Introduction to Cryptography Lecture 12

Public Key Infrastructure (PKI), secret sharing

Benny Pinkas

Trusting public keys

- Public key technology requires every user to remember its private key, and to have access to other users' public keys
- How can the user verify that a public key PK_{v} corresponds to user v ?
- What can go wrong otherwise?
- A simple solution:
- A trusted public repository of public keys and corresponding identities
- Doesn't scale up
- Requires online access per usage of a new public key

Certification Authorities (CA)

- A method to bootstrap trust
- Start by trusting a single party and knowing its public key
- Use this to establish trust with other parties (and associate them with public keys)
- The Certificate Authority (CA) is trusted party.
- All users have a copy of the public key of the CA
- The CA signs Alice's digital certificate. A simplified certificate is of the form (Alice, Alice's public key).

Certification Authorities (CA)

- When we get Alice's certificate, we
- Examine the identity in the certificate
- Verify the signature
- Use the public key given in the certificate to
- Encrypt messages to Alice
- Or, verify signatures of Alice
- The certificate can be sent by Alice without any online interaction with the CA.

Certificates

- A certificate usually contains the following information
- Owner's name
- Owner's public key
- Encryption/signature algorithm
- Name of the CA
- Serial number of the certificate
- Expiry date of the certificate
- ...
- Your web browser contains the public keys of some CAs
- A web site identifies itself by presenting a certificate which is signed by a chain starting at one of these CAs

Certification Authorities (CA)

- Unlike KDCs, the CA does not have to be online to provide keys to users
- It can therefore be better secured than a KDC
- The CA does not have to be available all the time
- Users only keep a single public key - of the CA
- The certificates are not secret. They can be stored in a public place.
- When a user wants to communicate with Alice, it can get her certificate from either her, the CA, or a public repository.
- A compromised CA
- can mount active attacks (certifying keys as being Alice's)
- but it cannot decrypt conversations.

Certificates in Internet browsing

- Our browser can identify web sites if their certificates are signed by certificate authorities which are trusted by the browser.
- Last time I counted, Firefox listed more than 70 certificate authorities which it trusts.

(3) Welcome to Gmail - Mozilla Firefox

Eile Edit View Go Bookmarks Iools Help

Certificates

- A certificate usually contains the following information
- Owner's name
- Owner's public key
- Encryption/signature algorithm
- Name of the CA
- Serial number of the certificate
- Expiry date of the certificate
- ...
- Your web browser contains the public keys of some CAs
- A web site identifies itself by presenting a certificate which is signed by a chain starting at one of these CAs

An example of an X. 509 certificate

```
Certificate:
    Data:
        Version: 1 (0x0)
        Serial Number: 7829 (0x1e95)
    Signature Algorithm: md5WithRSAEncryption
    Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
        OU=Certification Services Division, CN=Thawte Server
        CA/emailAddress=server-certs@thawte.com
        Validity
            Not Before: Jul 9 16:04:02 1998 GMT
            Not After : Jul 9 16:04:02 1999 GMT
        Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,
            CN=www.freesoft.org/emailAddress=baccala@freesoft.org
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
            RSA Public Key: (1024 bit)
            Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb :
                    33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
                    66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66
                    70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17
                    16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
                    15:90:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77.
                    8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
                    d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f
            Exponent: 65537 (0x10001)
    Signature Algorithm: md5WithRSAEncryption
        93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
            92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:...
```


Public Key Infrastructure (PKI)

- The goal: build trust on a global level
- Running a CA:
- If people trust you to vouch for other parties, everyone needs you.
- A license to print money
- But,
- The CA should limit its responsibilities, buy insurance...
- It should maintain a high level of security
- Bootstrapping: how would everyone get the CA's public key?

Public Key Infrastructure (PKI)

- Monopoly: a single CA vouches for all public keys
- Mostly suitable for enterprises.
- Monopoly + delegated CAs:
- top level CA can issue special certificates for other CAs
- Certificates of the form
- [(Alice, $\left.\left.\mathrm{PK}_{\mathrm{A}}\right)_{\mathrm{CA} 3},\left(\mathrm{CA} 3, \mathrm{PK}_{\mathrm{CA} 3}\right)_{\mathrm{CA} 1},\left(\mathrm{CA} 1, \mathrm{PK}_{\mathrm{CA} 1}\right)_{\mathrm{ROOT}-\mathrm{CA}}\right]$

