Introduction to Cryptography

Lecture 5

Benny Pinkas

Feistel Networks

- Encryption:
- Input: $\mathrm{P}=\mathrm{L}_{\mathrm{i}-1}\left|\mathrm{R}_{\mathrm{i}-1} \cdot\right| \mathrm{L}_{\mathrm{i}-1}\left|=\left|\mathrm{R}_{\mathrm{i}-1}\right|\right.$
$-L_{i}=R_{i-1}$
$-R_{i}=L_{i-1} \oplus F\left(K_{i}, R_{i-1}\right)$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).
- The same code/circuit, with keys in reverse order, can be used for decryption.
- Theoretical result [LubRac]: If f is
 a pseudo-random function then a 4 rounds Feistel network gives a pseudo-random permutation

DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
- How many rounds?
- How are the round keys generated?
- What is F ?
- DES (Data Encryption Standard)
- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key

Internals of DES

DES F functions

The S-boxes

- Very careful design (it is now known that random choices for the S-boxes result in weak encryption).
- Each s-box maps 6 bits to 4 bits:
- A 4×16 table of 4 -bit entries.
- Bits 1 and 6 choose the row, and bits 2-5 choose column.
- Each row is a permutation of the values $0,1, \ldots, 15$.
- Therefore, given an output there are exactly 4 options for the input
- Curcial property: Changing one input bit changes at least two output bits \Rightarrow avalanche effect.

Differential Cryptanalysis of DES

DES diagram:

S-boxes

Differential Cryptanalysis [Biham-Shamir 1990]

- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
$-a=b \oplus c$
$-a=$ the bits of b in (a known) permuted order
- Linear relations can be exposed by solving a system of linear equations

Is a Linear F in a Feistel Network secure?

- Suppose $F\left(R_{i-1}, K_{i}\right)=R_{i-1} \oplus K_{i}$
- Namely, F is linear
- Then $\mathrm{R}_{\mathrm{i}}=\mathrm{L}_{\mathrm{i}-1} \oplus \mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$

$$
L_{i}=R_{i-1}
$$

- Write L_{16}, R_{16} as linear functions of L_{0}, R_{0} and K.
- Given $L_{0} R_{0}$ and $L_{16} R_{16}$ Solve and find K .
- F must therefore be non-linear.

- F is the only source of nonlinearity in DES.

DES F functions

Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
- Denote two different plaintexts as P and P^{*}
- Their difference is $\mathrm{dP}=\mathrm{P} \oplus \mathrm{P}^{*}$
- Let X and X^{*} be two intermediate values, for P and P^{*}, respectively, in the encryption process.
- Their difference is $d X=X \oplus X^{*}$
- Namely, dX is always the result of two inputs

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X^{*} are inputs to the same S-box. We can compute their difference $d X=X \oplus X^{*}$.
- $\mathrm{Y}=\mathrm{S}(\mathrm{X})$
- When $d X=0, X=X^{*}$, and therefore $Y=S(X)=S\left(X^{*}\right)=Y^{*}$, and $\mathrm{dY}=0$.
- When $\mathrm{dX} \neq 0, \mathrm{X} \neq \mathrm{X}^{*}$ and we don't know dY for sure, but we can investigate its distribution.
- For example,

Distribution of Y^{\prime} for S1

- dX=110100
- There are $2^{6}=64$ input pairs with this difference, $\{(000000,110100)$, (000001,110101),...\}
- For each pair we can compute the xor of outputs of S1
- E.g., $\mathrm{S} 1(000000)=1110, \mathrm{~S} 1(110100)=1001 . \mathrm{dY}=0111$.
- Table of frequencies of each dY:
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline 0000 & 0001 & 0010 \\ 0 & 8 & 0011 & 0100 & 0101 & 0110 & 0111 \\ \hline 1000 & 6 & 2 & 0 & 0 & 12 \\ \hline 6 & 0 & 001 & 010 \\ 0\end{array}\right)\binom{1017}{0}\binom{100}{0}$

Differential Probabilities

- The probability of $\mathrm{dX} \Rightarrow \mathrm{dY}$ is the probability that a pair of inputs whose xor is dX , results in a pair of outputs whose xor is dY (for a given S-box).
- Namely, for $\mathrm{dX}=110100$ these are the entries in the table divided by 64 .
- Differential cryptanalysis uses entries with large values
$-d X=0 \Rightarrow d Y=0$
- Entries with value 16/64
- (Recall that the outputs of the S-box are uniformly distributed, so the attacker gains a lot by looking at differentials rather than the original values.)

