
1

page 1April 8, 2008 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 9

Rabin encryption, Digital signatures,
Public Key Infrastructure (PKI)

Benny Pinkas

2

page 2April 8, 2008 Introduction to Cryptography, Benny Pinkas

Rabin’s encryption systems

• Key generation:
– Private key: random primes p,q (e.g. 512 bits long).
– Public key: N=pq.

• Encryption:
– Plaintext m∈ ZN

*.
– Ciphertext: c = m2 mod N. (very efficient)

• Decryption: Compute c1/2 mod N.

3

page 3April 8, 2008 Introduction to Cryptography, Benny Pinkas

Square roots modulo N

• ⇒⇒⇒⇒ Let x be a quadratic residue (QR) modulo N=pq, then
– x mod p is a QR mod p. x mod q is a QR mod q
– x mod p has two roots mod p: y and p - y
– x mod q has two roots mod q: z and q - z

• ⇐⇐⇐⇐ If x is a QR mod p and mod q, it is also a QR mod N.
(Follows from the Chinese remainder theorem.)

4

page 4April 8, 2008 Introduction to Cryptography, Benny Pinkas

Square roots modulo N

• If x has a square root modulo N then it has 4 different
square roots modulo N.
– Let A be s.t. A2=x mod N.
– Let c be s.t. c=1 mod p, c=-1 mod q.
– Then A, -A, cA, -cA are all square roots of x modulo N.

• Each combination of roots modulo p and q results in a
root modulo N.
– x therefore has four roots modulo pq:
– (y,z) -> A, (p - y, q - z) -> pq – A
– (y, q - z) -> B, (p – y, z) -> pq – B

= (y,z) · (1,-1)

5

page 5April 8, 2008 Introduction to Cryptography, Benny Pinkas

Square roots modulo N

• Exactly ¼ of the elements are QR mod N.
– QRN = QRp × QRq. |QRN| = (p-1)(q-1)/4

• Assume that p=q=3 mod 4. (Blum integers.)
– Then it is easy to see that exactly one of the four roots is a

QR mod N.
• Note that -1 is an NQR mod p and mod q (Euler’s thm).
• Let one of the square roots of x modulo N be A.
• Then the other square roots are -A, cA, -cA, where c=1 mod

p, c=-1 mod q.
• Assume that A is a QR mod N, and therefore it is a QR p and

a QR mod q. Then none of the other roots is a QR mod p and
a QR mod q.

6

page 6April 8, 2008 Introduction to Cryptography, Benny Pinkas

Finding square roots modulo N

• Need to compute y=x1/2 mod N.
• Suppose we know (the private key) p, q.

– Compute the roots of x modulo p, q. Use Chinese
remainder theorem to find x.

• Computing square roots in Zp
*
,

– Recall, x∈QRp iff x(p-1)/2=1 mod p.
– Assume p=3 mod 4. (p is a Blum integer).
– Compute the root as y=x(p+1)/4 mod p.

• (p+1)/4 is an integer
• y2 = (x(p+1)/4)2 = x(p+1)/2 = x(p-1)/2x = x

– If p=1 mod 4 the computation is more complicated (no
deterministic algorithm is known)

7

page 7April 8, 2008 Introduction to Cryptography, Benny Pinkas

Decryption of Rabin cryptosystem

• Input: c, p, q. (p=q=3 mod 4)
• Decryption:

– Compute mp =c(p+1)/4 mod p.
– Compute mq =c(q+1)/4 mod q.
– Use CRT to compute the four roots mod N, i.e. four values

mod N corresponding to (mp ,mq), (p-mp ,mq), (mp ,q-mq),
(p-mp ,q-mq).

• There are four possible options for the plaintext!
– The receiver must select the correct plaintext
– This can be solved by requiring the sender to embed

some redundancy in m
• E.g., a string of bits of specific form

• Make sure that m is always a QR

8

page 8April 8, 2008 Introduction to Cryptography, Benny Pinkas

Security of the Rabin cryptosystem

• Good news:
– The Rabin cryptosystem is secure against passive attacks

iff factoring is hard. ☺

• Bad news:
– The Rabin cryptosystem is completely insecure against

chosen-ciphertext attacks �

9

page 9April 8, 2008 Introduction to Cryptography, Benny Pinkas

Security of the Rabin cryptosystem

• Security against chosen plaintext attacks
• Suppose there is an adversary that completely breaks the system

– Adversary’s input: N, c
– Adversary’s output: m s.t. m2= c mod N.