Certificate chain

Revocation

- Revocation is a key component of PKI
- Each certificate has an expiry date
- But certificates might get stolen, employees might leave companies, etc.
- Certificates might therefore need to be revoked before their expiry date
- New problem: before using a certificate we must verify that it has not been revoked
- Often the most costly aspect of running a large scale public key infrastructure (PKI)
- How can this be done efficiently?
- (we won't discuss this issue this year)

SSL / TLS

SSL/TLS

- General structure of secure HTTP connections
- To connect to a secure web site using SSL or TLS, we send an https:// command
- The web site sends back a public $k e y{ }^{(1)}$, and a certificate.
- Our browser
- Checks that the certificate belongs to the url we're visiting
- Checks the expiration date
- Checks that the certificate is signed by a CA whose public key is known to the browser
- Checks the signature
- If everything is fine, it chooses a session key and sends it to the server encrypted with RSA using the server's public key
${ }^{(1)}$ This is a very simplified version of the actual protocol.

SSL/TLS

- SSL (Secure Sockets Layer)
- SSL v2
- Released in 1995 with Netscape 1.1
- A flaw found in the key generation algorithm
- SSL v3
- Improved, released in 1996
- Public design process
- TLS (Transport Layer Security)
- IETF standard, RFC 2246
- Common browsers support all these protocols

SSL Protocol Stack

- SSL/TLS operates over TCP, which ensures reliable transport.
- Supports any application protocol (usually used with http).

SSL/TLS Overview

- Handshake Protocol - establishes a session
- Agreement on algorithms and security parameters
- Identity authentication
- Agreement on a key
- Report error conditions to each other
- Record Protocol - Secures the transferred data
- Message encryption and authentication
- Alert Protocol - Error notification (including "fatal" errors).
- Change Cipher Protocol - Activates the pending crypto suite

Simplified SSL Handshake

Client

compute
$\{S\}_{\text {PKserver }},\{$ keyed hash of handshake message $\}$
$K=f\left(\mathrm{~S}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{S}}\right) \quad\{$ keyed hash of handshake message $\} \quad K=f\left(\mathrm{~S}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{S}}\right)$

Data protected by keys derived from K
$\longleftarrow-$ ———————— \rightarrow

A typical run of a TLS protocol

- $\mathrm{C} \Rightarrow \mathrm{S}$
- ClientHello.protocol.version = "TLS version 1.0"
- ClientHello.random $=T_{C}, N_{C}$
- ClientHello.session_id = "NULL"
- ClientHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
- ClientHello.compression_method = "NULL"
- $\mathrm{S} \Rightarrow \mathrm{C}$
- ServerHello.protocol.version = "TLS version 1.0"
- ServerHello.random $=T_{S}, N_{S}$
- ServerHello.session_id = "1234"
- ServerHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
- ServerHello.compression_method = "NULL"
- ServerCertificate = pointer to server's certificate
- ServerHelloDone

Some additional issues

- More on $\mathrm{S} \Rightarrow \mathrm{C}$
- The ServerHello message can also contain Certificate Request Message
- I.e., server may request client to send its certificate
- Two fields: certificate type and acceptable CAs
- Negotiating crypto suites
- The crypto suite defines the encryption and authentication algorithms and the key lengths to be used.
- ~30 predefined standard crypto suites
- Selection (SSL v3): Client proposes a set of suites. Server selects one.

Key generation

- Key computation:
- The key is generated in two steps:
- pre-master secret S is exchanged during handshake
- master secret K is a 48 byte value calculated using premaster secret and the random nonces
- Session vs. Connection: a session is relatively long lived. Multiple TCP connections can be supported under the same SSL/TSL connection.
- For each connection: 6 keys are generated from the master secret K and from the nonces. (For each direction: encryption key, authentication key, IV.)

TLS Record Protocol

Figure 17.3 SSL Record Protocol Operation

Secret sharing

Secret Sharing

- 3-out-of-3 secret sharing:
- Three parties, A, B and C.
- Secret S.
- No two parties should know anything about S, but all three together should be able to retrieve it.
- In other words
$-\mathrm{A}+\mathrm{B}+\mathrm{C} \Rightarrow \mathrm{S}$
- But,
- $A+B \neq S$
- $A+C \neq S$
- $B+C \neq S$

Secret Sharing

- 3-out-of-3 secret sharing:
- How about the following scheme:
- Let $S=s_{1} s_{2} \ldots s_{m}$ be the bit representation of S. (m is a multiple of 3)
- Party A receives $s_{1}, \ldots, s_{m / 3}$.
- Party B receives $s_{m / 3+1}, \ldots, s_{2 m / 3}$.
- Party C receives $s_{2 m / 3+1}, \ldots, s_{m}$.
- All three parties can recover S.
- Why doesn't this scheme satisfy the definition of secret sharing?
- Why does each share need to be as long as the secret?

