Introduction to Cryptography Lecture 12

Public Key Infrastructure (PKI), secret sharing

Benny Pinkas

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Trusting public keys

- Public key technology requires every user to remember its private key, and to have access to other users' public keys
- How can the user verify that a public key PK_v corresponds to user v?
 - What can go wrong otherwise?
- A simple solution:
 - A trusted public repository of public keys and corresponding identities
 - · Doesn't scale up
 - Requires online access per usage of a new public key

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

- A method to bootstrap trust
 - Start by trusting a single party and knowing its public key
 - Use this to establish trust with other parties (and associate them with public keys)
- The Certificate Authority (CA) is trusted party.
 - All users have a copy of the public key of the CA
 - The CA signs Alice's digital certificate. A simplified certificate is of the form (Alice, Alice's public key).

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

- · When we get Alice's certificate, we
 - Examine the identity in the certificate
 - Verify the signature
 - Use the public key given in the certificate to
 - Encrypt messages to Alice
 - Or, verify signatures of Alice
- The certificate can be sent by Alice without any online interaction with the CA.

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Certificates

- A certificate usually contains the following information
 - Owner's name
 - Owner's public key
 - Encryption/signature algorithm
 - Name of the CA
 - Serial number of the certificate
 - Expiry date of the certificate
 - **–** ...
- Your web browser contains the public keys of some CAs
- A web site identifies itself by presenting a certificate which is signed by a chain starting at one of these CAs

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

age 5

Certification Authorities (CA)

- Unlike KDCs, the CA does not have to be online to provide keys to users
 - It can therefore be better secured than a KDC
 - The CA does not have to be available all the time
- Users only keep a single public key of the CA
- The certificates are not secret. They can be stored in a public place.
- When a user wants to communicate with Alice, it can get her certificate from either her, the CA, or a public repository.
- A compromised CA
 - can mount active attacks (certifying keys as being Alice's)
 - but it cannot decrypt conversations.

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

age 6

Certificates in Internet browsing

- Our browser can identify web sites if their certificates are signed by certificate authorities which are trusted by the browser.
- Last time I counted, Firefox listed more than 70 certificate authorities which it trusts.

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Certificates

- A certificate usually contains the following information
 - Owner's name
 - Owner's public key
 - Encryption/signature algorithm
 - Name of the CA
 - Serial number of the certificate
 - Expiry date of the certificate
 - **–** ...
- Your web browser contains the public keys of some CAs
- A web site identifies itself by presenting a certificate which is signed by a chain starting at one of these CAs

April 15, 2008

Introduction to Cryptography, Benny Pinkas

An example of an X.509 certificate

```
Certificate:
Data:
  Version: 1 (0x0)
   Serial Number: 7829 (0x1e95)
  Signature Algorithm: md5WithRSAEncryption
  Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
     OU=Certification Services Division, CN=Thawte Server
     CA/emailAddress=server-certs@thawte.com
  Validity
        Not Before: Jul 9 16:04:02 1998 GMT
        Not After: Jul 9 16:04:02 1999 GMT
  Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,
     CN=www.freesoft.org/emailAddress=baccala@freesoft.org
   Subject Public Key Info:
        Public Key Algorithm: rsaEncryption
        RSA Public Key: (1024 bit)
        Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
          33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
          66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
          70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
         16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
          c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
          8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
         d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f
        Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption
   93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
     92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:...
```

Public Key Infrastructure (PKI)

- The goal: build trust on a global level
- Running a CA:
 - If people trust you to vouch for other parties, everyone needs you.
 - A license to print money
 - But,
 - The CA should limit its responsibilities, buy insurance...
 - It should maintain a high level of security
 - Bootstrapping: how would everyone get the CA's public key?

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

- Monopoly: a single CA vouches for all public keys
 - Mostly suitable for enterprises.
- Monopoly + delegated CAs:
 - top level CA can issue *special* certificates for other CAs
 - Certificates of the form
 - [(Alice, PK_A)_{CA3}, (CA3, PK_{CA3})_{CA1}, (CA1, PK_{CA1})_{ROOT-CA}]

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Revocation

- Revocation is a key component of PKI
 - Each certificate has an expiry date
 - But certificates might get stolen, employees might leave companies, etc.
 - Certificates might therefore need to be revoked before their expiry date
 - New problem: before using a certificate we must verify that it has not been revoked
 - Often the most costly aspect of running a large scale public key infrastructure (PKI)
 - How can this be done efficiently?
 - (we won't discuss this issue this year)

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

SSL/TLS

- General structure of secure HTTP connections
 - To connect to a secure web site using SSL or TLS, we send an https:// command
 - The web site sends back a public key⁽¹⁾, and a certificate.
 - Our browser
 - Checks that the certificate belongs to the url we're visiting
 - Checks the expiration date
 - Checks that the certificate is signed by a CA whose public key is known to the browser
 - Checks the signature
 - If everything is fine, it chooses a session key and sends it to the server encrypted with RSA using the server's public key

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

⁽¹⁾ This is a very simplified version of the actual protocol.

