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Integer Multiplication & Factoring as a One Way 
Function.

p,q N=pq

easy
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hard

Can a public key system be based
on this observation ?????
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Excerpts from RSA paper (CACM, 1978)

The era of  “electronic mail” may soon be upon us; we must
ensure that two important properties of the current “paper 
mail” system are preserved: (a) messages are private, and (b) 
messages can be signed. We demonstrate in this paper how
to build these capabilities into an electronic mail system.
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At the heart of our proposal is a new encryption method. 
This method provides an implementation of a “public-key 
cryptosystem,” an elegant concept invented by Diffie and 
Hellman. Their article motivated our research, since they 
presented the concept but not any practical implementation
of such system.  
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The Multiplicative Group Zpq*

• p and q denote two large primes (e.g. 512 bits long).
• Denote their product as N = pq.
• The multiplicative group ZN

* =Zpq
* contains all integers 

in the range [1,pq-1] that are relatively prime to both p 
and q.
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• The size of the group is 
– φ(n) = φ(pq) = (p-1) (q-1) = N - (p+q) + 1 

• For every x ∈∈ ZN
*, xφ(N)=x(p-1)(q-1) = 1 mod N.
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Exponentiation in ZN*

• Motivation: use exponentiation for encryption. 

• Let e be an integer, 1 < e < φ(N) = (p-1)(q-1). 
– Question: When is exponentiation to the eth power, (x → xe), a one-to-

one operation in ZN* ?
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• Claim: If e is relatively prime to (p-1)(q-1) (namely gcd(e, (p-1)(q-
1))=1) then x → xe is  a one-to-one operation  in ZN*.

• Constructive proof:
– Since  gcd(e, (p-1)(q-1) )=1, e has a multiplicative inverse modulo (p-

1)(q-1).
– Denote it by d, then ed=1+c(p-1)(q-1)=1+cφ(N).
– Let y=xe, then yd = (xe)d = x1+cφ(N) = x.
– I.e., y → yd is the inverse of x → xe.
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The RSA Public Key Cryptosystem

• Public key:
– N=pq the product of two primes (we assume that factoring 

N is hard)
– e such that gcd(e,φ(N))=1        (are these hard to find?)

• Private key:
d such that de≡1 mod φ(N)
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– d such that de≡1 mod φ(N)

• Encryption of M∈ZN* 
– C=E(M)=Me mod N

• Decryption of C∈ZN* 
– M=D(C)=Cd mod N    (why does it work?)
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Constructing an instance of the RSA PKC

• Alice
– picks at random two large primes, p and q.
– picks (uniformly at random) a (large) d that is relatively 

prime to (p-1)(q-1)  (namely, gcd(d,φ(N))=1 ).
– Alice computes e such that de≡1 mod φ(N)
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• Let N=pq be the product of p and q.
• Alice publishes the public key (N,e).
• Alice keeps the private key d, as well as the primes p, q

and the number φ(N), in a safe place.
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Efficiency

• The public exponent e may be small.
– It is common to choose its value to be either 3 or 216+1. 

The private key d must be long. 
– Each encryption involves only a few modular 

multiplications. Decryption requires a full exponentiation.
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• Usage of a small e ⇒ Encryption is more efficient than 
a full blown exponentiation. 

• Decryption requires a full exponentiation (M=Cd mod N)
• Can this be improved?
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The Chinese Remainder Theorem (CRT)

• Thm:
– Let N=pq with gcd(p,q)=1. 
– Then for every pair (y,z) ∈ Zp× Zq there exists a unique x∈Zn, s.t.

• x=y mod p

• x=z mod q

• Proof:
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• Proof:
– The extended Euclidian algorithm finds a,b s.t. ap+bq=1.
– Define c=bq.  Therefore c=1 mod p.   c=0 mod q.  
– Define d=ap.  Therefore d=0 mod p.   d=1 mod q.
– Let x=cy+dz mod N.

• cy+dz = 1y + 0 = y   mod p.

• cy+dz =  0 + 1z = z mod q.

– (How efficient is this?)
– (The inverse operation, finding (y,z) from x, is easy.)
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More efficient RSA decryption

• CRT: 
– Given p,q compute a,b s.t. ap+bq=1.
– c=bq;  d=ap 

• Decryption, given C:
– Compute y’=Cd mod p. (instead of d can use d’=d mod p-1)

Once for all 
messages
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– Compute y’=Cd mod p. (instead of d can use d’=d mod p-1)
– Compute z’=Cd mod q. (instead of d can use d’’=d mod q-1)
– Compute M=cy’+dz’ mod N.

