
Introduction to Cryptography, Benny Pinkas 1

Introduction to Cryptography

Lecture 6

page 1November 22, 2009 Introduction to Cryptography, Benny Pinkas      

Lecture 6

Benny Pinkas



Introduction to Cryptography, Benny Pinkas 2

Data Integrity, Message Authentication

• Risk: an active adversary might change messages 
exchanged between Alice and Bob

Alice Bob

M
M M’

M’
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Eve

• Authentication is orthogonal to secrecy. It is a relevant  
challenge regardless of whether encryption is applied.
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Common Usage of MACs for message authentication 

Alice Bob
k

m, MACk(m)
Is α = MACk(m) ?

α

k

Got you !           
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Eve

Alice Bob
k

m, MACk(m)

Got you !           
α’ ≠ MACk(m’) !

m’,α’

k

does not know k
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Requirements

• Security: The adversary,
– Knows the MAC algorithm (but not K).
– Is given many pairs (mi , MACK(mi)), where the mi values 

might also be chosen by the adversary (chosen plaintext).
– Cannot compute (m, MACK(m)) for any new m (∀i m≠mi).
– The adversary must not be able to compute MAC (m) 
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– The adversary must not be able to compute MACK(m) 
even for a message m which is “meaningless” (since we 
don’t know the context of the attack).

• Efficiency: MAC output must be of fixed length, and as 
short as possible.
– ⇒ The MAC function is not 1-to-1.
– ⇒ An n bit MAC can be broken with prob. of at least 2-n.
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Constructing MACs

• Length of MAC output must be at least n bits, if we do 
not want the cheating probability to be greater than 2-n

• Constructions of MACs
– Based on block ciphers (CBC-MAC)
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or, 
– Based on hash functions

• More efficient

• At the time, encryption technology was controlled (export 
restricted) and it was preferable to use other means when 
possible.
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CBC

• Reminder: CBC encryption
• Plaintext block is xored with previous ciphertext block 

P1 P2 PnIV …
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Ek

C1

Ek

C2

Ek

Cn
…
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CBC MAC

M1

Ek

M2

Ek

Mn

Ek

0...0 …
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• Use IV=0. Adversary does not know k.
• Encrypt M in CBC mode, using the MAC key. Discard 

C1,…,Cn-1 and define MACK(M1,…,Mn)=Cn.

Ek

C1

Ek

C2

Ek

Cn
…

output
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Security of CBC-MAC

• Claim: if EK is pseudo-random then 
– CBC-MAC, applied to fixed length messages,  is a pseudo-

random function, 
– and is therefore a secure MAC (i.e., resilient to forgery).

• We will not prove this claim.
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• But, CBC-MAC is insecure if variable lengths messages 
are allowed
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Security of CBC-MAC

• Insecurity of CBC-MAC when applied to messages of 
variable length:
– Get C1 = CBC-MACK(M1) = EK(0 ⊕ M1)
– Ask for MAC of C1, i.e., C2 = CBC-MACK(C1) = EK(0 ⊕ C1)
– But, EK(C1 ⊕ 0) = EK( EK(0 ⊕ M1) ⊕ 0) = CBC-MACK(M1 | 0)
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• It’s known that CBC-MAC is secure if message space is prefix-free.

• Can you show, for every n,  a collision between two messages of 
lengths 1 and n+1?

M1

Ek

C1

0..0

Ek

C2

0...0M1

Ek

C1

0...0 C1

Ek

C2

0...0
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CBC-MAC for variable length messages

• Solution 1: The first block of the message is set to be 
its length. I.e., to authenticate M1,…,Mn, apply CBC-
MAC to (n,M1,…,Mn).
– Works since now message space is prefix-free.
– Drawback: The message length (n) must be known in 

advance.
“Solution 2”: apply CBC-MAC to (M ,…,M ,n)
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• “Solution 2”: apply CBC-MAC to (M1,…,Mn,n)
– Message length does not have to be known is advance
– But, this scheme is broken (see, M. Bellare, J. Kilian, P. 

Rogaway, The Security of Cipher Block Chaining, 1984)

• Solution 3: (preferable)
– Use a second key K’.
– Compute MACK,K’(M1,…,Mn) = EK’(MACK(M1,…,Mn))
– Essentially the same overhead as CBC-MAC
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Hash functions

• MACs can be constructed based on hash functions.

• A hash function h:X → Y maps long inputs to fixed size 
outputs.  (|X|>|Y|)
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• No secret key. The hash function algorithm is public.

• If |X|>|Y| there are collisions (x≠x’ for which h(x)=h(x’)), 
but it might be hard to find them.
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Security definitions for hash functions

1. Weak collision resistance: for any x∈X, it is hard to find 
x’≠x such that  h(x)=h(x’). (Also known as “universal 
one-way hash”, or “second preimage resistance”).

• In other words, there is no efficient algorithm which is 
given x can find an x’ such that h(x)=h(x’).
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2. Strong collision resistance: it is hard to find any x,x’ for 
which h(x)=h(x’).

• In other words, there is no no efficient algorithm which can 
find a pair x,x’ such that h(x)=h(x’).
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Security definitions for hash functions

• It is easier to find collisions. 
– In other words, under reasonable assumptions it holds that 

if it is possible to achieve security according to definition 
(2) then it is also possible to achieve security according to 
definition(1).  
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definition(1).  
• Therefore strong collision resistance is a stronger 

assumption. 