• We show a reduction showing that given this adversary we can
break the factoring assumption.

• I.e., we build an algorithm:
– Input: N
– Operation: can ask queries to the Rabin decryption oracle
– Output: the factoring of N.

• Therefore, if one can break Rabin’s cryptosystem it can also solve
factoring.

• Therefore, if factoring is hard the Rabin cryptosystem is “secure”
in the sense defined here.

10

page 10April 8, 2008 Introduction to Cryptography, Benny Pinkas

The reduction

• Input: N
• Operation:

– Choose random x.
– Send N and c=x2 mod N, to adversary.
– Adversary answers with y s.t. c=y2 mod N.
– If y=x or y=N-x, go back to step 1.
– Otherwise

• x2 - y2 = 0 mod N.

• 0 ≠ (x-y)(x+y) = cN = cpq.

• Compute gcd(x+y,N) , gcd(x-y,N) and obtain p or q.

• (The gcd is not N since 0<x,y<N, and therefore
–N < x+y,x-y < 2N, and it is known that x+y,x-y≠0,N).

happens with
prob 1/2

11

page 11April 8, 2008 Introduction to Cryptography, Benny Pinkas

Insecurity against chosen-ciphertext attacks

• A chosen-ciphertext attack reveals the factorization of N.
• The attacker’s challenge is to decrypt a ciphertext c.
• It can ask the receiver to decrypt any ciphertext except c.
• The attacker can use the receiver as the “adversary” in the

reduction, namely
– Chooses a random x and send c=x2 mod N to the receiver
– The receiver returns a square root y of c
– With probability ½, x ≠ y and x ≠ -y. In this case the attacker

can factor N by computing gcd(x-y,N).

– (The attack does not depend on homomorphic properties of
the ciphertext. Namely, it is not required that E(x)E(y)=E(xy).)

12

page 12April 8, 2008 Introduction to Cryptography, Benny Pinkas

Comparing RSA and Rabin encryption

• RSA encryption is infinitely more popular than Rabin
encryption (also more popular than El Gamal)

• Advantage of Rabin encryption: it seems more secure,
security of Rabin is equivalent to factoring and we don’t
know to show that for RSA.

• Advantages of RSA
– RSA is a permutation, whereas decryption in Rabin is

more complex
– Security of Rabin is only proven for encryption as C=M2

mod N, and this mode
• does not enable to identify the plaintext
• is susceptible to chosen ciphertext attack.

13

page 13April 8, 2008 Introduction to Cryptography, Benny Pinkas

Digital Signatures

14

page 14April 8, 2008 Introduction to Cryptography, Benny Pinkas

Handwritten signatures

• Associate a document with an signer (individual)
• Signature can be verified against a different signature

of the individual
• It is hard to forge the signature…
• It is hard to change the document after it was signed…
• Signatures are legally binding

15

page 15April 8, 2008 Introduction to Cryptography, Benny Pinkas

Desiderata for digital signatures

• Associate a document to an signer

• A digital signature is attached to a document (rather
then be part of it)

• The signature is easy to verify but hard to forge
– Signing is done using knowledge of a private key
– Verification is done using a public key associated with the

signer (rather than comparing to an original signature)
– It is impossible to change even one bit in the signed

document
• A copy of a digitally signed document is as good as the

original signed document.
• Digital signatures could be legally binding…

16

page 16April 8, 2008 Introduction to Cryptography, Benny Pinkas

Non Repudiation

• Prevent signer from denying that it signed the message
• I.e., the receiver can prove to third parties that the

message was signed by the signer

• This is different than message authentication (MACs)
– There the receiver is assured that the message was sent

by the receiver and was not changed in transit
– But the receiver cannot prove this to other parties

• MACs: sender and receiver share a secret key K

• If R sees a message MACed with K, it knows that it could
have only been generated by S

• But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R

17

page 17April 8, 2008 Introduction to Cryptography, Benny Pinkas

Signing/verification process

Document M
signing

algorithm

Private signature key

Signature of M

Public verification key

verification

algorithm

valid / invalid

signer

verifier Signature
depends on M

18

page 18April 8, 2008 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman
“New directions in cryptography” (1976)

• In public key encryption
– The encryption function is a trapdoor permutation f

• Everyone can encrypt = compute f(). (using the public key)

• Only Alice can decrypt = compute f- -1(). (using her private key)

• Alice can use f for signing
– Alice signs m by computing s=f -1(m).
– Verification is done by computing m=f(s).

