negligible probability, then it is possible to invert the
RSA function, on a random input, with non-negligible
probabillity.

« Proof:
— Our input: y. Our challenge is to compute y9 mod N.

— A() queries H() and a signature oracle sig(), and generates a signhature
s of a message for which it did not query sig().

— Suppose A() made at most t queries to H(), asking for H(m,),...,H(m,).
Suppose also that it always queries H(m) before querying sig(m).

— We will show how to use A() to compute y9 mod N.

RSA with full domain hash —proof of security

- Proof (contd.)

- Let us first assume that A always forges the signature of m, (the last
guery it sends to H()),

— We can decide how to answer A’s queries to H(),sig().
— Answer queries to H() as follows:
« The answer to the t" query (m,) is'y.

- The answer to the j" query (j<t) is (r;)¢, where r; is random.

— Answer to sig(m) queries:
« These are only asked for m; where j<t. Answer with r;. (Indeed sig(m;)=
(H(mj))d =)
- A’s output is (m,,S).
- If sis the correct signature, then we found y¢.
« Otherwise we failed.

— Success probability the same as the success probability of A().

RSA with full domain hash —proof of security

» Proof (without assuming which m; A will try to sign)

-~ We can decide how to answer A’s queries to H(),sig().
— Choose a random i in [1,t], answer queries to H() as follows:
- The answer to the ith query (m)) isy.

- The answer to the jth query (jA) Is ()¢, where r; Is random.

— Answer to sig(m) queries:
« If m=m, j4, then answer with r;. (Indeed sig(m;)= (H(mj))oI =)

« If m=m, then stop. (we failed)

— A’s output is (m,s).
- If m=m; and s is the correct signature, then we found yq.

- Otherwise we failed.
— Success probabillity is 1/t times success probability of A().

El Gamal sighature scheme

. Invented by same person but different than the
encryption scheme. (think why)

- A randomized signature: same message can have
different signatures.

- Based on the hardness of extracting discrete logs

- The DSA (Digital Signature Algorithm/Standard) that
was adopted by NIST in 1994 is a variation of EI-Gamal

signatures.

- Key generation:
- Work in a group Z,” where discrete log is hard.
- Let g be a generator of Z".
— Private key 1 <a<p-1.
— Public key p, g, y=g2.

. Signature: (of M)
— Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
— Compute m=H(M).
- r=g<¥mod p.
« s=(m-r-a)-k!t mod (p-1)
- Sighature is r, s.

May 22, 2011 Introduction to Cryptography, Benny Pinkas page 20

. Signature:
- Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.

- Compute
- r=g<¥mod p.
« s=(m-r-a)-k! mod (p-1)
e L same rin
- Verification: both places!

— Accept If
e 0<r<
« Y- °=g™ mod p

. |t works since y'-rs = (g?)" -(gK)s = g& -gMTa = gm
- Overhead:

— Signature: one (offline) exp. Verification: three exps.

May 22, 2011 Introduction to Cryptography, Benny Pinkas

page 21

El Gamal sighature: comments

- Can work in any finite Abelian group

— The discrete log problem appears to be harder in elliptic
curves over finite fields than in Z,* of the same size.

— Therefore can use smaller groups = shorter signatures.
. Forging: find y"- s =g™ mod p
- E.g., choose random r = gk and either solve dlog of g™/y" to
the base r, or find s=k*(m -loggy - r) (???7?)
- Notes:
— A different k must be used for every signature

— If no hash function is used (i.e. sign M rather than
m=H(M)), existential forgery is possible

— If receiver doesn’t check that O<r<p, adversary can sign
messages of his choice.

Key Infrastructure for symmetric key encryption

- Each user has a shared key with each other user
— A total of n(n-1)/2 keys
— Each user stores n-1 keys

- The KDC shares a symmetric key K, with every user u
- Using this key they can establish a trusted channel

« When u wants to communicate with v

— U sends a request to the KDC
- The KDC
- authenticates u

- generates a key K, to be used by u and v
- sends Enc(K,, K,,) to u, and Enc(KV, K,) toVv

) //

1___._.-—KDC

A

n

May 22, 2011 Introduction to Cryptography, Benny Pinkas

page 24

- Advantages:
— A total of n keys, one key per user.
— easier management of joining and leaving users.

