Introduction to Cryptography

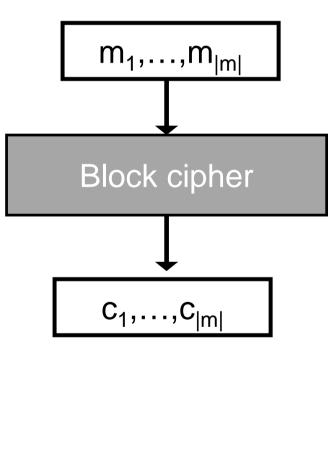
Lecture 4

Benny Pinkas

Introduction to Cryptography, Benny Pinkas

Block Ciphers

- Plaintexts, ciphertexts of fixed length, |m|.
 Usually, |m|=64 or |m|=128 bits.
- The encryption algorithm E_k is a *permutation* over {0,1}^{|m|}, and the decryption D_k is its inverse. (They *are not* permutations of the bit order, but rather of the entire string.)
- Ideally, use a *random* permutation.
 - Can only be implemented using a table with 2^{|m|} entries ☺
- Instead, use a *pseudo-random* permutation, keyed by a key k.
 - Implemented by a computer program whose input is m,k.
- We learned last week how to use a block cipher for encrypting messages longer than the block size.



Pseudo-random functions (PRFs)

- $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$
 - The first input is the key, and once chosen it is kept fixed.
 - For simplicity, assume $F:\{0,1\}^n\times\{0,1\}^n\to\{0,1\}^n$
 - F(k,x) is written as $F_k(x)$
- F is pseudo-random if F_k() (where k is chosen uniformly at random) is indistinguishable (to a polynomial distinguisher D) from a function f chosen at random from all functions mapping {0,1}ⁿ to {0,1}ⁿ
 - There are 2^n choices of F_k , whereas there are $(2^n)^{2^n}$ choices for *f*.
 - The distinguisher D's task:
 - We choose a function G. With probability $\frac{1}{2}$ G is F_k (where $k \in \mathbb{R}$ {0,1}ⁿ), and with probability $\frac{1}{2}$ it is a random function *f*.
 - D can compute $G(x_1), G(x_2), \dots$ for any x_1, x_2, \dots it chooses.
 - D must say if $G=F_k$ or G=f.
 - F_k is pseudo-random if D succeeds with prob $\frac{1}{2}$ +negligible..

Pseudo-random permutations (PRPs)

- F_k(x) is a keyed permutation if for every choice of k, F_k() is one-to-one.
 - Note that in this case $F_k(x)$ has an inverse, namely for every y there is exactly one x for which $F_k(x)=y$.
- $F_k(x)$ is a pseudo-random permutation if
 - It is a keyed permutation
 - It is indistinguishable (to a polynomial distinguisher D) from a permutation *f* chosen at random from all permutations mapping {0,1}ⁿ to {0,1}ⁿ.

 -2^n possible values for F_k

 $-(2^{n})!$ possible values for a random permutation

– It is known how to construct PRPs from PRFs

Block ciphers

- A block cipher is a function F_k(x) with a key k and an |m| bit input x, which has an |m| bit output.
 - $-F_k(x)$ is a keyed permutation
 - When analyzing security we assume it to be a PRP (Pseudo-Random Permutation)
- How can we encrypt plaintexts longer than |m|?
- Different modes of operation were designed for this task.
 Discussed last week.

