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Trusting public keys

• Public key technology requires every user to remember 
its private key, and to have access to other users’ 
public keys

• How can the user verify that a public key PKv 
corresponds to user v?
– What can go wrong otherwise?
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– What can go wrong otherwise?

• A simple solution:
– A trusted public repository of public keys and 

corresponding identities
• Doesn’t scale up

• Requires online access per usage of a new public key
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Certification Authorities (CA)

• A method to bootstrap trust
– Start by trusting a single party and knowing its public key
– Use this to establish trust with other parties (and associate 

them with public keys)

The Certificate Authority (CA) is trusted party.
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• The Certificate Authority (CA) is trusted party.
– All users have a copy of the public key of the CA
– The CA signs Alice’s digital certificate. A simplified 

certificate is of the form  (Alice, Alice’s public key).
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Certification Authorities (CA)

• When we get Alice’s certificate, we 
– Examine the identity in the certificate
– Verify the signature
– Use the public key given in the certificate to
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• Encrypt messages to Alice

• Or, verify signatures of Alice

• The certificate can be sent by Alice without any online 
interaction with the CA.
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Certificates

• A certificate usually contains the following information
– Owner’s name
– Owner’s public key
– Encryption/signature algorithm
– Name of the CA
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– Serial number of the certificate
– Expiry date of the certificate
– …

• Your web browser contains the public keys of some 
CAs

• A web site identifies itself by presenting a certificate 
which is signed by a chain starting at one of these CAs
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Certification Authorities (CA)

• Unlike KDCs, the CA does not have to be online to 
provide keys to users
– It can therefore be better secured than a KDC
– The CA does not have to be available all the time

• Users only keep a single public key – of the CA
• The certificates are not secret. They can be stored in a 
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• The certificates are not secret. They can be stored in a 
public place. 

• When a user wants to communicate with Alice, it can 
get her certificate from either her, the CA, or a public 
repository. 

• A compromised CA 
– can mount active attacks (certifying keys as being Alice’s)
– but it cannot decrypt conversations. 
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Certificates in Internet browsing

• Our browser can identify web sites if their certificates 
are signed by certificate authorities which are trusted by 
the browser. 

• Last time I counted, Firefox listed more than 70 
certificate authorities which it trusts. certificate authorities which it trusts. 
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Certificates

• A certificate usually contains the following information
– Owner’s name
– Owner’s public key
– Encryption/signature algorithm
– Name of the CA
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– Serial number of the certificate
– Expiry date of the certificate
– …

• Your web browser contains the public keys of some 
CAs

• A web site identifies itself by presenting a certificate 
which is signed by a chain starting at one of these CAs
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An example of an X.509 certificate

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consul ting cc, 

OU=Certification Services Division, CN=Thawte Serve r 
CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU= FreeSoft, 
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Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU= FreeSoft, 
CN=www.freesoft.org/emailAddress=baccala@freesoft.o rg

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb: 

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1: 
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66: 
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17: 
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b: 
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77: 
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3: 
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35 :1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d: 9d: 
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f: 92:…
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Public Key Infrastructure (PKI)

• The goal: build trust on a global level

• Running a CA:
– If people trust you to vouch for other parties, everyone 

needs you.
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– A license to print money
– But,

• The CA should limit its responsibilities, buy insurance…

• It should maintain a high level of security

• Bootstrapping: how would everyone get the CA’s public key?
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Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
– Mostly suitable for enterprises.

• Monopoly + delegated CAs:
– top level CA can issue special certificates for other CAs
– Certificates of the form 

• [ (Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)ROOT-CA ]
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• [ (Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)ROOT-CA ]

Root CA

CA1 CA2

CA3

Alice

Bob
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Certificate chain
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Revocation

• Revocation is a key component of PKI
– Each certificate has an expiry date
– But certificates might get stolen, employees might leave 

companies, etc.
– Certificates might therefore need to be revoked before 

their expiry date
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their expiry date
– New problem: before using a certificate we must verify that 

it has not been revoked
• Often the most costly aspect of running a large scale public 

key infrastructure (PKI)

• How can this be done efficiently?