• Intuition: since only Alice can compute f- -1(), forgery is
infeasible.

• Caveat: none of the established practical signature
schemes following this paradigm is provably secure

19

page 19April 8, 2008 Introduction to Cryptography, Benny Pinkas

Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Finds e·d=1 mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d

• Signing: Given m, Alice computes s=md mod N.

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.

20

page 20April 8, 2008 Introduction to Cryptography, Benny Pinkas

Message lengths

• A technical problem:
– |m| might be longer than |N|
– m might not be in the domain of f -1()

Solution “hash-and-sign” paradigm:
• Signing: First compute H(m), then compute the

signature f -1(H(M)). Where,
– The range of H() must be contained in the domain of f -1().
– H() must be collision intractable. I.e. it is hard to find m, m’

s.t. H(m)=H(m’).
• Verification:

– Compute f(s). Compare to H(m).

• Use of H() is also good for security reasons. See below.

21

page 21April 8, 2008 Introduction to Cryptography, Benny Pinkas

Security of using a hash function

• Intuitively
– Adversary can compute H(), f(), but not H -1(), f -1().
– Can only compute (m,H(m)) by choosing m and computing H().
– Adversary wants to compute (m ,f -1(H(m))).
– To break signature needs to show s s.t. f(s)=H(m). (E.g. se=H(m).)

– Failed attack strategy 1:
• Pick s, compute f(s), and look for m s.t. H(m)=f(s).

– Failed attack strategy 2:
• Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’

(which is also a signature of m).
• (If H() is not collision resistant, adversary could find m,m’

s.t. H(m) = H(m’).)
– This does not mean that the scheme is secure, only that these attacks

fail.

22

page 22April 8, 2008 Introduction to Cryptography, Benny Pinkas

Security definitions for digital signatures

• Attacks against digital signatures

– Key only attack: the adversary knows only the verification
key

– Known signature attack: in addition, the adversary has
some message/signature pairs.

– Chosen message attack: the adversary can ask for
signatures of messages of its choice (e.g. attacking a
notary system).
(Seems even more reasonable than chosen message
attacks against encryption.)

23

page 23April 8, 2008 Introduction to Cryptography, Benny Pinkas

Security definitions for digital signatures

• Several levels of success for the adversary
– Existential forgery: the adversary succeeds in forging the

signature of one message.
– Selective forgery: the adversary succeeds in forging the

signature of one message of its choice.
– Universal forgery: the adversary can forge the signature of

any message.
– Total break: the adversary finds the private signature key.

• Different levels of security, against different attacks, are
required for different scenarios.

24

page 24April 8, 2008 Introduction to Cryptography, Benny Pinkas

Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Defines N=pq and finds e·d=1

mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d

• Signing: Given m, Alice computes s=md mod N.
• (suppose that there is no hash function H())

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.

25

page 25April 8, 2008 Introduction to Cryptography, Benny Pinkas

Attacks against plain RSA signatures

• Signature of m is s=md mod N.

• Universally forgeable under a chosen message attack:
– Universal forgery: the adversary can forge the signature of

any message of its choice.
– Chosen message attack: the adversary can ask for

signatures of messages of its choice.

• Existentially forgeable under key only attack.
– Existential forgery: succeeds in forging the signature of at

least one message.
– Key only attack: the adversary knows the public

verification key but does not ask any queries.

26

page 26April 8, 2008 Introduction to Cryptography, Benny Pinkas

RSA with a full domain hash function

• Signature is sig(m) = f -1(H(m)) = (H(m))d mod N.
– H() is such that its range is [1,N]

• The system is no longer homomorphic
– sig(m) · sig(m’) ≠ sig(m·m’)

• Seems hard to generate a random signature
– Computing se is insufficient, since it is also required to

show m s.t. H(m) = se.

