Topics in Cryptography: Homework 3

Submit by June 12, 2011.

Note: If you cannot solve an item which is part of a question, you can still solve other items in this question assuming that the first holds.

- 1. Let p,q be prime numbers, and n=pq. For a number $m \in [0,1,2,...,n-1]$ we can use the representation [a,b], where $a=m \mod p$, and $b=m \mod q$.
 - a. Show that for $m_1, m_2, m \in [0, 1, 2, ..., n-1]$, if the representation of m_1 is $[a_1,b_1]$ and the representation of m_2 is $[a_2,b_2]$, then the representation of $m = m_1 + m_2$ is [a,b], where $a = a_1 + a_2 \mod p$, and $b = b_1 + b_2 \mod q$.
 - b. State and prove a similar claim for multiplication.
 - c. For $x,y \in [0,1,2,...,p-1]$, how is it possible to *efficiently* compute z=x/y mod p? I.e., compute a number $z \in [0,1,2,...,p-1]$ that satisfies $yz=x \mod p$.
 - d. State and prove a claim (similar to (a) and (b)) for division modulo n.
- 2. Let n=pq. Define $\lambda(n)=\text{lcm}(p-1,q-1)$, i.e., $\lambda(n)$ is the least common multiple of p-1 and q-1. (If p=11,q=19, then $\lambda(n)=90$.)
 - a. Show that if $a=1 \mod \lambda(n)$ then for all $m \in \mathbb{Z}_n^*$ it holds that $m^a = m \mod n$. (Hint: use the CRT.)
 - b. Show that in the RSA cryptosystem one can choose e,d to satisfy $ed=1 \mod \lambda(n)$. (Instead of satisfying $ed=1 \mod \phi(n)$.)
- 3. Consider the following public-key encryption scheme. The public key is (G,q,g,h) and the private key is $x=log_gh$, generated exactly as in the El Gamal scheme. In order to encrypt a bit b the sender does the following:
 - a. If b=0 it chooses a random $y \in \mathbb{Z}_q$ and computes $C_1 = g^y$ and $C_2 = h^y$. The ciphertext is (C_1, C_2) .
 - b. If b=1 it chooses independent random $y,z \in Z_q$ and computes $C_1=g^y$ and $C_2=g^z$. The ciphertext is (C_1,C_2) .

Show that it is possible to decrypt efficiently given knowledge of the private key x.

Prove, by showing a reduction, that if the Decisional Diffie-Hellman (DDH) assumption is hard in \mathbb{Z}_q then this encryption scheme is secure against chosen plaintext attacks.