• (we won’t discuss this issue this year)
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SSL / TLS
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SSL/TLS

• General structure of secure HTTP connections
– To connect to a secure web site using SSL or TLS, we 

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting
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• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key 
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to 
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.
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SSL/TLS

• SSL (Secure Sockets Layer)
– SSL v2

• Released in 1995 with Netscape 1.1

• A flaw found in the key generation algorithm

– SSL v3
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– SSL v3
• Improved, released in 1996

• Public design process

• TLS (Transport Layer Security)
– IETF standard, RFC 2246

• Common browsers support all these protocols
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SSL Protocol Stack

• SSL/TLS operates over TCP, which ensures reliable 
transport.

• Supports any application protocol (usually used with 
http).
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SSL/TLS Overview

• Handshake Protocol - establishes a session
– Agreement on algorithms and security parameters
– Identity authentication
– Agreement on a key
– Report error conditions to each other
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• Record Protocol - Secures the transferred data
– Message encryption and authentication

• Alert Protocol – Error notification (including “fatal” 
errors).

• Change Cipher Protocol – Activates the pending crypto 
suite
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Simplified SSL Handshake

Client Server

I want to talk, ciphers I support, RC

Certificate (PKServer), cipher I choose, RS
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Certificate (PKServer), cipher I choose, RS

{S}PKserver , {keyed hash of handshake message}

{keyed hash of handshake message}

Data protected by keys derived from K

K= f (S,RC,RS) K= f (S,RC,RS)
compute compute
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A typical run of a TLS protocol

• C ⇒ S
– ClientHello.protocol.version = “TLS version 1.0”
– ClientHello.random = TC, NC

– ClientHello.session_id = “NULL”
– ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ClientHello.compression_method = “NULL”
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– ClientHello.compression_method = “NULL”
• S ⇒ C

– ServerHello.protocol.version = “TLS version 1.0”
– ServerHello.random = TS, NS

– ServerHello.session_id = “1234”
– ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ServerHello.compression_method = “NULL”
– ServerCertificate = pointer to server’s certificate
– ServerHelloDone
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Some additional  issues

• More on S ⇒ C
– The ServerHello message can also contain Certificate 

Request Message
– I.e., server may request client to send its certificate 
– Two fields: certificate type and acceptable CAs
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• Negotiating crypto suites
– The crypto suite defines the encryption and authentication 

algorithms and the key lengths to be used. 
– ~30 predefined standard crypto suites
– Selection (SSL v3): Client proposes a set of suites. Server 

selects one. 
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Key generation

• Key computation:
– The key is generated in two steps:
– pre-master secret S is exchanged during handshake
– master secret K is a 48 byte value calculated using pre-

master secret and the random nonces
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• Session vs. Connection: a session is relatively long lived. Multiple 
TCP connections can be supported under the same SSL/TSL 
connection.

• For each connection: 6 keys are generated from the master 
secret K and from the nonces. (For each direction: encryption 
key, authentication key, IV.)
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TLS Record Protocol
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Secret sharing
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Secret Sharing

• 3-out-of-3 secret sharing:
– Three parties, A, B and C. 
– Secret S.
– No two parties should know anything about S, but all three 

together should be able to retrieve it.
• In other words
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• In other words
– A + B + C  ⇒ S
– But,

• A + B ⇒ S

• A + C ⇒ S

• B + C ⇒ S

/

/

/
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Secret Sharing

• 3-out-of-3 secret sharing:
• How about the following scheme:

– Let S=s1s2…sm be the bit representation of S. (m is a 
multiple of 3)
• Party A receives s1,…,sm/3.
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• Party B receives sm/3+1,…,s2m/3.

• Party C receives s2m/3+1,…,sm. 

– All three parties can recover S.

– Why doesn’t this scheme satisfy the definition of secret 
sharing?

– Why does each share need to be as long as the secret?
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Secret Sharing

• Solution:
– Define shares for A,B,C in the following way
– (SA, SB, SC) is a random triple, subject to the constraint 

that 
• SA⊕ SB ⊕ SC = S
• or, SA and SB are random, and SC = SA⊕ SB ⊕ S.
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• or, SA and SB are random, and SC = SA⊕ SB ⊕ S.