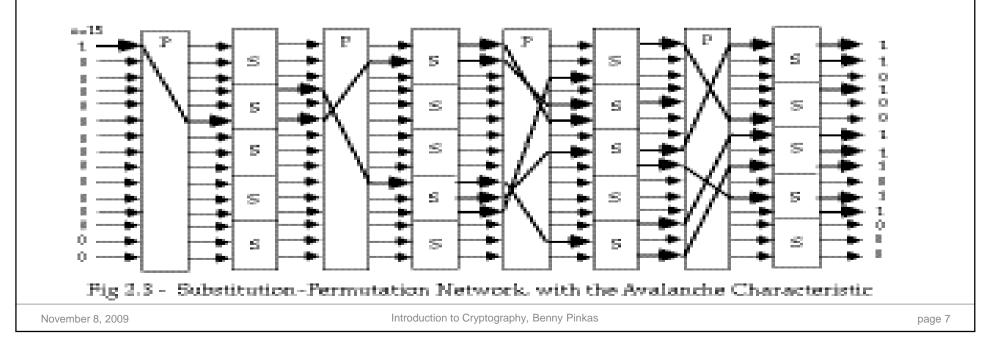
Design of Block Ciphers

- Recall that a construction of a block cipher, which is provably secure without any assumptions, implies P!=NP.
- Design of block ciphers is therefore more an engineering challenge. Based on experience and public scrutiny.
 - Based on combining together simple building blocks, which support the following principles:
 - "Diffusion" (bit shuffling): each intermediate/output bit affected by many input bits
 - "Confusion": avoid structural relationships (and in particular, linear relationships) between bits
- Cascaded (round) design: the encryption algorithm is composed of iterative applications of a simple round

November 8, 2009

Confusion-Diffusion and Substitution-Permutation Networks

- Construct a PRP for a large block using PRPs for small blocks
- Divide the input to small parts, and apply rounds:
 - Feed the parts through PRPs ("confusion")
 - Mix the parts ("diffusion")
 - Repeat
- Why both confusion and diffusion are necessary?
- Design musts: Avalanche effect. Using reversible s-boxes.



AES (Advanced Encryption Standard)

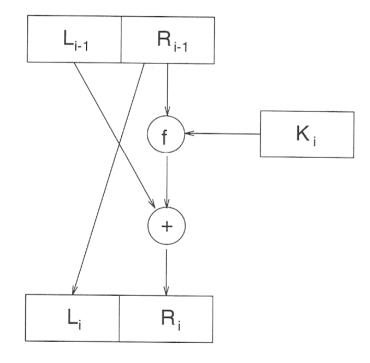
- Design initiated in 1997 by NIST
 - Goals: improve security and software efficiency of DES
 - 15 submissions, several rounds of public analysis
 - The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

Reversible s-boxes

- Substitution-Permutation networks must use reversible s-boxes
 - Allow for easy decryption
- However, we want the block cipher to be "as random as possible"
 - s-boxes need to have some structure to be reversible
 - Better use non-invertible s-boxes
- Enter Feistel networks
 - A round-based block-cipher which uses s-boxes which are not necessarily reversible
 - Namely, building an invertible function (permutation) from a non-invertible function.

Feistel Networks

- Encryption:
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).
- The same code/circuit, with keys in reverse order, can be used for decryption.
- Theoretical result [LubRac]: If f is a pseudo-random function then a 4 rounds Feistel network gives a pseudo-random permutation



DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
 - How many rounds?
 - How are the round keys generated?
 - What is F?
- DES (Data Encryption Standard)
 - Designed by IBM and the NSA, 1977.
 - 64 bit input and output
 - 56 bit key
 - 16 round Feistel network
 - Each round key is a 48 bit subset of the key
- Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).

Security of DES

- Criticized for unpublished design *decisions* (designers did not want to disclose differential cryptanalysis).
- Very secure the best attack in practice is brute force
 - 2006: \$1 million search machine: 30 seconds
 - cost per key: less than \$1
 - •2006: 1000 PCs at night: 1 month
 - Cost per key: essentially 0 (+ some patience)
- Some theoretical attacks were discovered in the 90s:
 - Differential cryptanalysis
 - Linear cryptanalysis: requires about 2⁴⁰ known plaintexts
- The use of DES is not recommend since 2004, but 3-DES is still recommended for use.

