
Introduction to Cryptography, Benny Pinkas 1

Introduction to Cryptography

Lecture 3

page 1November 1, 2009 Introduction to Cryptography, Benny Pinkas

Lecture 3

Benny Pinkas

Introduction to Cryptography, Benny Pinkas 2

Pseudo-random generator

Gs G(s)
seed

(random, |s|=n)

Pseudo-random
generator

output
u

random |u|=2n

Deterministic

|G(s)| = 2n

page 2November 1, 2009 Introduction to Cryptography, Benny Pinkas

Distinguisher

D

????

Deterministic
function of s,
publicly known

∀ D

Introduction to Cryptography, Benny Pinkas 3

Pseudo-random generators

• Pseudo-random generator (PRG)
– G: {0,1}n ⇒ {0,1}m

• A deterministic function, computable in polynomial time.

• It must hold that m > n. Let us assume m=2n.

• The function has only 2n possible outputs.

• Pseudo-random property:
– ∀ polynomial time adversary D, (whose output is 0/1)

if we choose inputs s∈R{0,1}n, u∈R{0,1}m, (in other
words, choose s and u uniformly at random), then
it holds that D(G(s)) is similar to D(u)
namely, | Pr[D(G(s))=1] - | Pr[D(u)=1] | is negligible

Introduction to Cryptography, Benny Pinkas 4

P vs. NP

• If P=NP then PRGs do not exist (why?)

• So their existence can only be conjectured until the
P=NP question is resolved.

Introduction to Cryptography, Benny Pinkas 5

Using a PRG for Encryption

• Replace the one-time-pad with the output of the PRG

• Key: a (short) random key k∈{0,1}|k|.
• Message m= m1,…,m|m|.
• Use a PRG G : {0,1}|k| → {0,1}|m|• Use a PRG G : {0,1} → {0,1}
• Key generation: choose k∈{0,1}|k| uniformly at random.
• Encryption:

– Use the output of the PRG as a one-time pad. Namely,
– Generate G(k) = g1,…,g|m|

– Ciphertext C = g1⊕m1,…, g|m| ⊕m|m|

• This is an example of a stream cipher.

Introduction to Cryptography, Benny Pinkas 6

Security of encryption against polynomial adversaries

• Perfect security (previous equivalent defs):
– (indistinguishability) ∀ m0,m1∈M, ∀c, the probability that c is

an encryption of m0 is equal to the probability that c is an
encryption of m1.

– (semantic security) The distribution of m given the
encryption of m is the same as the a-priori distribution of m. encryption of m is the same as the a-priori distribution of m.

• Security of pseudo-random encryption (equivalent defs):
– (indistinguishability) ∀ m0,m1∈M, no polynomial time

adversary D can distinguish between the encryptions of m0
and of m1. Namely, Pr[D(E(m0))=1] ≈ Pr[D(E(m1))=1)

– (semantic security) ∀ m0,m1∈M, a polynomial time
adversary which is given E(mb), where b∈r{0,1}, succeeds
in finding b with probability ≈ ½.

Introduction to Cryptography, Benny Pinkas 7

Proofs by reduction

• We don’t know how to prove unconditional proofs of
computational security; we must rely on assumptions.
– We can simply assume that the encryption scheme is

secure. This is bad.
– Instead, we will assume that some low-level problem is

hard to solve, and then prove that the cryptosystem is hard to solve, and then prove that the cryptosystem is
secure under this assumption.

– (For example, the assumption might be that a certain
function G is a pseudo-random generator.)

– Advantages of this approach:
• It is easier to design a low-level function.

• There are (very few) “established” assumptions in
cryptography, and people prove the security of cryptosystem
based on these assumptions.

Introduction to Cryptography, Benny Pinkas 8

Using a PRG for Encryption: Security

• The output of a pseudo-random generator is used
instead of a one-time pad.

• Proof of security by reduction:
– The assumption is that the PRG is strong (its output is

indistinguishable from random).
– We want to prove that in this case the encryption is strong

(it satisfies the indistinguishability definition above).