• What if it is required that any one of the parties should 
be able to compute S?
– Set SA = SB = SC = S

• What if each pair of the three parties should be able to 
compute S?
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t-out-of-n secret sharing

• Provide shares to n parties, satisfying
– Recoverability: any t shares enable the reconstruction of

the secret.
– Secrecy: any t-1 shares reveal nothing about the secret.

• We saw 1-out-of-n and n-out-of-n secret sharing.
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• We saw 1-out-of-n and n-out-of-n secret sharing.

• Consider 2-out-of-n secret sharing.
– Define a line which intersects the 

Y axis at S
– The shares are points on the line
– Any two shares define S
– A single share reveals nothing

s

1 2 3



32

t-out-of-n secret sharing

• Fact: Let F be a field. Any d+1 pairs (ai , bi ) define a 
unique polynomial P of degree ≤ d, s.t. P(ai )=bi.  
(assuming d < |F|).

• Shamir’s secret sharing scheme:
Choose a large prime and work in the field Zp.
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– Choose a large prime and work in the field Zp.
– The secret S is an element in the field.
– Define a polynomial P of degree t-1 by choosing random 

coefficients a1,…,at-1 and defining 
P(x) = at-1x t-1+…+a1x+S.

– The share of party j is ( j, P(j) ).
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t-out-of-n secret sharing

• Reconstruction of the secret:
– Assume we have P(x1),…,P(xt ).
– Use Lagrange interpolation to compute the unique 

polynomial of degree ≤ t-1 which agrees with these points.
– Output the free coefficient of this polynomial. 
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• Lagrange interpolation
– P(x) = ∑i=1..t P(xi )·Li(x)
– where Li(x)=∏j≠i(x-xj ) / ∏j≠i(xi-xj )  
– (Note that Li (xi )=1, Li (xj )=0 for j≠i.)

– I.e., S = ∑i=1..t P(xi ) · ∏j≠I xj / ∏j≠i(xi - xj ) 
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Properties of Shamir’s secret sharing

• Perfect secrecy: Any t-1 shares give no information 
about the secret: Pr(secret=s | P(1),…,P(t-1)) = Pr(secret=s). 
(Security is not based on any assumptions.)

• Proof: 
– Let’s get intuition from 2-out-of-n secret sharing
– The polynomial is generated by choosing a random coefficient a and 

defining P(x)= a⋅x+s.
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defining P(x)= a⋅x+s.
– Suppose that the adversary knows P(x1)=a⋅x1+s.

– For any value of s, the value of a is uniquely defined by P(x1) and s. 
– Namely, there is a one-to-one correspondence between s and a.

– Since a is uniformly distributed, so is the value of P(x1) (any 
assignment to a results in exactly one value of P(x1)).
• Therefore P(x1) does not reveal any information about s.
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Properties of Shamir’s secret sharing

• Perfect secrecy: Any t-1 shares give no information 
about the secret: Pr(secret=s | P(1),…,P(t-1)) = Pr(secret=s). 
(Security is not based on any assumptions.)

• Proof: 
– The polynomial is generated by choosing a random 

polynomial of degree t-1, subject to P(0)=secret.
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polynomial of degree t-1, subject to P(0)=secret.

– Suppose that the adversary knows the shares 
P(x1),…,P(xt-1).

– The values of P(x1),…,P(xt-1) are defined by t-1 linear 
equations of a1,…,at-1, s.
• P(xi) = Σi=1,…,t-1 ( xi ) j aj + s.
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Properties of Shamir’s secret sharing

• Proof (cont.): 
– The values of P(x1),…,P(xt-1) are defined by t-1 linear 

equations of a1,…,at-1, s.
• P(xi) = Σ j=1,…,t-1 ( xi ) j aj + s.

– For any possible value of s, there is a exactly one set of 
values of a1,…,at-1 which gives the values P(x1),…,P(xt-1).
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values of a1,…,at-1 which gives the values P(x1),…,P(xt-1).
• This set of a1,…,at-1 can be found by solving a linear system 

of equations. 

– Since a1,…,at-1 are uniformly distributed, so are the values 
of P(x1),…,P(xt-1). 
• Therefore P(x1),…,P(xt-1) reveal nothing about s.
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Additional properties of Shamir’s secret sharing

• Ideal size: Each share is the same size as the secret.