Secret Sharing

- Solution:
- Define shares for A, B, C in the following way
- $\left(S_{A}, S_{B}, S_{C}\right)$ is a random triple, subject to the constraint that
- $S_{A} \oplus S_{B} \oplus S_{C}=S$
- or, S_{A} and S_{B} are random, and $S_{C}=S_{A} \oplus S_{B} \oplus S$.
- What if it is required that any one of the parties should be able to compute S ?
- Set $S_{A}=S_{B}=S_{C}=S$
- What if each pair of the three parties should be able to compute S ?

t-out-of- n secret sharing

- Provide shares to n parties, satisfying
- Recoverability: any t shares enable the reconstruction of the secret.
- Secrecy: any $t-1$ shares reveal nothing about the secret.
- We saw 1-out-of- n and n-out-of- n secret sharing.
- Consider 2-out-of- n secret sharing.
- Define a line which intersects the Y axis at S
- The shares are points on the line
- Any two shares define S
- A single share reveals nothing

t-out-of- n secret sharing

- Fact: Let F be a field. Any $d+1$ pairs $\left(a_{i}, b_{i}\right)$ define a unique polynomial P of degree $\leq d$, s.t. $P\left(a_{i}\right)=b_{i}$. (assuming $d<|F|$).
- Shamir's secret sharing scheme:
- Choose a large prime and work in the field $Z p$.
- The secret S is an element in the field.
- Define a polynomial P of degree $t-1$ by choosing random coefficients $a_{1, \ldots}, a_{t-1}$ and defining

$$
P(x)=a_{t-1} 1^{t-1}+\ldots+a_{1} x+\underline{S} .
$$

- The share of party j is $(j, P(j)$).

t-out-of- n secret sharing

- Reconstruction of the secret:
- Assume we have $P\left(x_{1}\right), \ldots, P\left(x_{t}\right)$.
- Use Lagrange interpolation to compute the unique polynomial of degree $\leq t-1$ which agrees with these points.
- Output the free coefficient of this polynomial.
- Lagrange interpolation
- $P(x)=\sum_{i=1 . t} P\left(x_{i}\right) \cdot L_{i}(x)$
- where $L_{i}(x)=\prod_{\neq i}\left(x-x_{j}\right) / \prod_{j \neq i}\left(x_{i}-x_{j}\right)$
- (Note that $L_{i}\left(x_{i}\right)=1, L_{i}\left(x_{j}\right)=0$ for $j \neq$. $)$
- I.e., $S=\sum_{i=1 . t} P\left(x_{i}\right) \cdot \prod_{j \neq 1} x_{j} / \prod_{\neq i}\left(x_{i}-x_{j}\right)$

Properties of Shamir's secret sharing

- Perfect secrecy: Any $t-1$ shares give no information about the secret: $\operatorname{Pr}($ secret $=s / P(1), \ldots, P(t-1))=\operatorname{Pr}($ secret $=s)$. (Security is not based on any assumptions.)
- Proof:
- Let's get intuition from 2-out-of-n secret sharing
- The polynomial is generated by choosing a random coefficient a and defining $P(x)=a \cdot x+s$.
- Suppose that the adversary knows $P\left(x_{1}\right)=a \cdot x_{1}+s$.
- For any value of s, the value of a is uniquely defined by $P\left(x_{1}\right)$ and s.
- Namely, there is a one-to-one correspondence between s and a.
- Since a is uniformly distributed, so is the value of $P\left(x_{1}\right)$ (any assignment to a results in exactly one value of $P\left(x_{1}\right)$).
- Therefore $P\left(x_{1}\right)$ does not reveal any information about s.

Properties of Shamir's secret sharing

- Perfect secrecy: Any $t-1$ shares give no information about the secret: $\operatorname{Pr}($ secret $=s \mid P(1), \ldots, P(t-1))=\operatorname{Pr}($ secret $=s)$. (Security is not based on any assumptions.)
- Proof:
- The polynomial is generated by choosing a random polynomial of degree $t-1$, subject to $P(0)=$ secret.
- Suppose that the adversary knows the shares $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$.
- The values of $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$ are defined by $t-1$ linear equations of $a_{1}, \ldots, a_{t-1}, s$.
- $P\left(x_{i}\right)=\Sigma_{i=1, \ldots, t-1}\left(x_{i}\right)^{j} a_{j}+s$.