SSL/TLS

- SSL (Secure Sockets Layer)
 - SSL v2
 - Released in 1995 with Netscape 1.1
 - A flaw found in the key generation algorithm
 - SSL v3
 - Improved, released in 1996
 - Public design process
- TLS (Transport Layer Security)
 - IETF standard, RFC 2246
- Common browsers support all these protocols

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

SSL Protocol Stack

- SSL/TLS operates over TCP, which ensures reliable transport.
- Supports any application protocol (usually used with http).

SSL Handshake Protocol	SSL Change Cipher Spec	SSL Alert Protocol	НТТР	Telnet	•••
SSL Record Protocol					
TCP					
IP					

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

SSL/TLS Overview

- Handshake Protocol establishes a session
 - Agreement on algorithms and security parameters
 - Identity authentication
 - Agreement on a key
 - Report error conditions to each other
- Record Protocol Secures the transferred data
 - Message encryption and authentication
- Alert Protocol Error notification (including "fatal" errors).
- Change Cipher Protocol Activates the pending crypto suite

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Simplified SSL Handshake

Server Client I want to talk, ciphers I support, R_C Certificate (PK_{Server}), cipher I choose, R_S $\{S\}_{PKserver}$, {keyed hash of handshake message} compute compute $K = f(S,R_C,R_S)$ {keyed hash of handshake message} $K = f(\hat{S}, R_C, R_S)$ Data protected by keys derived from *K* Introduction to Cryptography, Benny Pinkas Januray 17, 2010

A typical run of a TLS protocol

- $C \Rightarrow S$
 - ClientHello.protocol.version = "TLS version 1.0"
 - ClientHello.random = T_C , N_C
 - ClientHello.session_id = "NULL"
 - ClientHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
 - ClientHello.compression_method = "NULL"
- $S \Rightarrow C$
 - ServerHello.protocol.version = "TLS version 1.0"
 - ServerHello.random = T_S, N_S
 - ServerHello.session_id = "1234"
 - ServerHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
 - ServerHello.compression_method = "NULL"
 - ServerCertificate = pointer to server's certificate
 - ServerHelloDone

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Some additional issues

- More on $S \Rightarrow C$
 - The ServerHello message can also contain Certificate Request Message
 - I.e., server may request client to send its certificate
 - Two fields: certificate type and acceptable CAs
- Negotiating crypto suites
 - The crypto suite defines the encryption and authentication algorithms and the key lengths to be used.
 - ~30 predefined standard crypto suites
 - Selection (SSL v3): Client proposes a set of suites. Server selects one.

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Key generation

- Key computation:
 - The key is generated in two steps:
 - pre-master secret S is exchanged during handshake
 - master secret K is a 48 byte value calculated using premaster secret and the random nonces
- Session vs. Connection: a session is relatively long lived. Multiple TCP connections can be supported under the same SSL/TSL connection.
- For each connection: 6 keys are generated from the master secret K and from the nonces. (For each direction: encryption key, authentication key, IV.)

Januray 17, 2010

Introduction to Cryptography, Benny Pinkas

Secret Sharing

- 3-out-of-3 secret sharing:
 - Three parties, A, B and C.
 - Secret S.
 - No two parties should know anything about S, but all three together should be able to retrieve it.
- In other words
 - $-A+B+C \Rightarrow S$
 - But,
 - A + B ⇒ S
 - A + C \Rightarrow S
 - B + C ⇒ S

March 14. 2008

Topics in Cryptography, Benny Pinkas

Secret Sharing

- 3-out-of-3 secret sharing:
- How about the following scheme:
 - Let $S=s_1s_2...s_m$ be the bit representation of S. (m is a multiple of 3)
 - Party A receives $s_1, ..., s_{m/3}$.
 - Party B receives $s_{m/3+1},...,s_{2m/3}$.
 - Party C receives $s_{2m/3+1},...,s_m$.
 - All three parties can recover S.
 - Why doesn't this scheme satisfy the definition of secret sharing?
 - Why does each share need to be as long as the secret?