• Overhead: 
– Two exponentiations modulo p,q, instead of one 

exponentiation modulo N.
– Overhead of exponentiation is cubic in length of modulus.
– I.e., save a factor of 23/2.
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Security reductions

• Security by reduction
– Define what it means for the system to be “secure” 

(chosen plaintext/ciphertext attacks, etc.)
– State a “hardness assumption” (e.g., that it is hard to 

extract discrete logarithms in a certain group).
– Show that if the hardness assumption holds then the 
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– Show that if the hardness assumption holds then the 
cryptosystem is secure. 

• Benefits:
– To examine the security of the system it is sufficient to 

check whether the assumption holds
– Similarly, for setting parameters (e.g. group size).
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RSA Security

• (For ElGamal encryption, we showed that if the DDH assumption 
holds then El Gamal encryption has semantic security.)

• We know that if factoring N is easy then RSA is insecure 
– can factor N ⇒ find p,q ⇒ find (p-1)(q-1) ⇒ find d from e ⇒ decrypt RSA
– Is the converse true? (we would have liked to show that decrypting RSA 
⇒ factoring N)

• Factoring assumption: 
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• Factoring assumption: 
– For a randomly chosen p,q of good length, it is infeasible to factor N=pq.
– This assumption might be too weak (might not ensure secure RSA 

encryption)
– Maybe it is possible to break RSA without factoring N ?
– We don’t know how to reduce RSA security to the hardness of factoring. 

– Fact: finding d is equivalent to factoring.
– I.e., if it is possible to find d given (N,e) , then it is easy to factor N. 
– can find d from e  ⇒ can factor N
– But perhaps it is possible to break RSA without finding d?
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The RSA assumption: Trap-Door One-Way 
Function (OWF)

• (what is the minimal assumption required to show that RSA 
encryption is secure?)

• (Informal) definition: f : D→R is a trapdoor one way 
function if there is a trap-door s such that:
– Without knowledge of s, the function f is a one way. I.e., 
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– Without knowledge of s, the function f is a one way. I.e., 
for a randomly chosen x, it is hard to invert f(x).

– Given s, inverting f is easy
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The RSA assumption: Trap-Door One-Way 
Function (OWF)

• Example: fg,p(x) = gx mod p is not a trapdoor one way 
function. (Therefore El Gamal encryption is not based 
on assuming the existence of a trapdoor one way 
function.)

• The RSA assumption: the RSA function is a trapdoor 
OWF
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• The RSA assumption: the RSA function is a trapdoor 
OWF
– The setting: Generate random RSA keys (N,e,d). Choose 

random y∈ Z*N. Provide the adversary with N,e,y.
– The assumption that is the there is no efficient algorithm 

which can output x such that xe=y mod N.

– The trap-door one-way function is fN,e(x) = xe mod N.    
(with N,e,x, chosen at random)

– The trapdoor is d s.t. ed = 1 mod φ(N)
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RSA as a One Way Trapdoor Permutation

x xe mod N

easy
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x xe mod N

hard

Easy with trapdoor info ( d )
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RSA assumption: cautions

• The RSA assumption is quite well established:
– RSA is a Trapdoor One-Way Permutation
– Hard to invert on random input – without secret key

• But is it a secure cryptosystem?
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But is it a secure cryptosystem?
– Given the assumption it is hard to reconstruct the input (if 

the input was chosen randomly), but is it hard to learn 
anything about the input?

• Theorem [G]: RSA hides the log(log(n)) least and most 
significant bits of a uniformly-distributed random input
– But some (other) information about pre-image may leal
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Security of RSA

• Deterministic encryption. In textbook RSA:
– M is always encrypted as Me

– The ciphertext is as long as the domain of M
• Corollary: textbook RSA does not have semantic 

security.
– If we suspect that a ciphertext is an encryption of a 
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– If we suspect that a ciphertext is an encryption of a 
specific message m, we can encrypt m and compare it to 
the ciphertext. If the result is equal, then m is indeed the 
message encrypted in the ciphertext. 

• It can be proved that if the message M is chosen 
uniformly at random from Z*N, then the RSA 
assumption means that no efficient algorithm can 
recover M from N,e,Me.
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Security of RSA

• Chosen ciphertext attack: (homomorphic property)
– Textbook RSA is also susceptible to chosen ciphertext 

attacks:
• We are given a ciphertext C=Me

• We can choose a random R and generate C’=CRe (an 
encryption of M·R). 
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encryption of M·R). 

