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Rabin’s encryption systems

• Key generation: 
– Private key: random primes p,q (e.g. 512 bits long).
– Public key: N=pq.  

• Encryption:
– Plaintext m∈ ZN

*.
– Ciphertext: c = m2  mod N.     (very efficient)

• Decryption: Compute c1/2 mod N.
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Square roots modulo N

• ⇒⇒⇒⇒ Let x be a quadratic residue (QR) modulo N=pq, then
– x mod p is a QR mod p.    x mod q is a QR mod q
– x mod p has two roots mod p: y and p - y
– x mod q has two roots mod q: z and q - z

• ⇐⇐⇐⇐ If x is a QR mod p and mod q, it is also a QR mod N. 
(Follows from the Chinese remainder theorem.)
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Square roots modulo N

• If x has a square root modulo N then it has 4 different 
square roots modulo N.
– Let A be s.t. A2=x mod N. 
– Let c be s.t. c=1 mod p,  c=-1 mod q.
– Then A, -A, cA, -cA are all square roots of x modulo N.

• Each combination of roots modulo p and q results in a 
root modulo N. 
– x therefore has four roots modulo pq:
– (y,z) -> A,              (p - y, q - z) -> pq – A
– (y, q - z) -> B,        (p – y, z) -> pq – B

= (y,z) · (1,-1)
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Square roots modulo N

• Exactly ¼ of the elements are QR mod N.
– QRN = QRp × QRq.    |QRN| = (p-1)(q-1)/4

• Assume that p=q=3 mod 4. (Blum integers.)
– Then it is easy to see that exactly one of the four roots is a 

QR mod N.
• Note that -1 is an NQR mod p and mod q   (Euler’s thm).
• Let one of the square roots of x modulo N be A.
• Then the other square roots are -A, cA, -cA, where c=1 mod 

p,  c=-1 mod q.
• Assume that A is a QR mod N, and therefore it is a QR p and 

a QR mod q. Then none of the other roots is a QR mod p and 
a QR mod q.
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Finding square roots modulo N

• Need to compute y=x1/2 mod N. 
• Suppose we know (the private key) p, q. 

– Compute the roots of x modulo p, q. Use Chinese 
remainder theorem to find x.

• Computing square roots in Zp
*
,

– Recall, x∈QRp iff x(p-1)/2=1 mod p.
– Assume p=3 mod 4. (p is a Blum integer).
– Compute the root as y=x(p+1)/4 mod p.

• (p+1)/4 is an integer
• y2 =  (x(p+1)/4)2 =  x(p+1)/2 = x(p-1)/2x = x 

– If p=1 mod 4 the computation is more complicated (no 
deterministic algorithm is known)
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Decryption of Rabin cryptosystem

• Input: c, p, q.  (p=q=3 mod 4)
• Decryption:

– Compute mp =c(p+1)/4 mod p.
– Compute mq =c(q+1)/4 mod q.
– Use CRT to compute the four roots mod N, i.e. four values 

mod N corresponding to (mp ,mq), (p-mp ,mq), (mp ,q-mq), 
(p-mp ,q-mq).

• There are four possible options for the plaintext!
– The receiver must select the correct plaintext
– This can be solved by requiring the sender to embed 

some redundancy in m
• E.g., a string of bits of specific form

• Make sure that m is always a QR
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Security of the Rabin cryptosystem

• Good news:
– The Rabin cryptosystem is secure against passive attacks 

iff factoring is hard. ☺

• Bad news:
– The Rabin cryptosystem is completely insecure against 

chosen-ciphertext attacks �
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Security of the Rabin cryptosystem

• Security against chosen plaintext attacks
• Suppose there is an adversary that completely breaks the system

– Adversary’s input: N, c
– Adversary’s output: m  s.t.  m2= c mod N.

• We show a reduction showing that given this adversary we can 
break the factoring assumption.

• I.e., we build an algorithm:
– Input: N
– Operation: can ask queries to the Rabin decryption oracle
– Output: the factoring of N. 

• Therefore, if one can break Rabin’s cryptosystem it can also solve 
factoring. 

• Therefore, if factoring is hard the Rabin cryptosystem is “secure”
in the sense defined here. 
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The reduction

• Input: N
• Operation:

– Choose random x.
– Send N and c=x2 mod N, to adversary.
– Adversary answers with y s.t. c=y2 mod N.
– If y=x or y=N-x, go back to step 1.
– Otherwise

• x2 - y2 = 0 mod N.

• 0 ≠ (x-y)(x+y) = cN = cpq.

• Compute gcd(x+y,N) , gcd(x-y,N) and obtain p or q.