Warmup

Inputs: $\mathrm{L}_{0} \mathrm{R}_{0}, \quad \mathrm{~L}_{0}{ }^{*} \mathrm{R}_{0}{ }^{*}$, s.t. $\mathrm{R}_{0}=\mathrm{R}_{0}{ }^{*}$. Namely, inputs whose xor is $\mathrm{dL}_{0} 0$

3 Round DES

The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

Intermediate differences equal to plaintext/ciphertext differences

Finding K

The actual two inputs to F are known

Output xor of F (i.e., S boxes) is 40004002
\Rightarrow Table enumerates options for the pairs of

Find which K_{3} maps the inputs to an s-box input pair that results in the output pair! inputs to S box

DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if $\mathrm{dL}_{0}=40080000_{x}, \mathrm{dR}_{0}=04000000_{\mathrm{x}}$ Then, with probability $1 / 4, \mathrm{dL}_{3}=04000000_{x}, \mathrm{dR}_{3}=4008000_{x}$
- 8 round DES is broken given 2^{14} chosen plaintexts.
- 16 round DES is broken given 2^{47} chosen plaintexts...

Message Authentication

Data Integrity, Message Authentication

- Risk: an active adversary might change messages exchanged between Alice and Bob

- Authentication is orthogonal to secrecy. It is a relevant challenge regardless of whether encryption is applied.

One Time Pad

- OTP is a perfect cipher, yet provides no authentication
- Plaintext $x_{1} x_{2} \ldots x_{n}$
- Key $\mathrm{k}_{1} \mathrm{k}_{2} \ldots \mathrm{k}_{\mathrm{n}}$
- Ciphertext $\mathrm{c}_{1}=\mathrm{x}_{1} \oplus \mathrm{k}_{1}, \mathrm{c}_{2}=\mathrm{x}_{2} \oplus \mathrm{k}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}} \oplus \mathrm{k}_{\mathrm{n}}$
- Adversary changes, e.g., c_{2} to $1 \oplus \mathrm{c}_{2}$
- User decrypts $1 \oplus x_{2}$
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)
- They were not designed to withstand adversarial behavior.

Definitions

- Scenario: Alice and Bob share a secret key K.
- Authentication algorithm:
- Compute a Message Authentication Code: $\alpha=M A C_{K}(m)$.
- Send m and α
- Verification algorithm: $V_{K}(m, \alpha)$.
- $V_{K}\left(m, M A C_{K}(m)\right)=$ accept.
- For $\alpha \neq M A C_{K}(m), \quad V_{K}(m, \alpha)=$ reject.
- How does $V_{k}(m)$ work?
- Receiver knows k. Receives m and α.
- Receiver uses k to compute $M A C_{K}(m)$.
$-V_{K}(m, \alpha)=1$ iff $M A C_{K}(m)=\alpha$.

Common Usage of MACs for message authentication

Requirements

- Security: The adversary,
- Knows the MAC algorithm (but not K).
- Is given many pairs $\left(m_{i}, M A C_{K}\left(m_{i}\right)\right)$, where the m_{i} values might also be chosen by the adversary (chosen plaintext).
- Cannot compute ($m, M A C_{K}(m)$) for any new m ($\forall i m \neq m_{i}$).
- The adversary must not be able to compute $M A C_{K}(m)$ even for a message m which is "meaningless" (since we don't know the context of the attack).
- Efficiency: MAC output must be of fixed length, and as short as possible.
$-\Rightarrow$ The MAC function is not 1-to-1.
$-\Rightarrow$ An n bit MAC can be broken with prob. of at least 2^{-n}.

Constructing MACs

- Length of MAC output must be at least n bits, if we do not want the cheating probability to be greater than 2^{-n}
- Constructions of MACs
- Based on block ciphers (CBC-MAC)
or,
- Based on hash functions
- More efficient
- At the time, encryption technology was controlled (export restricted) and it was preferable to use other means when possible.