• Suppose we can receive the decryption of C’. It is equal to 
M⋅R.

• We divide it by R and reveal M.
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Padded RSA

• In order to make textbook RSA semantically secure we 
must change it to be a probabilistic  encryption

• For example, we could pad the message with random 
bits.
– Suppose that messages are of length |N|-L bits

To encrypt a message M, choose a random string r of length 
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– To encrypt a message M, choose a random string r of length 
L, and compute (r | M)e mod N.

– When decrypting, output only the last |N|-L bits of Cd mod N

• Any message has 2L possible encryptions. L must be long enough 
so that a search of all 2L pads is inefficient.

• There is no known proof that this secure.
• Similar schemes are known to be secure under certain assumptions
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Is it safe to use a common modulus ?

• Consider the following environment:
– There is a global modulus N. No one knows its factoring.
– Each party has a pair (ei,di), such that ei,di = 1 mod φ(N).

• Used as a public/private key pair.
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• The system is insecure.

• Party 1, knowing (e1,d1)
– can find a multiple of φ(N),   since e1⋅d1 = c⋅φ(N)+1.
– Using it, can find di for any other party i. (I’m hiding some details 

here.)
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RSA with a small exponent

• Setting e=3 enables efficient encryption
• Might be insecure if not used properly

– Assume that the message is short, for example |M|<|N|/3
– In this case, M3 < N, and therefore M3 mod N = M3 (over 

the integers).
For example, M=10. In this case M3 mod N = 1000.  (If 
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– For example, M=10. In this case M3 mod N = 1000.  (If 
N>1000.)

– Extracting roots over the integers is easy, and therefore it 
is easy to find M.
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RSA with a small exponent

• Another security problem with using short exponents 
(for example, e=3) 

• Assume three users with public keys N1, N2, N3.
– Alice encrypts the same (long) message to all of them

• C1 = m3 mod N1

• C2 = m3 mod N2
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• C2 = m3 mod N2

• C3 = m3 mod N3

• Can an adversary which sees C1,C2,C3 find m?
– m3 < N1N2N3

– N1, N2 and N3 are most likely relatively prime (otherwise 
can factor).

– Chinese remainder theorem -> can find m3 mod N (and 
therefore m3 over the integers)

– Easy to extract 3rd root over the integers.
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Digital Signatures
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Handwritten signatures

• Associate a document with an signer (individual)
• Signature can be verified against a different signature 

of the individual
• It is hard to forge the signature…
• It is hard to change the document after it was signed…
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• Signatures are legally binding
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Desiderata for digital signatures

• Associate a document to an signer

• A digital signature is attached to a document (rather 
then be part of it)

• The signature is easy to verify but hard to forge
– Signing is done using knowledge of a private key
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– Signing is done using knowledge of a private key
– Verification is done using a public key associated with the 

signer (rather than comparing to an original signature)
– It is impossible to change even one bit in the signed 

document 
• A copy of a digitally signed document is as good as the 

original signed document.
• Digital signatures could be legally binding…
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Non Repudiation

• Prevent signer from denying that it signed the message
• I.e., the receiver can prove to third parties that the 

message was signed by the signer

• This is different than message authentication (MACs)
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– There the receiver is assured that the message was sent 
by the receiver and was not changed in transit

– But the receiver cannot prove this to other parties
• MACs: sender and receiver share a secret key K

• If R sees a message MACed with K, it knows that it could 
have only been generated by S

• But if R shows the MAC to a third party, it cannot prove that 
the MAC was generated by S and not by R
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Signing/verification process

Document M
signing

algorithm

Private signature key

Signature of M

Public verification key

signer 
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Signature of M

verification

algorithm

valid / invalid

verifier Signature 
depends on M
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Diffie-Hellman 
“New directions in cryptography” (1976) 

• In public key encryption
– The encryption function is a trapdoor permutation f

• Everyone can encrypt =  compute  f(). (using the public key)

• Only Alice can decrypt = compute  f- -1(). (using her private key)

• Alice can use f  for signing
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• Alice can use f  for signing
– Alice signs m by computing  s=f -1(m).
– Verification is done by computing  m=f(s).

• Intuition: since only Alice can compute f- -1(), forgery is 
infeasible. 

• Caveat: none of the established practical signature 
schemes following this paradigm is provably secure
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Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Finds e·d=1 mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d
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• Signing: Given m, Alice computes s=md mod N. 

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.


