Introduction to Cryptography: Homework 2

Submission date: May 1, 2011.

Solve 3 of the following questions.

1. Let p be a prime number such that $p-1=p_{1}^{e 1} p_{2}{ }^{e 2} \ldots p_{m}^{e m}\left(\forall i, p_{i}\right.$ is prime and $\left.e_{i} \geq 1\right)$. Prove that $g \in Z_{p}{ }^{*}$ is a generator if and only if for all $l \leq i \leq m$ it holds that $g^{(p-1) / p i} \neq 1 \bmod p$.
2. The purpose of this exercise is to find an efficient algorithm for computing discrete logarithms in $Z_{p}{ }^{*}$, where p is prime and $p=2^{n}+1$.
The discrete logarithm problem is the following:
Input: a prime p, a generator g of $Z_{p}{ }^{*}$, and a value y in $Z_{p}{ }^{*}$.
Output: x s.t. $g^{x}=y \bmod p$.
Let $x=b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+\ldots+b_{1} 2^{1}+b_{0}$ be the binary representation of x.
a. Show how to find the least significant bit (b_{0}) of x (given g, y). (7 points)
b. Set $z=y \cdot g^{-b 0}$, and show how to use it to find the bit b_{1}.
(10 points)
Hint: there is an integer i such that $z=g^{4 i+2 \cdot b 1}$. Recall also that $e=p-l=2^{n}$ is the smallest exponent s.t. $g^{e}=1 \bmod p$. Use these facts to find b_{1}.
c. Show how to find the complete binary representation of x. (10 points)
d. Explain why this method is only good for a prime modulo p that satisfies $p=2^{n}+1$.
(6 points)
Note: this algorithm can be generalized for any $Z_{p}{ }^{*}$ for which $p-1=p_{1}{ }^{e l} p_{2}{ }^{e 2} \ldots p_{m}{ }^{e m}$, all p_{i} are small primes, and the factorization of $p-1$ is known. (There is not need to prove this fact.)
3. Let p be a prime number. Suppose that g is a generator of $Z_{p}{ }^{*}$ and let $b=g^{i}$ for an exponent $0 \leq i \leq p-2$.
a. Show that the order of b is $(p-1) / g c d(p-1, i)$. (17 points)
b. Show that the number of generators in $Z_{p}{ }^{*}$ is $\phi(\mathrm{p}-1)$. (16 points)
4. Let g and h be any two generators of $Z_{p}{ }^{*}$. Show that
a. If $x=g^{2 i}$ (that is, the discrete \log of x to the base g is even), then there exists a value j such that $x=h^{2 j}$.
b. If $x=g^{2 i+1}$ (that is, the discrete \log of x to the base g is odd), then there exists a value j such that $x=h^{2 j+1}$.
(20 points)
In your proof do not use the fact that if $x=g^{2 i}$ then x must be a QR and therefore its discrete log to the base of any generator must be even.
