Introduction to Cryptography Lecture 9

Rabin encryption, Digital signatures, Public Key Infrastructure (PKI)

Benny Pinkas

April 8, 2008

Introduction to Cryptography, Benny Pinkas

6

- Input: *c*, *p*, *q*. (*p*=*q*=3 mod 4)
- Decryption:
 - Compute $m_p = c^{(p+1)/4} \mod p$.
 - Compute $m_q = c^{(q+1)/4} \mod q$.
 - Use CRT to compute the four roots mod *N*, i.e. four values mod *N* corresponding to (m_p, m_q) , $(p-m_p, m_q)$, $(m_p, q-m_q)$, $(p-m_p, q-m_q)$.
- There are four possible options for the plaintext!
 - The receiver must select the correct plaintext
 - This can be solved by requiring the sender to embed some redundancy in m
 - E.g., a string of bits of specific form
 - Make sure that m is always a QR

7

Security of the Rabin cryptosystem

- Security against chosen plaintext attacks
- Suppose there is an adversary that completely breaks the system
 - Adversary's input: N, c
 - Adversary's output: m s.t. $m^2 = c \mod N$.
- We show a reduction showing that given this adversary we can break the factoring assumption.
- I.e., we build an algorithm:
 - Input: N
 - Operation: can ask queries to the Rabin decryption oracle
 - Output: the factoring of *N*.
- Therefore, if one can break Rabin's cryptosystem it can also solve factoring.
- Therefore, if factoring is hard the Rabin cryptosystem is "secure" in the sense defined here.

Insecurity against chosen-ciphertext attacks

- A chosen-ciphertext attack reveals the factorization of N.
- The attacker's challenge is to decrypt a ciphertext *c*.
- It can ask the receiver to decrypt any ciphertext except *c*.
- The attacker can use the receiver as the "adversary" in the reduction, namely
 - Chooses a random x and send $c=x^2 \mod N$ to the receiver
 - The receiver returns a square root *y* of *c*
 - With probability $\frac{1}{2}$, $x \neq y$ and $x \neq -y$. In this case the attacker can factor N by computing gcd(x-y,N).
 - (The attack does not depend on homomorphic properties of the ciphertext. Namely, it is not required that E(x)E(y)=E(xy).)

- RSA encryption is infinitely more popular than Rabin encryption (also more popular than El Gamal)
- Advantage of Rabin encryption: it seems more secure, security of Rabin is equivalent to factoring and we don't know to show that for RSA.
- Advantages of RSA
 - RSA is a permutation, whereas decryption in Rabin is more complex
 - Security of Rabin is only proven for encryption as $C{=}M^2 \mod N,$ and this mode
 - does not enable to identify the plaintext
 - is susceptible to chosen ciphertext attack.

Non Repudiation

- Prevent signer from denying that it signed the message
- I.e., the receiver can prove to third parties that the message was signed by the signer
- This is different than message authentication (MACs)
 - There the receiver is assured that the message was sent by the receiver and was not changed in transit
 - But the receiver cannot prove this to other parties
 - MACs: sender and receiver share a secret key K
 - If R sees a message MACed with K, it knows that it could have only been generated by S
 - But if R shows the MAC to a third party, it cannot prove that the MAC was generated by S and not by R

Diffie-Hellman

"New directions in cryptography" (1976)

- In public key encryption
 - The encryption function is a trapdoor permutation f
 - Everyone can encrypt = compute f(). (using the public key)
 - Only Alice can decrypt = compute $f^{-1}()$. (using her private key)
- Alice can use f for signing
 - Alice signs m by computing $s=f^{-1}(m)$.
 - Verification is done by computing m=f(s).
- Intuition: since only Alice can compute f⁻¹(), forgery is infeasible.
- Caveat: none of the established practical signature schemes following this paradigm is provably secure

- Key generation: (as in RSA)
 - Alice picks random p,q. Finds $e \cdot d=1 \mod (p-1)(q-1)$.
 - Public verification key: (N,e)
 - Private signature key: d
- Signing: Given *m*, Alice computes $s=m^d \mod N$.
- Verification: given *m*,*s* and public key (*N*,*e*).
 - Compute $m' = s^e \mod N$.
 - Output "valid" iff m'=m.

Message lengths

- A technical problem:
 - |m| might be longer than |N|
 - m might not be in the domain of $f^{-1}()$

Solution "hash-and-sign" paradigm:

- Signing: First compute *H(m)*, then compute the signature *f⁻¹(H(M))*. Where,
 - The range of H() must be contained in the domain of $f^{-1}()$.
 - H() must be collision intractable. I.e. it is hard to find m, m' s.t. H(m)=H(m').