– In other words, prove that if one can break the security of
the encryption (distinguish between encryptions of m0 and
of m1), then it is also possible to break the security of the
PRG (distinguish its output from random).

Introduction to Cryptography, Benny Pinkas 9

Proof of Security

Enc(m0) with

PRG

Enc(m0) with

one-time pad

Enc(m1) with

one-time pad

Enc(m1) with

PRG

Polynomially indistinguishable? Same distribution

(1) (2) (3) (4)

page 9November 1, 2009 Introduction to Cryptography, Benny Pinkas

• Suppose that there is a distinguisher algorithm D’() which distinguishes
between (1) and (2)

• We know that no D’() can distinguish between (3) and (4)

• We are given a string S and need to decide whether it is drawn from a
pseudorandom distribution or from a uniformly random distribution

• We will use S as a pad to encrypt a message.

Introduction to Cryptography, Benny Pinkas 10

Proof of Security

Enc(m0) with

PRG

Enc(m0) with

one-time pad

Enc(m1) with

one-time pad

Enc(m1) with

PRG

Polynomially indistinguishable? Same distribution

(1) (2) (3) (4)

page 10November 1, 2009 Introduction to Cryptography, Benny Pinkas

• Recall: we assume that there is a D’() which always distinguishes between
(1) and (2), and which distinguishes between (3) and (4) with probability ½.

• Choose a random b∈{0,1} and compute mb⊕S. Give the result to D’().

• if S was chosen uniformly, D’() must distinguish (3) from (4). (prob=½)

• if S is pseudorandom, D’() must distinguish (1) from (2). (prob=1)

• If D’() outputs b then declare “pseudorandom”, otherwise declare “random”.

• if S was chosen uniformly we output “pseudorandom” with prob ½.

• if S is pseudorandom we output “pseudorandom” with prob 1.

Introduction to Cryptography, Benny Pinkas 11

Proof of Security

Enc(m0) with

PRG

Enc(m0) with

one-time pad

Enc(m1) with

one-time pad

Enc(m1) with

PRG

Polynomially indistinguishable? Same distribution

(1) (2) (3) (4)

page 11November 1, 2009 Introduction to Cryptography, Benny Pinkas

• Recall: we assume that there is a D’() which always distinguishes between
(1) and (2), and which distinguishes between (3) and (4) with probability ½.

• Choose a random b∈{0,1} and compute mb⊕S. Give the result to D’().

• if S was chosen uniformly, D’() must distinguish (3) from (4). (prob=½)

• if S is pseudorandom, D’() must distinguish (1) from (2). (prob=½+δ)

• If D’() outputs b then declare “pseudorandom”, otherwise declare “random”.

• if S was chosen uniformly we output “pseudorandom” with prob ½.

• if S is pseudorandom we output “pseudorandom” with prob ½+δ.

Introduction to Cryptography, Benny Pinkas 12

Stream ciphers

• Stream ciphers are based on pseudo-random
generators.
– Usually used for encryption in the same way as OTP

• Examples: A5, SEAL, RC4.
– Very fast implementations.

RC4 is popular and secure when used correctly, but it was – RC4 is popular and secure when used correctly, but it was
shown that its first output bytes are biased. This resulted
in breaking WEP encryption in 802.11.

• Some technical issues:
– Stream ciphers require synchronization (for example, if

some packets are lost in transit).

Introduction to Cryptography, Benny Pinkas 13

RC4

• Designed by Ron Rivest. Intellectual property belongs
to RSA Inc.
– Designed in 1987.
– Kept secret until the design was leaked in 1994.

Used in many protocols (SSL, etc.)• Used in many protocols (SSL, etc.)