• (The gcd is not N since 0<x,y<N, and therefore            
–N < x+y,x-y < 2N, and it is known that x+y,x-y≠0,N).

happens with 
prob 1/2
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Insecurity against chosen-ciphertext attacks

• A chosen-ciphertext attack reveals the factorization of N.
• The attacker’s challenge is to decrypt a ciphertext c. 
• It can ask the receiver to decrypt any ciphertext except c.
• The attacker can use the receiver as the “adversary” in the 

reduction, namely
– Chooses a random x and send  c=x2 mod N to the receiver
– The receiver returns a square root y of c
– With probability ½,  x ≠ y and x ≠ -y. In this case the attacker 

can factor N by computing gcd(x-y,N).

– (The attack does not depend on homomorphic properties of 
the ciphertext. Namely, it is not required that E(x)E(y)=E(xy).)
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Comparing RSA and Rabin encryption

• RSA encryption is infinitely more popular than Rabin 
encryption (also more popular than El Gamal)

• Advantage of Rabin encryption: it seems more secure,  
security of Rabin is equivalent to factoring and we don’t 
know to show that for RSA.

• Advantages of RSA
– RSA is a permutation, whereas decryption in Rabin is 

more complex
– Security of Rabin is only proven for encryption as C=M2

mod N, and this mode
• does not enable to identify the plaintext
• is susceptible to chosen ciphertext attack. 
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Digital Signatures
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Handwritten signatures

• Associate a document with an signer (individual)
• Signature can be verified against a different signature 

of the individual
• It is hard to forge the signature…
• It is hard to change the document after it was signed…
• Signatures are legally binding
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Desiderata for digital signatures

• Associate a document to an signer

• A digital signature is attached to a document (rather 
then be part of it)

• The signature is easy to verify but hard to forge
– Signing is done using knowledge of a private key
– Verification is done using a public key associated with the 

signer (rather than comparing to an original signature)
– It is impossible to change even one bit in the signed 

document 
• A copy of a digitally signed document is as good as the 

original signed document.
• Digital signatures could be legally binding…
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Non Repudiation

• Prevent signer from denying that it signed the message
• I.e., the receiver can prove to third parties that the 

message was signed by the signer

• This is different than message authentication (MACs)
– There the receiver is assured that the message was sent 

by the receiver and was not changed in transit
– But the receiver cannot prove this to other parties

• MACs: sender and receiver share a secret key K

• If R sees a message MACed with K, it knows that it could 
have only been generated by S

• But if R shows the MAC to a third party, it cannot prove that 
the MAC was generated by S and not by R
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Signing/verification process

Document M
signing

algorithm

Private signature key

Signature of M

Public verification key

verification

algorithm

valid / invalid

signer 

verifier Signature 
depends on M
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Diffie-Hellman 
“New directions in cryptography” (1976) 

• In public key encryption
– The encryption function is a trapdoor permutation f

• Everyone can encrypt =  compute  f(). (using the public key)

• Only Alice can decrypt = compute  f- -1(). (using her private key)

• Alice can use f  for signing
– Alice signs m by computing  s=f -1(m).
– Verification is done by computing  m=f(s).

• Intuition: since only Alice can compute f- -1(), forgery is 
infeasible. 

• Caveat: none of the established practical signature 
schemes following this paradigm is provably secure
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Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Finds e·d=1 mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d

• Signing: Given m, Alice computes s=md mod N. 

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.
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Message lengths

• A technical problem: 
– |m| might be longer than |N|
– m might not be in the domain of f -1()

Solution “hash-and-sign” paradigm:
• Signing: First compute H(m), then compute the 

signature f -1(H(M)).  Where, 
– The range of H() must be contained in the domain of f -1().
– H() must be collision intractable. I.e. it is hard to find m, m’

s.t. H(m)=H(m’).
• Verification: 

– Compute f(s). Compare to H(m).

• Use of H() is also good for security reasons. See below.
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Security of using a hash function

• Intuitively
– Adversary can compute H(), f(), but not H -1(), f -1().
– Can only compute (m,H(m)) by choosing m and computing H().
– Adversary wants to compute (m ,f -1(H(m))).
– To break signature needs to show s s.t. f(s)=H(m). (E.g. se=H(m).)

– Failed attack strategy 1:
• Pick s, compute f(s), and look for m s.t. H(m)=f(s).

– Failed attack strategy 2:
• Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’

(which is also a signature of m). 
• (If H() is not collision resistant, adversary could find m,m’

s.t. H(m) = H(m’).)
– This does not mean that the scheme is secure, only that these attacks 

fail. 
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Security definitions for digital signatures

• Attacks against digital signatures

– Key only attack: the adversary knows only the verification 
key

– Known signature attack: in addition, the adversary has 
some message/signature pairs.