- Disadvantages:
— The KDC can impersonate anyone
-~ The KDC is a single point of failure, for both

* Security
- quality of service

- Multiple copies of the KDC
— More security risks
— But better availability

May 22, 2011 Introduction to Cryptography, Benny Pinkas page 25

Trusting public keys

- Public key technology requires every user to remember
Its private key, and to have access to other users’

public keys

- How can the user verify that a public key PK,
corresponds to user v?
— What can go wrong otherwise?

- A simple solution:

— A trusted public repository of public keys and
corresponding identities

« Doesn’t scale up
« Requires online access per usage of a new public key

Certification Authorities (CA)

- A method to bootstrap trust
— Start by trusting a single party and knowing its public key

— Use this to establish trust with other parties (and associate
them with public keys)

- The Certificate Authority (CA) is trusted party.
— All users have a copy of the public key of the CA

— The CA signs Alice’s digital certificate. A simplified
certificate is of the form (Alice, Alice’s public key).

- When we get Alice’s certificate, we
— Examine the identity in the certificate
— Verify the signature

— Use the public key given in the certificate to
- Encrypt messages to Alice

- Or, verify signatures of Alice

- The certificate can be sent by Alice without any online
Interaction with the CA.

May 22, 2011 Introduction to Cryptography, Benny Pinkas

page 28

Certification Authorities (CA)

« Unlike KDCs, the CA does not have to be online to
provide keys to users

— It can therefore be better secured than a KDC
— The CA does not have to be available all the time
- Users only keep a single public key — of the CA

- The certificates are not secret. They can be stored in a
public place.

- When a user wants to communicate with Alice, It can
get her certificate from either her, the CA, or a public
repository.

- A compromised CA
— can mount active attacks (certifying keys as being Alice’s)
— but it cannot decrypt conversations.

Certification Authorities (CA)

- An example.

— To connect to a secure web site using SSL or TLS, we
send an https:// command

— The web site sends back a public keyD, and a certificate.
— Our browser
- Checks that the certificate belongs to the url we’re visiting

Checks the expiration date

Checks that the certificate is signed by a CA whose public key
Is known to the browser

Checks the signature

If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.

An example of an X.509 certificate

Certificate:
Data:

Ver si on: 1 (0x0)

Serial Nunber: 7829 (0x1e95)

Si gnature Al gorithm md5SWithRSAENcryption

| ssuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
OU=Certification Services Division, CN=Thawte Server
CA/emailAddress=server-certs@thawte.com

Validity

Not Before: Jul9 16:04:02 1998 GMT
Not After : Jul916:04:02 1999 GMT

Subj ect: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,
CN=www.freesoft.org/emailAddress=baccala@freesoft.org

Subj ect Public Key Info:

Publ i c Key Al gorithm rsaEncryption

RSA Public Key: (1024 bit)

Modul us (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1¢:9¢c:5b:66:
70:33:52:14:¢c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6¢e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:¢3:16:31:0d:bf: 7a:c7:47:77:
8f:a0:21:¢7:4¢:d0:16:65:00:¢1:0f:d7:b8:80:€e3:
d2:75:6b:cl:ea:9e:5c:5c:ea:7d:cl:al:10:bc:b8: €8:35:1c:9e:27:52:7e:41.:8f

Exponent : 65537 (0x10001)

Signature Algorithm: md5WithRSAENcryption
93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
92:2e:4a:1h:8h:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:...

Edit View Go Bookmarks Tools Help

Certificate Viewer:"www.bankpoalim.co.il" -
General | Details

This certificate has been verified for the following uses:

SSL Server Certificate

Issued To

Common Name (CN) www.bankpoalim. co.il

Organization (O) Bank Hapoalim Ltd.