March 14. 2008

Topics in Cryptography, Benny Pinkas

Secret Sharing

- Solution:
 - Define shares for A,B,C in the following way
 - $-(S_A, S_B, S_C)$ is a random triple, subject to the constraint that
 - $S_A \oplus S_B \oplus S_C = S$
 - or, S_A and S_B are random, and $S_C = S_A \oplus S_B \oplus S$.
- What if it is required that any one of the parties should be able to compute S?
 - Set $S_A = S_B = S_C = S$
- What if each pair of the three parties should be able to compute S?

March 14. 2008

Topics in Cryptography, Benny Pinkas

t-out-of-n secret sharing

- Provide shares to n parties, satisfying
 - Recoverability: any t shares enable the reconstruction of the secret.
 - Secrecy: any t-1 shares reveal nothing about the secret.
- We saw 1-out-of-n and n-out-of-n secret sharing.
- Consider 2-out-of-n secret sharing.
 - Define a line which intersects the Y axis at S
 - The shares are points on the line
 - Any two shares define S
 - A single share reveals nothing

March 14. 2008

Topics in Cryptography, Benny Pinkas

t-out-of-n secret sharing

- Fact: Let F be a field. Any d+1 pairs (a_i, b_i) define a unique polynomial P of degree ≤ d, s.t. P(a_i)=b_i. (assuming d < |F|).
- Shamir's secret sharing scheme:
 - Choose a large prime and work in the field Zp.
 - The secret S is an element in the field.
 - Define a polynomial P of degree t-1 by choosing random coefficients a_1, \ldots, a_{t-1} and defining $P(x) = a_{t-1}x^{t-1} + \ldots + a_1x + S$.
 - The share of party j is (j, P(j)).

March 14. 2008

Topics in Cryptography, Benny Pinkas

t-out-of-n secret sharing

- Reconstruction of the secret:
 - Assume we have $P(x_1),...,P(x_t)$.
 - Use Lagrange interpolation to compute the unique polynomial of degree ≤ t-1 which agrees with these points.
 - Output the free coefficient of this polynomial.
- Lagrange interpolation

$$-P(x) = \sum_{i=1..t} P(x_i) \cdot L_i(x)$$

- where
$$L_i(x) = \prod_{j \neq i} (x - x_j) / \prod_{j \neq i} (x_i - x_j)$$

- (Note that
$$L_i(x_i)=1$$
, $L_i(x_j)=0$ for $j\neq i$.)

- I.e.,
$$S = \sum_{i=1..t} P(x_i) \cdot \prod_{j \neq i} x_j / \prod_{j \neq i} (x_i - x_j)$$

March 14. 2008

Topics in Cryptography, Benny Pinkas

Properties of Shamir's secret sharing

- Perfect secrecy: Any t-1 shares give no information about the secret: Pr(secret=s | P(1),...,P(t-1)) = Pr(secret=s). (Security is not based on any assumptions.)
- Proof:
 - Let's get intuition from 2-out-of-n secret sharing
 - The polynomial is generated by choosing a random coefficient a and defining $P(x)=a\cdot x+s$.
 - Suppose that the adversary knows $P(x_1)=a \cdot x_1+s$.
 - For any value of s, the value of a is uniquely defined by $P(x_1)$ and s.
 - Namely, there is a one-to-one correspondence between s and a.
 - Since a is uniformly distributed, so is the value of $P(x_1)$ (any assignment to a results in exactly one value of $P(x_1)$).
 - Therefore $P(x_1)$ does not reveal any information about s.

March 14. 2008

Topics in Cryptography, Benny Pinkas

Properties of Shamir's secret sharing

- Perfect secrecy: Any t-1 shares give no information about the secret: Pr(secret=s | P(1),...,P(t-1)) = Pr(secret=s). (Security is not based on any assumptions.)
- Proof:
 - The polynomial is generated by choosing a random polynomial of degree t-1, subject to P(0)=secret.
 - Suppose that the adversary knows the shares $P(x_1),...,P(x_{t-1})$.
 - The values of $P(x_1),...,P(x_{t-1})$ are defined by t-1 linear equations of $a_1,...,a_{t-1}$, s.
 - $P(x_i) = \Sigma_{i=1,...,t-1} (x_i)^j a_j + s.$

March 14. 2008

Topics in Cryptography, Benny Pinkas

Properties of Shamir's secret sharing

- Proof (cont.):
 - The values of $P(x_1),...,P(x_{t-1})$ are defined by t-1 linear equations of $a_1,...,a_{t-1}$, s.
 - $P(x_i) = \sum_{j=1,...,t-1} (x_i)^j a_j + s.$
 - For any possible value of s, there is a exactly one set of values of a_1, \ldots, a_{t-1} which gives the values $P(x_1), \ldots, P(x_{t-1})$.
 - This set of $a_1, ..., a_{t-1}$ can be found by solving a linear system of equations.
 - Since $a_1, ..., a_{t-1}$ are uniformly distributed, so are the values of $P(x_1), ..., P(x_{t-1})$.
 - Therefore $P(x_1),...,P(x_{t-1})$ reveal nothing about s.