• Proof of security in the random oracle model – where
H() is modeled as a random function

27

page 27April 8, 2008 Introduction to Cryptography, Benny Pinkas

RSA with full domain hash –proof of security

• Claim: Assume that H() is a random function, then if
there is a polynomial-time A() which performs
existential forgery with non-negligible probability, then it
is possible to invert the RSA function, on a random
input, with non-negligible probability.

• Proof:
– Our input: y. Should compute yd mod N.
– A() queries H() and a signature oracle sig(), and generates

a signature s of a message for which it did not query sig().
– Suppose A() made at most t queries to H(), asking for

H(m1),…,H(mt). Suppose also that it always queries H(m)
before querying sig(m). (In particular, it asked for H(s).)

– We will show how to use A() to compute yd mod N.

28

page 28April 8, 2008 Introduction to Cryptography, Benny Pinkas

RSA with full domain hash –proof of security

• Proof (contd.)
• Let us first assume that A always forges the signature of mt (the last

query it sends to H()),
– We can decide how to answer A’s queries to H(),sig().
– Answer queries to H() as follows:

• The answer to the tth query (mt) is y.

• The answer to the jth query (j<t) is (rj)e, where rj is random.

– Answer to sig(m) queries:
• These are only asked for mj where j<t. Answer with rj. (Indeed sig(mj)=

(H(mj))d = rj)

– A’s output is (mt,s).
• If s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability the same as the success probability of A().

29

page 29April 8, 2008 Introduction to Cryptography, Benny Pinkas

RSA with full domain hash –proof of security

• Proof (without assuming which mi A will try to sign)
– We can decide how to answer A’s queries to H(),sig().
– Choose a random i in [1,t], answer queries to H() as follows:

• The answer to the ith query (mi) is y.

• The answer to the jth query (j≠i) is (rj)
e, where rj is random.

– Answer to sig(m) queries:
• If m=mj, j≠i, then answer with rj. (Indeed sig(mj)= (H(mj))

d = rj)

• If m=mi then stop. (we failed)

– A’s output is (m,s).
• If m=mi and s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability is 1/t times success probability of A().

30

page 30April 8, 2008 Introduction to Cryptography, Benny Pinkas

Rabin signatures

• Same paradigm:
– f(m) = m2 mod N. (N=pq).
– Sig(m) = s, s.t. s2 = m mod N. I.e., the square root of m.

• Unlike RSA,
– Not all m are QR mod N.
– Therefore, only ¼ of messages can be signed.

• Solutions:
– Use random padding. Choose padding until you get a QR.
– Deterministic padding (Williams system).

• A total break given a chosen message attack. (show)
• Must therefore use a hash function H as in RSA.

31

page 31April 8, 2008 Introduction to Cryptography, Benny Pinkas

El Gamal signature scheme

• Invented by same person but different than the
encryption scheme. (think why)

• A randomized signature: same message can have
different signatures.

• Based on the hardness of extracting discrete logs

• The DSA (Digital Signature Algorithm/Standard) that
was adopted by NIST in 1994 is a variation of El-Gamal
signatures.

32

page 32April 8, 2008 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Key generation:
– Work in a group Zp

* where discrete log is hard.
– Let g be a generator of Zp

*.
– Private key 1 < a < p-1.
– Public key p, g, y=ga.

• Signature: (of M)
– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.

33

page 33April 8, 2008 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Signature:
– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:
– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead:
– Signature: one (offline) exp. Verification: three exps.

same r in
both places!

34

page 34April 8, 2008 Introduction to Cryptography, Benny Pinkas

El Gamal signature: comments

• Can work in any finite Abelian group
– The discrete log problem appears to be harder in elliptic

curves over finite fields than in Zp* of the same size.
– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find yr · rs = gm mod p
– E.g., choose random r = gk and either solve dlog of gm/yr to

the base r, or find s=k-1(m - loggy · r) (????)
• Notes:

– A different k must be used for every signature
– If no hash function is used (i.e. sign M rather than

m=H(M)), existential forgery is possible
– If receiver doesn’t check that 0<r<p, adversary can sign

messages of his choice.