Properties of Shamir's secret sharing

- Proof (cont.):
- The values of $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$ are defined by $t-1$ linear equations of $a_{1}, \ldots, a_{t-1}, s$.
- $P\left(x_{i}\right)=\Sigma_{j=1, \ldots, t-1}\left(x_{i}\right)^{j} a_{j}+s$.
- For any possible value of s, there is a exactly one set of values of a_{1}, \ldots, a_{t-1} which gives the values $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$.
- This set of a_{1}, \ldots, a_{t-1} can be found by solving a linear system of equations.
- Since a_{1}, \ldots, a_{t-1} are uniformly distributed, so are the values of $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$.
- Therefore $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$ reveal nothing about s.

Additional properties of Shamir's secret sharing

- Ideal size: Each share is the same size as the secret.
- Extendable: Additional shares can be easily added.
- Flexible: different weights can be given to different parties by giving them more shares.
- Homomorphic property: Suppose $P(1), \ldots, P(n)$ are shares of S, and $P^{\prime}(1), \ldots, P^{\prime}(n)$ are shares of S^{\prime}, then $P(1)+P^{\prime}(1), \ldots, P(n)+P^{\prime}(n)$ are shares for $S+S^{\prime}$.

General secret sharing

- P is the set of users (say, n users).
- $A \in\{1,2, \ldots, n\}$ is an authorized subset if it is authorized to access the secret.
- Γ is the set of authorized subsets.
- For example,
- $P=\{1,2,3,4\}$
$-\Gamma=$ Any set containing one of $\{\{1,2,4\},\{1,3,4\},,\{2,3\}\}$
- Not supported by threshold secret sharing
- If $A \in \Gamma$ and $A \subseteq B$, then $B \in \Gamma$.
- $A \in \Gamma$ is a minimal authorized set if there is no $C \subseteq A$ such that $C \in \Gamma$.
- The set of minimal subsets Γ_{0} is called the basis of Γ.

Why should we examine general access structures?

- Some access structures can be implemented using threshold access structures.
- But not all access structures can be represented by threshold access structures
- For example, consider the access structure $\Gamma=\{\{1,2\},\{3,4\}\}$
- Any threshold based secret sharing scheme with threshold t gives weights to parties, such that $w_{1}+w_{2} \geq t$, and $w_{3}+w_{4} \geq t$.
- Therefore either $w_{1} \geq t / 2$, or $w_{2} \geq t / 2$. Suppose that this is w_{1}.
- Similarly either $w_{3} \geq t / 2$, or $w_{4} \geq t / 2$. Suppose that this is w_{3}.
- In this case parties 1 and 3 can reveal the secret, since $\mathrm{w}_{1}+\mathrm{w}_{3} \geq \mathrm{t}$.
- Therefore, this access structure cannot be realized by a threshold scheme.

The monotone circuit construction (Benaloh-Leichter)

- Given Γ construct a circuit C s.t. $C(A)=1$ iff $A \in \Gamma$.
$-\Gamma_{0}=\{\{1,2,4\},\{1,3,4\},,\{2,3\}\}$
- This Boolean circuit can be constructed from OR and AND gates, and is monotone. Namely, if $C(x)=1$, then changing bits of x from 0 to 1 doesn't change the result to 0 .

Handling OR gates

Starting from the output gate and going backwards

An OR gate is a 1-out-of-N
scheme

Handling AND gates

Handling AND gates

Final step: each user gets the keys of the wires going out from its variable

Proof of security: by induction

A graph based construction

- Represent the access structure by an undirected graph.
- An authorized set corresponds to a path from s to t in an undirected graph.
- $\Gamma_{0}=\{\{1,2,4\},\{1,3,4\},,\{2,3\}\}$

A graph based construction

Assign random values to nodes, s.t. $R^{\prime}-R=$ shared secret ($R^{\prime}=R+$ shared secret)

A graph based construction

- Assign to edge $\mathrm{R} 1 \rightarrow \mathrm{R} 2$ the value $\mathrm{R} 2-\mathrm{R} 1$
- Give to each user the values associated with its edges

A graph based construction

- Consider the set $\{1,2,4\}$
- why can an authorized set reconstruct the secret? Why can't a unauthorized set do that?

