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Feistel Networks

• Encryption:
• Input: P = L i-1 | R i-1   . |L i-1|=|R i-1|

– L i = R i-1
– R i = L i-1 ⊕ F(K i, R i-1)

• Decryption?

• No matter which function is used 
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• No matter which function is used 
as F, we obtain a permutation 
(i.e., F is reversible even if f is not).

• The same code/circuit, with keys 
in reverse order, can be used for 
decryption.

• Theoretical result [LubRac]: If f is 
a pseudo-random function then a  
4 rounds Feistel network gives a 
pseudo-random permutation
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DES  (Data Encryption Standard)

• A Feistel network encryption algorithm:
– How many rounds?
– How are the round keys generated?
– What is F?
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• DES (Data Encryption Standard)
– Designed by IBM and the NSA, 1977.
– 64 bit input and output
– 56 bit key
– 16 round Feistel network
– Each round key is a 48 bit subset of the key
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Internals of  DES

Initial permutation of bit 
locations:

- not secret
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- not secret

- makes implementations

in software less efficient
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DES F functions

Expansion

page 5November 15, 2009 Introduction to Cryptography, Benny Pinkas      

Expansion

to 48 bits
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The S-boxes

• Very careful design (it is now known that random 
choices for the S-boxes result in weak encryption).

• Each s-box maps 6 bits to 4 bits:
– A 4×16 table of 4-bit entries.
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– Bits 1 and 6 choose the row, and bits 2-5 choose column.
– Each row is a permutation of the values 0,1,…,15.

• Therefore, given an output there are exactly 4 options for the 
input

– Curcial property: Changing one input bit changes at least 
two output bits ⇒ avalanche effect.
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Differential Cryptanalysis of DES

S-boxes

DES diagram:
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Differential Cryptanalysis [Biham-Shamir 1990]

• The first attack to reduce the overhead of breaking DES 
to below exhaustive search

• Very powerful when applied to other encryption 
algorithms

• Depends on the structure of the encryption algorithm
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• Depends on the structure of the encryption algorithm
• Observation: all operations except for the s-boxes are 

linear
• Linear operations:

– a = b ⊕ c
– a = the bits of b in (a known) permuted order

• Linear relations can be exposed by solving a system of 
linear equations
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Is a Linear F in a Feistel Network secure?

• Suppose F(Ri-1,Ki) = Ri-1 ⊕ Ki

– Namely, F is linear

• Then Ri = Li-1 ⊕ Ri-1 ⊕ Ki

Li = Ri-1

• Write L , R as linear functions 
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• Write L16, R16 as linear functions 
of L0, R0 and K. 

– Given L0R0 and L16R16 Solve 
and find K.

• F must therefore be non-linear.

• F is the only source of non-
linearity in DES.
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DES F functions
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Source of
non-linearity
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Differential Cryptanalysis

• The S-boxes are non-linear
• We study the differences between two encryptions of 

two different plaintexts

• Notation:
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– Denote two different plaintexts as P and P*
– Their difference is dP = P ⊕ P*
– Let X and X* be two intermediate values, for P and P*, 

respectively, in the encryption process.
– Their difference is  dX = X ⊕ X*

• Namely, dX is always the result of two inputs
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Differences and S-boxes

• S-box: a function (table) from 6 bit inputs to 4 bit output

• X and X* are inputs to the same S-box. We can 
compute their difference dX = X ⊕ X*.
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• Y = S(X)
• When dX=0, X=X*, and therefore Y=S(X)=S(X*)=Y*, 

and dY=0.
• When dX≠0,  X≠X* and we don’t know dY for sure, but 

we can investigate its distribution.

• For example,
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Distribution of Y’ for S1

• dX=110100
• There are 26=64 input pairs with this difference, { (000000,110100), 

(000001,110101),…}

• For each pair we can compute the xor of outputs of S1
• E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.
• Table of frequencies of each dY:
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0000 0001 0010 0011 0100 0101 0110 0111

0 8 16 6 2 0 0 12

1000 1001 1010 1011 1100 1101 1110 1111

6 0 0 0 0 8 0 6
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Differential Probabilities

• The probability of dX ⇒ dY is the probability that a pair 
of inputs whose xor is dX, results in a pair of outputs 
whose xor is dY (for a given S-box).