Iterated ciphers

- Suppose that E_k is a good cipher, with a key of length k bits and plaintext/ciphertext of length n.
 - The best attack on E_k is a brute force attack with has O(1) plaintext/ciphertext pairs, and goes over all 2^k possible keys searching for the one which results in these pairs.
- New technological advances make it possible to run this brute force exhaustive search attack. What shall we do?
 - Design a new cipher with a longer key.
 - Encrypt messages using *two* keys k_1, k_2 , and the encryption function $E_{k2}(E_{k1}())$. Hoping that the best brute force attack would take $(2^k)^2=2^{2k}$ time.

Iterated ciphers – what can go wrong?

- If encryption is closed under composition, namely for all k_1, k_2 there is a k_3 such that $E_{k2}(E_{k1}())=E_{k3}()$, then we gain nothing.
 - Could just exhaustively search for k_3 , instead of separately searching for k_1 and k_2 .
 - Substitution ciphers definitely have this property (in fact, they are a permutation group and therefore closed under composition).
 - It was suspected that DES is a group under composition.
 This assumption was refuted only in 1992.

Iterated Ciphers - Double DES

- DES is out of date due to brute force attacks on its short key (56 bits)
- Why not apply DES twice with two keys?
 - Double DES: DES $_{k1,k2} = E_{k2}(E_{k1}(m))$
 - Key length: 112 bits



- But, double DES is susceptible to a meet-in-the-middle attack, requiring ≈ 2⁵⁶ operations and storage.
 - Compared to brute a force attack, requiring 2¹¹² operations and O(1) storage.

Meet-in-the-middle attack

- Meet-in-the-middle attack
 - $c = E_{k2}(E_{k1}(m))$ $- D_{k2}(c) = E_{k1}(m)$
- The attack:
 - Input: (*m*,*c*) for which $c = E_{k2}(E_{k1}(m))$
 - For every possible value of k_1 , generate and store $E_{k1}(m)$.
 - For every possible value of k_2 , generate and store $D_{k2}(c)$.
 - Match k_1 and k_2 for which $E_{k1}(m) = D_{k2}(c)$.
 - Might obtain several options for (k_1,k_2) . Check them or repeat the process again with a new (m,c) pair (see next slide)
- The attack is applicable to any iterated cipher. Running time and memory are O(2^{|k|}), where |k| is the key size.

Meet-in-the-middle attack: how many pairs to check?

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given one plaintext-ciphertext pair (m,c)
 - The attack looks for k1,k2, such that $D_{k2}(c) = E_{k1}(m)$
 - The correct values of k1,k2 satisfy this equality
 - There are 2^{112} (actually 2^{112} -1) other values for k_1, k_2 .
 - Each one of these satisfies the equalities with probability 2⁻⁶⁴
 - We therefore expect to have $2^{112-64}=2^{48}$ candidates for k_1, k_2 .
- Suppose that we are given two pairs (m,c), (m',c')
 - The correct values of k1,k2 satisfy both equalities
 - There are 2^{112} (actually 2^{112} -1) other values for k_1, k_2 .
 - Each one of these satisfies the equalities with probability 2⁻¹²⁸
 - We therefore expect to have $2^{112-128} < 1$ false candidates for k_1, k_2 .

Triple DES

- 3DES $_{k1,k2,k3} = E_{k3}(D_{k2}(E_{k1}(m)))$
- Two-key-3DES $_{k1,k2} = E_{k1}(D_{k2}(E_{k1}(m)))$
- Why use Enc(Dec(Enc())) ?
 - Backward compatibility: setting $k_1 = k_2$ is compatible with single key DES
- Two-key-3DES (key length is only 112 bits)
 - There is an attack which requires 2⁵⁶ work and memory, but needs also 2⁵⁶ encryptions of *chosen* plaintexts. Therefore not practical.
 - Without chosen plaintext, best attack needs 2¹¹² work and memory.
 - Why not use 3DES ? There is a meet-in-the-middle attack against three keys with 2¹¹² operations
- 3DES is widely used. Less efficient than DES.