• Extendable: Additional shares can be easily added.

• Flexible: different weights can be given to different 
parties by giving them more shares.
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parties by giving them more shares.

• Homomorphic property: Suppose P(1),…,P(n) are 
shares of S, and P’(1),…,P’(n) are shares of S’, then 
P(1)+P’(1),…,P(n)+P’(n) are shares for S+S’.
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General secret sharing

• P is the set of users (say, n users).
• A ∈ {1,2,…,n} is an authorized subset if it is authorized to 

access the secret.
• Γ is the set of authorized subsets.
• For example,

– P = {1,2,3,4}
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– P = {1,2,3,4}
– Γ = Any set containing one of {  {1,2,4}, {1,3,4,}, {2,3} }
– Not supported by threshold secret sharing

• If A∈Γ and A ⊆ B, then B∈Γ .
• A∈Γ is a minimal authorized set if there is no C ⊆ A such 

that C∈Γ.
• The set of minimal subsets Γ0 is called the basis of Γ.
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Why should we examine general access 
structures?

• Some access structures can be implemented using 
threshold access structures. 

• But not all access structures can be represented by 
threshold access structures 

• For example, consider the access structure 
Γ={{1,2},{3,4}}
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Γ={{1,2},{3,4}}
– Any threshold based secret sharing scheme with threshold t 

gives weights to parties, such that w1+w2≥ t, and w3+w4 ≥ t. 
– Therefore either w1≥ t/2, or w2 ≥ t/2. Suppose that this is w1.
– Similarly either w3≥ t/2, or w4 ≥ t/2. Suppose that this is w3.
– In this case parties 1 and 3 can reveal the secret, since 

w1+w3≥ t.
– Therefore, this access structure cannot be realized by a 

threshold scheme. 
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The monotone circuit construction (Benaloh-Leichter)

• Given Γ construct a circuit C s.t. C(A)=1 iff A∈Γ.
– Γ 0 =  {  {1,2,4}, {1,3,4,}, {2,3} }

• This Boolean circuit can be constructed from OR and AND 
gates, and is monotone. Namely, if C(x)=1, then changing 
bits of x from 0 to 1 doesn’t change the result to 0. 
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x1 x2 x3 x4

^ ^ ^

v
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Handling OR gates

x1 x2 x3 x4

Starting from the output gate and going backwards
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^ ^ ^

v
S

SSS
An OR  gate is a 
1-out-of-N 
scheme 
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Handling AND gates

x1 x2 x3 x4

a aS⊕a ⊕a
c2 S⊕c ⊕c
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^ ^ ^

v
S

SSS

a1 a2S⊕a1⊕a2
b1 S⊕b1 c1

c2 S⊕c1⊕c2

An AND  gate is 
an N-out-of-N 
scheme 
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Handling AND gates

x1 x2 x3 x4

a aS⊕a ⊕a
c2 S⊕c ⊕c

Final step: each user gets the keys of the 
wires going out from its variable
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^ ^ ^

v
S

SSS

a1 a2S⊕a1⊕a2
b1 S⊕b1 c1

c2 S⊕c1⊕c2

Proof of security: 
by induction
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A graph based construction

• Represent the access structure by an undirected graph.
• An authorized set corresponds to a path from s to t in 

an undirected graph.
• Γ 0 =  {  {1,2,4}, {1,3,4,}, {2,3} }
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s t

1
4

2

3

2 3
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A graph based construction

R1 R21
4

2

Assign random values to nodes, s.t. R’-R= shared secret 
(R’=R+shared secret)
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R R’

R3

3

2 3
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A graph based construction

R

R1 R2

R’

1
4

2

3

R1-R R2-R1
R’-R2

R’-R2
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• Assign to edge R1→R2 the value R2-R1

• Give to each user the values associated with its edges

R32 3 R’-R3
R3-R
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A graph based construction

• Consider the set {1,2,4}

• why can an authorized set reconstruct the secret? Why 
can’t a unauthorized set do that? 

4

2

R1-R R2-R1
R’-R2
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R

R1 R2

R’

R3

1
4

3

2 3

R1-R R2-R1

R’-R2

R’-R3
R3-R


