Introduction to Cryptography

Homework 1

Due by March 27, 2011 (in class).

1. (Shannon's theorem)

Consider an encryption scheme where the size of the plaintext space (P) is equal to the size of the ciphertext space (C), and is also equal to the size of the key space (K). (Namely $|P|=|C|=|K|$.) Then the encryption scheme provides perfect secrecy if and only if the following two conditions hold:

- Every key is chosen with equal probability $(1 /|K|)$.
- For every message m in P and every possible ciphertext c in C, there exists a single key k in K, such that $E_{k}(m)=c$.
Prove both directions of the theorem.

2. An encryption scheme works in the following way. Let $1<m<n$ be positive integers whose greatest common divisor is 1 . The key of the encryption scheme is the pair (m, n). Partition the plaintext to segments of n letters each.
Each segment is encrypted separately: Denote the letters of a plaintext segment as $p_{0,}, p_{1}, \ldots, p_{n-1}$. The ciphertext is defined as the following word: $p_{m}, p_{2 m \bmod n}, p_{3 m \bmod }$ $n, \ldots, p_{(n-1) m \bmod n}, p_{n m \bmod n}$. (Note that all letters of the plaintext appear in the ciphertext.)
For example, if $\mathrm{n}=12 ; \mathrm{m}=5$ the plaintext "cryptography" will be encrypted as "ohpargytpurc".
A more advanced encryption scheme (which we will denote as scheme B) works by first applying a monoalphabetic substitution cipher, followed by a applying the encryption scheme described above.
Describe an effective method for breaking long enough ciphertexts, encrypted by this encryption scheme B. You can assume that the plaintext is a text in English. The overhead of your algorithm must be polynomial in the length of the ciphertext. Limit your answer to no more than 8 lines.
3. Let G be a function that maps strings of length n to strings of length $2 n$. Define $\beta(n)=\operatorname{Prob}\left(\right.$ the $(n+1)^{\text {th }}$ bit of $G(x)$ is equal to ' 1 ')
where the probability is taken over random choice of $x \in\{0,1\}^{n}$. Prove that if G is a pseudorandom generator, then there is a negligible function $\varepsilon()$ for which it holds that $\beta(n)<1 / 2+\varepsilon(n)$.
You should give a formal proof, not just an intuitive argument.
Hint: Prove first that it cannot be that $\beta(n)>2 / 3$.
Then show that for any constant $c>0$ it cannot be that $\beta(n)>1 / 2+c$.
Finally show that for any polynomial $p(n)$ there must be an N such that for all $n>N$ it holds that $\beta(n)<1 / 2+1 / p(n)$. This solves the question.