• Real world hash functions: MD5, SHA-1, SHA-256. 
Hmm..
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The Birthday Phenomenon (Paradox)

• For 23 people chosen at random, the probability that two of 
them have the same birthday is about ½.

• Compare to: The probability that one or more of them has 
the same birthday as Alan Turing is 23/365 (actually, 1-(1-
1/365)23.)
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• More generally, for a random h:X → Z, if we choose about 
|Z|½ elements of X at random (1.17 |Z|½), the probability that 
two of them are mapped to the same image is > ½. 

• Implication: it’s harder to achieve strong collision resistance
– A random function with an n bit output

• Can find x,x’ with h(x)=h(x’) after about 2n/2 tries.

• Can find x≠0 s.t. h(x)=h(0) after about 2n attempts. 
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From collision-resistance for fixed length inputs, 
to collision-resistance for arbitrary input lengths

• Hash function: 
– Input block length is usually 512 bits (|X|=512)
– Output length is at least 160 bits (birthday attacks)

• Extending the domain to arbitrary inputs (Damgard-Merkle)
– Suppose h:{0,1}512 -> {0,1}160

– Input: M=m1…ms,  |mi|=512-160=352.  (what if |M|≠352·i bits?)
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1 s i

– Define: y0=0160.  yi=h(yi-1,mi).  ys+1=h(ys,s).  h(M)=ys+1.
– Why is it secure? What about different length inputs?

m1

0160

h
m2

h
ms

h(M)… h
s
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Proof

• Show that if we can find M≠M’ for which H(M)=H(M’), 
we can find blocks m ≠ m’ for which h(m)=h(m’).

• Case 1: suppose |M|=s, |M’|=s’, and s ≠ s’
– Then, collision: H(M)=h(ys,s) = h(ys’,s’)=H(M’)
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s s’

• Case 2: |M|=|M’|=s
– We know that H(M)=h(ys,s)=h(y’s,s)=H(M’)
– If ys ≠ y’s then we found a collision in h.
– Otherwise, go from i=s-1 to i=1:

• yi+1 = y’i+1 implies h(yi,mi+1) = h(y’I,m’i+1).

• If yi ≠ y’i  or  mi+1 ≠ m’i+1, then we found a collision.

• M ≠ M’ and therefore there is an i for which mi+1 ≠ m’i+1
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The implication of collisions

• Given a hash function with 2n possible outputs. 
Collisions can be found
– after a search of 2n/2 values
– even faster if the function is weak (MD5, SHA-1)

We find x, x’ such that h(x)=h(x’), but we cannot control 
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• We find x, x’ such that h(x)=h(x’), but we cannot control 
the value of x, x’.

• Can we find “meaningful” colliding values x, x’ ?
– The case of pdf files…
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Basing MACs on Hash Functions 

• Hash functions are not keyed. MACK uses a key.
• Best attack should not succeed with prob > max(2-|k|,2-|MAC()|).
• Idea: MAC combines message and a secret key, and hashes 

them with a collision resistant hash function.
– E.g. MACK(m) = h(k,m). (insecure.., given MACK(m) can compute 

MACK(m,|m|,m’), if using the MD construction)
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K

– MACK(m) = h(m,k). (insecure.., regardless of key length, use a 
birthday attack to find m,m’ such that h(m)=h(m’).)

• How should security be proved?:
– Show that if MAC is insecure then so is hash function h.
– Insecurity of MAC: adversary can generate MACK(m) without knowing 

k.
– Insecurity of h: adversary finds collisions (x≠x’, h(x)=h(x’).)
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HMAC

• Input: message m, a key K, and a hash function h.
• HMACK(m) = h( K ⊕ opad, h(K ⊕ ipad, m))

– where ipad, opad are 64 byte long fixed strings
– K is 64 byte long (if shorter, append 0s to get 64 bytes).

• Overhead: the same as that of applying h to m, plus an 
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Overhead: the same as that of applying h to m, plus an 
additional invocation to a short string.

• It was proven [BCK] that if HMAC is broken then either
– h is not collision resistant (even when the initial block is 

random and secret), or
– The output of h is not “unpredcitable” (when the initial 

block is random and secret)
• HMAC is used everywhere (SSL, IPSec).
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Public Key Encryption
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Classical symmetric ciphers

• Alice and Bob share a private key k.
• System is secure as long as k is secret.
• Major problem: generating and distributing k.
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Alice Bob

k k
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Diffie and Hellman: “New Directions in 
Cryptography”, 1976.

• “We stand today on the brink of a revolution in 
cryptography. The development of cheap digital 
hardware has freed it from the design limitations of 
mechanical computing…
…such applications create a need for new types of 
cryptographic systems which minimize the necessity of 
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cryptographic systems which minimize the necessity of 
secure key distribution…
…theoretical developments in information theory and 
computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science.”
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Diffie-Hellman

• Came up with the idea of public key cryptography

Alice Bob

public keyBob secret keyBob

Everyone can learn Bob’s public key and encrypt messages to Bob. 
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Everyone can learn Bob’s public key and encrypt messages to Bob. 
Only Bob knows the decryption key and can decrypt. 

Key distribution is greatly simplified. 