March 14. 2008

Topics in Cryptography, Benny Pinkas

Additional properties of Shamir's secret sharing

- Ideal size: Each share is the same size as the secret.
- Extendable: Additional shares can be easily added.
- Flexible: different weights can be given to different parties by giving them more shares.
- Homomorphic property: Suppose P(1),...,P(n) are shares of S, and P'(1),...,P'(n) are shares of S', then P(1)+P'(1),...,P(n)+P'(n) are shares for S+S'.

March 14. 2008

Topics in Cryptography, Benny Pinkas

General secret sharing

- P is the set of users (say, n users).
- $A \in \{1,2,...,n\}$ is an authorized subset if it is authorized to access the secret.
- Γ is the set of authorized subsets.
- For example,
 - $-P = \{1,2,3,4\}$
 - $-\Gamma = Any \ set \ containing \ one \ of \ \{\ \{1,2,4\},\ \{1,3,4,\},\ \{2,3\}\ \}$
 - Not supported by threshold secret sharing
- If $A \in \Gamma$ and $A \subseteq B$, then $B \in \Gamma$.
- $A \in \Gamma$ is a minimal authorized set if there is no $C \subseteq A$ such that $C \in \Gamma$.
- The set of minimal subsets Γ_0 is called the basis of Γ .

March 14. 2008

Topics in Cryptography, Benny Pinkas

Why should we examine general access structures?

- Some access structures can be implemented using threshold access structures.
- But not all access structures can be represented by threshold access structures
- For example, consider the access structure $\Gamma = \{\{1,2\},\{3,4\}\}$
 - Any threshold based secret sharing scheme with threshold t gives weights to parties, such that $w_1+w_2 \ge t$, and $w_3+w_4 \ge t$.
 - Therefore either $w_1 \ge t/2$, or $w_2 \ge t/2$. Suppose that this is w_1 .
 - Similarly either $w_3 \ge t/2$, or $w_4 \ge t/2$. Suppose that this is w_3 .
 - In this case parties 1 and 3 can reveal the secret, since $w_1+w_3 \ge t$.
 - Therefore, this access structure cannot be realized by a threshold scheme.

March 14. 2008

Topics in Cryptography, Benny Pinkas

The monotone circuit construction (Benaloh-Leichter)

- Given Γ construct a circuit C s.t. C(A)=1 iff $A \in \Gamma$.
 - $\Gamma_0 = \{ \{1,2,4\}, \{1,3,4,\}, \{2,3\} \}$
- This Boolean circuit can be constructed from OR and AND gates, and is *monotone*. Namely, if C(x)=1, then changing bits of x from 0 to 1 doesn't change the result to 0.

March 14. 2008

Topics in Cryptography, Benny Pinkas

Handling OR gates

Starting from the output gate and going backwards

March 14. 2008

Topics in Cryptography, Benny Pinkas

Handling AND gates

March 14. 2008

Topics in Cryptography, Benny Pinkas

Handling AND gates

Final step: each user gets the keys of the wires going out from its variable

March 14. 2008

Topics in Cryptography, Benny Pinkas

- Represent the access structure by an undirected graph.
- An authorized set corresponds to a path from s to t in an undirected graph.
- $\Gamma_0 = \{ \{1,2,4\}, \{1,3,4,\}, \{2,3\} \}$

March 14. 2008

Topics in Cryptography, Benny Pinkas

Assign random values to nodes, s.t. *R'-R*= shared secret (*R'=R*+shared secret)

March 14. 2008

Topics in Cryptography, Benny Pinkas

- Assign to edge R1→R2 the value R2-R1
- Give to each user the values associated with its edges

March 14. 2008

Topics in Cryptography, Benny Pinkas

- Consider the set {1,2,4}
- why can an authorized set reconstruct the secret? Why can't a unauthorized set do that?

March 14. 2008

Topics in Cryptography, Benny Pinkas