• Verification:

- Compute f(s). Compare to H(m).
- Use of *H()* is also good for security reasons. See below.

Security of using a hash function

- Intuitively
 - Adversary can compute H(), f(), but not $H^{-1}()$, $f^{-1}()$.
 - Can only compute (m, H(m)) by choosing *m* and computing H().
 - Adversary wants to compute $(m, f^{-1}(H(m)))$.
 - To break signature needs to show s s.t. f(s)=H(m). (E.g. $s^e=H(m)$.)
 - Failed attack strategy 1:
 - Pick s, compute f(s), and look for m s.t. H(m)=f(s).
 - Failed attack strategy 2:
 - Pick *m,m*'s.t. *H(m)=H(m')*. Ask for a signature s of m' (which is also a signature of m).
 - (If H() is not collision resistant, adversary could find m,m' s.t. H(m) = H(m').)
 - This does not mean that the scheme is secure, only that these attacks fail.

- Signature of m is $s=m^d \mod N$.
- Universally forgeable under a chosen message attack:
 - Universal forgery: the adversary can forge the signature of any message of its choice.
 - Chosen message attack: the adversary can ask for signatures of messages of its choice.
- Existentially forgeable under key only attack.
 - Existential forgery: succeeds in forging the signature of at least one message.
 - Key only attack: the adversary knows the public verification key but does not ask any queries.

- Signature is sig(m) = f⁻¹(H(m)) = (H(m))^d mod N.
 H() is such that its range is [1,N]
- The system is no longer homomorphic
 sig(m) · sig(m') ≠ sig(m·m')
- Seems hard to generate a random signature
 - Computing s^e is insufficient, since it is also required to show *m* s.t. $H(m) = s^e$.
- Proof of security in the random oracle model where H() is modeled as a random function

RSA with full domain hash –proof of security

- Claim: Assume that H() is a random function, then if there is a polynomial-time A() which performs existential forgery with non-negligible probability, then it is possible to invert the RSA function, on a random input, with non-negligible probability.
- Proof:
 - Our input: *y*. Should compute $y^d \mod N$.
 - A() queries H() and a signature oracle sig(), and generates a signature s of a message for which it did not query sig().
 - Suppose A() made at most t queries to H(), asking for $H(m_1), \ldots, H(m_t)$. Suppose also that it always queries H(m) before querying sig(m). (In particular, it asked for H(s).)

– We will show how to use A() to compute $y^d \mod N$.

- Proof (contd.)
- Let us first assume that A always forges the signature of m_t (the last query it sends to H()),
 - We can decide how to answer A's queries to H(), sig().
 - Answer queries to H() as follows:
 - The answer to the t^{th} query (m_t) is y.
 - The answer to the j^{th} query (j < t) is $(r_j)^e$, where r_j is random.
 - Answer to *sig(m)* queries:
 - These are only asked for m_j where j < t. Answer with r_j . (Indeed $sig(m_j) = (H(m_j))^d = r_j$)
 - A's output is (m_t, s) .
 - If s is the correct signature, then we found y^{d} .
 - Otherwise we failed.
 - Success probability the same as the success probability of A().

- Proof (without assuming which m_i A will try to sign)
 - We can decide how to answer A's queries to H(), sig().
 - Choose a random *i* in [1,t], answer queries to H() as follows:
 - The answer to the *i*th query (m_i) is *y*.
 - The answer to the *j*th query $(j \neq i)$ is $(r_j)^e$, where r_j is random.
 - Answer to *sig(m)* queries:
 - If $m=m_j$, $j\neq i$, then answer with r_j . (Indeed $sig(m_j)=(H(m_j))^d=r_j$)
 - If m=m_i then stop. (we failed)
 - *A*'s output is *(m,s)*.
 - If $m=m_i$ and s is the correct signature, then we found y^d .
 - Otherwise we failed.
 - Success probability is 1/t times success probability of A().

Rabin signatures

- Same paradigm:
 - $f(m) = m^2 \mod N.$ (N=pq).
 - Sig(m) = s, s.t. $s^2 = m \mod N$. I.e., the square root of m.
- Unlike RSA,
 - Not all *m* are QR mod *N*.
 - Therefore, only 1/4 of messages can be signed.
- Solutions:
 - Use random padding. Choose padding until you get a QR.
 - Deterministic padding (Williams system).
- A total break given a chosen message attack. (show)
- Must therefore use a hash function H as in RSA.