• Byte oriented operations.
• 8-16 machine operations per output byte.
• First output bytes are biased �

Introduction to Cryptography, Benny Pinkas 14

RC4 initialization

Word size is a single byte.
Input: k0;…;k 255 (if key has fewer bits, pad it to

itself sufficiently many times)

1. j = 0

2. S = 0; S = 1;… ; S = 2552. S0 = 0; S 1 = 1;… ; S 255 = 255

3. Let the key be k 0;…;k 255

4. For i = 0 to 255
• j = (j + S i + k i) mod 256

• Swap S i and S j

(note that S is a permutation of 0,…,255)

Introduction to Cryptography, Benny Pinkas 15

RC4 keying stream generation

An output byte B is generated as follows:

• i = i + 1 mod 256

• j = j + S i mod 256

• Swap S i and S j• Swap S i and S j

• r = S i + S j mod 256

• Output: B = S r

B is xored to the next byte of the plaintext.
(since S is a permutation, we want that B is uniformly distributed)

Bias: The probability that the first two output bytes are 0 is 2-16+2-23

Introduction to Cryptography, Benny Pinkas 16

Block Ciphers

• Plaintexts, ciphertexts of fixed length, |m|.
Usually, |m|=64 or |m|=128 bits.

• The encryption algorithm Ek is a permutation
over {0,1}|m|, and the decryption Dk is its
inverse. (They are not permutations of the
bit order, but rather of the entire string.)

m1,…,m|m|

page 16November 1, 2009 Introduction to Cryptography, Benny Pinkas

• Ideally, use a random permutation.
– Can only be implemented using a table

with 2|m| entries �
• Instead, use a pseudo-random

permutation*, keyed by a key k.
– Implemented by a computer program

whose input is m,k.

– (*) will be explained shortly

Block cipher

c1,…,c|m|

Introduction to Cryptography, Benny Pinkas 17

Block Ciphers

• Modeled as a pseudo-random permutation.

• Encrypt/decrypt whole blocks of bits
– Might provide better encryption by

simultaneously working on a block of bits
– One error in ciphertext affects whole block
– Delay in encryption/decryption

m1,…,m|m|

page 17November 1, 2009 Introduction to Cryptography, Benny Pinkas

– Delay in encryption/decryption
– There was more research on the security

of block ciphers than on the security of
stream ciphers.

• Different modes of operation (for encrypting
longer inputs)

Block cipher

c1,…,c|m|

Introduction to Cryptography, Benny Pinkas 18

Pseudo-random functions

• F : {0,1}* × {0,1}* → {0,1}*

– The first input is the key, and once chosen it is kept fixed.
– For simplicity, assume F : {0,1}n × {0,1}n → {0,1}n

– F(k,x) is written as Fk(x)

• F is pseudo-random if Fk() (where k is chosen uniformly at random) is • F is pseudo-random if Fk() (where k is chosen uniformly at random) is
indistinguishable (to a polynomial distinguisher D) from a function f
chosen at random from all functions mapping {0,1}n to {0,1}n

– There are 2n choices of Fk, whereas there are (2n)2n choices for f.
– The distinguisher D’s task:

• We choose a function G. With probability ½ G is Fk (where k ∈R
{0,1}n), and with probability ½ it is a random function f.

• D can compute G(x1),G(x2),… for any x1,x2,… it chooses.

• D must say if G=Fk or G=f.

• Fk is pseudo-random if D succeeds with prob ½+negligible..

Introduction to Cryptography, Benny Pinkas 19

Pseudo-random permutations

• Fk(x) is a keyed permutation if for every choice of k,
Fk() is one-to-one.
– Note that in this case Fk(x) has an inverse, namely for

every y there is exactly one x for which Fk(x)=y.

• F (x) is a pseudo-random permutation if• Fk(x) is a pseudo-random permutation if
– It is a keyed permutation
– It is indistinguishable (to a polynomial distinguisher D) from a

permutation f chosen at random from all permutations
mapping {0,1}n to {0,1}n

.
– 2n possible values for Fk

– (2n)! possible values for a random permutation

Introduction to Cryptography, Benny Pinkas 20

Block ciphers

• A block cipher is a function Fk(x) of a key k and an |m| bit
input x, which has an |m| bit output.
– Fk(x) is a keyed permutation

• How can we encrypt plaintexts longer than |m|?