• Namely, for dX=110100 these are the entries in the 
table divided by 64.
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• Differential cryptanalysis uses entries with large values
– dX=0 ⇒ dY=0
– Entries with value 16/64
– (Recall that the outputs of the S-box are uniformly 

distributed, so the attacker gains a lot by looking at 
differentials rather than the original values.)
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Warmup

dL0 dR0= 0 (R0=R0*)

Inputs: L0R0,   L0*R0*,    s.t. R0=R0*.  
Namely, inputs whose xor is dL0 0
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F K

dL1 = dR0 = 0 dR1 = dL0
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3 Round DES

dL0 = 01960018 dR0 = 0

F K

F K

The attacker knows the two 
plaintext/ciphertext pairs, 
and therefore also their 
differences
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F K

dL3 =48000000 dR3=4196401A

F K
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Intermediate differences equal to 
plaintext/ciphertext differences

dL0 = 01960018 dR0 = 0

F K

F K

dL1 = 0 dR1 =01960018
Note that here the 
adversary also
knows the actual 
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F K

dL3=48000000 dR3=4196401A

F K

dR2 =48000000dL2 =01960018

dF = 4196401A 
⊕ 01960018
=    40004002

knows the actual 
two values 
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Finding K

K3

R2’ =48000000L2’ =01960018

S boxes

Output xor of F (i.e., 

The actual two inputs

to F are known
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L3’ =48000000 R3’ =4196401A

Output xor of F (i.e., 

S boxes) is 40004002

⇒Table enumerates

options for the pairs of

inputs to S boxFind which K3 maps the inputs to an 

s-box input pair that results in the output pair!
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DES with more than 3 rounds

• Carefully choose pairs of plaintexts with specific xor, and 
determine xor of pairs of intermediate values at various 
rounds. 

• E.g., if dL0=40080000x, dR0=04000000x

Then, with probability ¼, dL3=04000000x, dR3=4008000x
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• 8 round DES is broken given 214 chosen plaintexts.
• 16 round DES is broken given 247 chosen plaintexts...
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Message Authentication
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Message Authentication
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Data Integrity, Message Authentication

• Risk: an active adversary might change messages 
exchanged between Alice and Bob

Alice Bob

M
M M’

M’
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Eve

• Authentication is orthogonal to secrecy. It is a relevant  
challenge regardless of whether encryption is applied.
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One Time Pad

• OTP is a perfect cipher, yet provides no authentication
– Plaintext x1x2…xn

– Key k1k2…kn

– Ciphertext c1=x1⊕k1, c2=x2⊕k2,…,cn=xn⊕kn
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• Adversary changes, e.g., c2 to 1⊕c2

• User decrypts 1⊕x2

• Error-detection codes are insufficient. (For example, 
linear codes can be changed by the adversary, even if 
encrypted.)
– They were not designed to withstand adversarial behavior.
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Definitions

• Scenario: Alice and Bob share a secret key K.
• Authentication algorithm:

– Compute a Message Authentication Code: α = MACK(m).
– Send m and α

• Verification algorithm: VK(m, α).
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• Verification algorithm: VK(m, α).
– VK(m, MACK(m)) = accept.  
– For α ≠ MACK(m),  VK(m, α) = reject.

• How does Vk(m) work?
– Receiver knows k. Receives m and α.
– Receiver uses k to compute MACK(m).
– VK(m, α) = 1 iff  MACK(m)= α.
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Common Usage of MACs for message authentication 

Alice Bob
k

m, MACk(m)
Is α = MACk(m) ?

α

k

Got you !           
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Eve

Alice Bob
k

m, MACk(m)

Got you !           
α’ ≠ MACk(m’) !

m’,α’

k

does not know k
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Requirements

• Security: The adversary,
– Knows the MAC algorithm (but not K).
– Is given many pairs (mi , MACK(mi)), where the mi values 

might also be chosen by the adversary (chosen plaintext).
– Cannot compute (m, MACK(m)) for any new m (∀i m≠mi).
– The adversary must not be able to compute MAC (m) 

page 25November 15, 2009 Introduction to Cryptography, Benny Pinkas      

– The adversary must not be able to compute MACK(m) 
even for a message m which is “meaningless” (since we 
don’t know the context of the attack).

• Efficiency: MAC output must be of fixed length, and as 
short as possible.
– ⇒ The MAC function is not 1-to-1.
– ⇒ An n bit MAC can be broken with prob. of at least 2-n.
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Constructing MACs

• Length of MAC output must be at least n bits, if we do 
not want the cheating probability to be greater than 2-n

• Constructions of MACs
– Based on block ciphers (CBC-MAC)
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or, 
– Based on hash functions

• More efficient

• At the time, encryption technology was controlled (export 
restricted) and it was preferable to use other means when 
possible.