Organizational Unit (OU) Internet departement

Serial Number 6C:F8:30:09:89:46:C5:FA: 11:8A:40:CD: 14:6A:EB:A3

Issued By

Common Name (CN) <Not Part Of Certificate >

Organization (O) VeriSign Trust Network

Organizational Unit (OU) VeriSign, Inc.

Validity

Issued On 7/12/2004

Expires On 7/13/2005

Fingerprints

SHA 1 Fingerprint 11:E2:F6:A4:E3:05:F9:96: 7F:E6:09:40: 17:47:A9: 20: 1F:C8:96:9F

MDS5 Fingerprint 6C:E9:C5:CD:40:E1:28:3A:9F:49:5D:D8: 5A:F4:94:EB

[tep | [Qose

igon&dt=924&nls=HE

n... EJGizmodo EJEducated Guesswork [£JThe New York Times ... 3 The Register: Sci/T

HpnY W MYY NN TR
avnh nons”

: VRNV TP @

LN @
: RDD'D @

10|

muywa noamn E
T

.0"av) D92 IRI VYN

b12% MW nmatn 53 &

JO'N2nI 02172

050197 p114p

V"9pY DrTPan
NN PIYNHN DIANN

2"91pY YWay 1Tpan
VIIVIRI DHOMIS TIT

5117 T ItNnn NYMm

0.25% 5w 1y'wa

TPONN DN

DU DY014Y

wwwi.bankhapoalim.co.il/

| @ www.bankpoah

) welcome to Gmail - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

QOO0

=
€

e | hgl:/[gmail.google.com[?dist:htm°/o3A°/n2F%2Fgmail.google.com%Z:gmail

E3Gmail - Inbox (5) JLatest Headlines < Furl It 3 CNET News.com —T... [JSlashdot: News for n... £3Gizmodo [JEducated Guesswork 3 The New York Times ... 3 The Register: Sci/T

A Gc

Gmail
shoulc

- ot] o | —

Certificate Viewer:"gmail.google.com"

General | Details

This certificate has been verified for the following uses:
SSL Server Certificate
Issued To
Common Name (CN) gmail.google.com)
Organization (0)) delete mail and you Gmail Sign In
Organizational Unit (OU) <Not Part Of Certificate >
Serial Number 04ELTF Username: |
Issued By . i
C @ N oy received. Password.l
Organization (O) Equifax [~ Don't ask for my
Organizational Unit (OU) Equifax Secure Certificate Authority password for 2 weeks.
Validity
Signin I

Expires On 3/31/2006

Forgot your password?
Fingerprints
SHA 1 Fingerprint D0:D5:54:CD:CE:59:5E:6C:32:63:0F:91:C1:CC:E2:B0:23:C0:F8: 70

MDS5 Fingerprint D4:A1:6F:0D:E2:0E:8A: 1F:F4:A2:00:56:54:84:C0:56

Learn more about Gmail.
Check out our new features!

A few words about privacy and Gmail.

(e] [[ose

] g - Terms of Use

Transferring data from gmail.google.com...

| @ gmaigoog

- Certificates | Other People's | wWeb Sites 'm .._.,. ._...

w have certificates on file that identify these certificate authorities:

Zertificate Name

| security Device

7 Unizeto Sp. z 0.0.
~Certum CA
7 VISA
GP Root 2
~Visa eCommerce Root
7 valiCert, Inc.
~http: [fwww.valicert.com/
~http: ffwww.valicert.com/
~http: [fwww.valicert.com/
7 VeriSign, Inc.
- Verisign Class 3 Public Primary Certification Authority
~Verisign Class 1 Public Primary Certification Authority
Verisign Class 2 Public Primary Certification Authority
Verisign Class 1 Public Primary Certification Authority - G2
~Verisign Class 2 Public Primary Certification Authority - G2
~Verisign Class 3 Public Primary Certification Authority - G2
Verisign Class 4 Public Primary Certification Authority - G2
VeriSign Class 1 Public Primary Certification Authority - G3
VeriSign Class 2 Public Primary Certification Authority - G3
VeriSign Class 3 Public Primary Certification Authority - G3
~VeriSign Class 4 Public Primary Certification Authority - G3
Class 1 Public Primary OCSP Responder
Class 2 Public Primary OCSP Responder
Class 3 Public Primary OCSP Responder
“VeriSign Time Stamping Authority CA
7 beTRUSTed
beTRUSTed Root CAs
beTRUSTed Root CA-Baltimore Implementation
~beTRUSTed Root CA - Entrust Implementation
~beTRUSTed Root CA - RSA Implementation