• Different modes of operation were designed for this task.

Introduction to Cryptography, Benny Pinkas 21

ECB Encryption Mode (Electronic Code Book)

P1 P2 P3

page 21November 1, 2009 Introduction to Cryptography, Benny Pinkas

Ek

C1

Ek

C2

Ek

C3

Namely, encrypt each plaintext block separately.

Introduction to Cryptography, Benny Pinkas 22

Properties of ECB

• Simple and efficient ☺
• Parallel implementation is possible ☺
• Does not conceal plaintext patterns �

– Enc(P1, P2, P1, P3)– Enc(P1, P2, P1, P3)

• Active attacks are easy � (plaintext can be easily
manipulated by removing, repeating, or interchanging
blocks).

Introduction to Cryptography, Benny Pinkas 23

Encrypting bitmap images in ECB mode

original encrypted using
ECB mode

encrypted using
a secure mode

Introduction to Cryptography, Benny Pinkas 24

CBC Encryption Mode (Cipher Block Chaining)

P1

Ek

P2

Ek

P3

Ek

IV

page 24November 1, 2009 Introduction to Cryptography, Benny Pinkas

Ek

C1

Ek

C2

Ek

C3

Previous ciphertext is XORed with current plaintext before
encrypting current block.
An initialization vector IV is used as a “seed” for the process.
IV can be transmitted in the clear (unencrypted).

Introduction to Cryptography, Benny Pinkas 25

CBC Mode

P1

Ek

C1

P2

Ek

C2

P3

Ek

C3

IVEncryption:

C1 C2 C3

P1

Dk

C1

P2

Dk

C2

P3

Dk

C3

IVDecryption:

Introduction to Cryptography, Benny Pinkas 26

Properties of CBC

• Asynchronous: the receiver can start decrypting from
any block in the ciphertext. ☺

• Errors in one ciphertext block propagate to the
decryption of the next block (but that’s it). ☺

• Conceals plaintext patterns (same block ⇒ different
ciphertext blocks) ☺ciphertext blocks) ☺

– If IV is chosen at random, and EK is a pseudo-random
permutation, CBC provides chosen-plaintext security.

– But if IV is fixed, CBC does not even hide not common
prefixes.

• No parallel implementation is known �
• Plaintext cannot be easily manipulated ☺
• Standard in most systems: SSL, IPSec, etc.

Introduction to Cryptography, Benny Pinkas 27

OFB Mode (Output FeedBack)

IV Ek Ek Ek

P1 P2 P3

page 27November 1, 2009 Introduction to Cryptography, Benny Pinkas

• An initialization vector IV is used as a “seed” for generating a
sequence of “pad” blocks

• Ek(IV), Ek(Ek(IV)), Ek(Ek(Ek(IV))),…
• Essentially a stream cipher.
• IV can be sent in the clear. Must never be repeated.

C1 C2 C3

Introduction to Cryptography, Benny Pinkas 28

Properties of OFB

• Essentially implements a synchronous stream cipher. I.e., the two
parties must know s0 and the current bit position.
– A block cipher can be used instead of a PRG.
– The parties must synchronize the location they are

encrypting/decrypting. �

Conceals plaintext patterns. If IV is chosen at random, and E is a • Conceals plaintext patterns. If IV is chosen at random, and EK is a
pseudo-random permutation, CBC provides chosen-plaintext
security. ☺

• Errors in ciphertext do not propagate ☺
• Implementation:

– Pre-processing is possible ☺
– No parallel implementation is known �

• Active attacks (by manipulating the plaintext) are possible �

Introduction to Cryptography, Benny Pinkas 29

CTR (counter) Encryption Mode

IV

Ek

IV+1

Ek

IV+2

Ek

P1 P2 P3

IV is selected
as a random
value

page 29November 1, 2009 Introduction to Cryptography, Benny Pinkas

Ek Ek Ek

C1 C2 C3

value

• easy parallel
implementation

• random access

• preprocessing