Builtin Object Token

Builtin Object Token
Builtin Object Token

Builtin Object Token
Builtin Object Token
Builtin Object Token

Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token

Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token

e T L

4l

ew) (st] (Cinport) (et

Certificates

- A certificate usually contains the following information
— Owner’s name
— Owner’s public key
— Encryption/signature algorithm
— Name of the CA
— Serial number of the certificate
— Expiry date of the certificate

. Your web browser contains the public keys of some
CAs

- A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

An example of an X.509 certificate

Certificate:
Data:

Ver si on: 1 (0x0)

Serial Nunber: 7829 (0x1e95)

Si gnature Al gorithm md5SWithRSAENcryption

| ssuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
OU=Certification Services Division, CN=Thawte Server
CA/emailAddress=server-certs@thawte.com

Validity

Not Before: Jul9 16:04:02 1998 GMT
Not After : Jul916:04:02 1999 GMT

Subj ect: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,
CN=www.freesoft.org/emailAddress=baccala@freesoft.org

Subj ect Public Key Info:

Publ i c Key Al gorithm rsaEncryption

RSA Public Key: (1024 bit)

Modul us (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1¢:9¢c:5b:66:
70:33:52:14:¢c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6¢e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:¢3:16:31:0d:bf: 7a:c7:47:77:
8f:a0:21:¢7:4¢:d0:16:65:00:¢1:0f:d7:b8:80:€e3:
d2:75:6b:cl:ea:9e:5c:5c:ea:7d:cl:al:10:bc:b8: €8:35:1c:9e:27:52:7e:41.:8f

Exponent : 65537 (0x10001)

Signature Algorithm: md5WithRSAENcryption
93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
92:2e:4a:1h:8h:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:...

- The goal: build trust on a global level

- Running a CA:

— If people trust you to vouch for other parties, everyone
needs you.

— A license to print money

- But,
- The CA should limit its responsibilities, buy insurance...

- It should maintain a high level of security
- Bootstrapping: how would everyone get the CA’s public key?

May 22, 2011 Introduction to Cryptography, Benny Pinkas page 38

- Monopoly: a single CA vouches for all public keys
— Mostly suitable for enterprises.

- Monopoly + delegated CAs:
— top level CA can issue special certificates for other CAs

— Certificates of the form
* [(Alice, PKp)caz (CA3, PKcas)carr (CAL, PKearootcal

Root CA

May 22, 2011 Introduction to Cryptography, Benny Pinkas page 39

Bl 0o search

t View Certificate
i General | Detais ~Certfication Path | Trust |
p ; ~Certfication path
s 1) Signature Information & Eaufax Secure Certicats Adhoty
I Message format: S/MIME k @ g‘ W
Signed by: IS Gus.ibm. com i
1 Signature status: Warning: There were problems validating = [
Signing time: 9:20:07 AM 12/24/2004 | .
Digest algorithm: SHA1
Signature algorithm: RSA (1024-bits) E :
. Certificate Information : :':
E Issued by: 1BM Certification Authority : Gewcenicae | (| P2
g Certificate status: Warning: The Certificate Revocation List = ; Certificate status:)
{ This certfficate is OK | <
r D¢
r oK .
5 59 A st persal — i

May 22, 2011 Introduction to Cryptography, Benny Pinkas page 40

Revocation

- Revocation is a key component of PKI

— Each certificate has an expiry date

— But certificates might get stolen, employees might leave
companies, etc.

— Certificates might therefore need to be revoked before
their expiry date

— New problem: before using a certificate we must verify that
It has not been revoked
- Often the most costly aspect of running a large scale public

key infrastructure (PKI)

- How can this be done efficiently?

« (we won’t discuss this issue this year)