– Chosen message attack: the adversary can ask for 
signatures of messages of its choice (e.g. attacking a 
notary system). 
(Seems even more reasonable than chosen message 
attacks against encryption.)
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Security definitions for digital signatures

• Several levels of success for the adversary
– Existential forgery: the adversary succeeds in forging the 

signature of one message.
– Selective forgery: the adversary succeeds in forging the 

signature of one message of its choice.
– Universal forgery: the adversary can forge the signature of 

any message.
– Total break: the adversary finds the private signature key.

• Different levels of security, against different attacks, are 
required for different scenarios. 
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Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Defines N=pq and finds e·d=1 

mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d

• Signing: Given m, Alice computes s=md mod N. 
• (suppose that there is no hash function H())

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.
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Attacks against plain RSA signatures

• Signature of m is s=md mod N.

• Universally forgeable under a chosen message attack:
– Universal forgery: the adversary can forge the signature of 

any message of its choice.
– Chosen message attack: the adversary can ask for 

signatures of messages of its choice.

• Existentially forgeable under key only attack.
– Existential forgery: succeeds in forging the signature of at 

least one message.
– Key only attack: the adversary knows the public 

verification key but does not ask any queries.
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RSA with a full domain hash function

• Signature is sig(m) = f -1(H(m)) = (H(m))d mod N.
– H() is such that its range is [1,N]

• The system is no longer homomorphic
– sig(m) · sig(m’) ≠ sig(m·m’)

• Seems hard to generate a random signature 
– Computing se is insufficient, since it is also required to 

show m s.t. H(m) = se.

• Proof of security in the random oracle model – where 
H() is modeled as a random function
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RSA with full domain hash –proof of security

• Claim: Assume that H() is a random function, then if 
there is a polynomial-time A() which performs 
existential forgery with non-negligible probability, then it 
is possible to invert the RSA function, on a random 
input, with non-negligible probability.

• Proof:
– Our input: y. Should compute yd mod N.
– A() queries H() and a signature oracle sig(), and generates 

a signature s of a message for which it did not query sig().
– Suppose A() made at most t queries to H(), asking for 

H(m1),…,H(mt ). Suppose also that it always queries H(m) 
before querying sig(m). (In particular, it asked for H(s).)

– We will show how to use A() to compute yd mod N.
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RSA with full domain hash –proof of security

• Proof (contd.) 
• Let us first assume that A always forges the signature of mt (the last 

query it sends to H() ), 
– We can decide how to answer A’s queries to H(),sig().
– Answer queries to H() as follows:

• The answer to the tth query (mt) is y.

• The answer to the jth query (j<t) is (rj)e, where rj is random.

– Answer to sig(m) queries:
• These are only asked for mj where j<t. Answer with rj. (Indeed sig(mj)= 

(H(mj))d = rj ) 

– A’s output is (mt,s).
• If s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability the same as the success probability of A().
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RSA with full domain hash –proof of security

• Proof (without assuming which mi A will try to sign)
– We can decide how to answer A’s queries to H(),sig().
– Choose a random i in [1,t], answer queries to H() as follows:

• The answer to the ith query (mi) is y.

• The answer to the jth query (j≠i) is (rj)
e, where rj is random.

– Answer to sig(m) queries:
• If m=mj, j≠i, then answer with rj. (Indeed sig(mj)= (H(mj))

d = rj ) 

• If m=mi then stop. (we failed)

– A’s output is (m,s).
• If m=mi and s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability is 1/t times success probability of A().
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Rabin signatures

• Same paradigm:
– f(m) = m2 mod N.   (N=pq).
– Sig(m) = s, s.t. s2 = m mod N. I.e., the square root of m.

• Unlike RSA, 
– Not all m are QR mod N. 
– Therefore, only ¼ of messages can be signed.

• Solutions:
– Use random padding. Choose padding until you get a QR.
– Deterministic padding (Williams system).

• A total break given a chosen message attack. (show)
• Must therefore use a hash function H as in RSA.
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El Gamal signature scheme

• Invented by same person but different than the 
encryption scheme. (think why)

• A randomized signature: same message can have 
different signatures.

• Based on the hardness of extracting discrete logs 

• The DSA (Digital Signature Algorithm/Standard) that 
was adopted by NIST in 1994 is a variation of El-Gamal 
signatures. 
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El Gamal signatures

• Key generation:
– Work in a group Zp

* where discrete log is hard. 
– Let g be a generator of Zp

*.
– Private key  1 < a < p-1.
– Public key p, g, y=ga.

• Signature: (of M)
– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.
– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.
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El Gamal signatures

• Signature:
– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.
– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:
– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead: 
– Signature: one (offline) exp.    Verification: three exps.

same r in 
both places!
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El Gamal signature: comments

• Can work in any finite Abelian group
– The discrete log problem appears to be harder in elliptic 

curves over finite fields than in Zp* of the same size.
– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find  yr · rs = gm mod p
– E.g., choose random r = gk and either solve dlog of gm/yr to 

the base r,   or find s=k-1(m - loggy · r)    (????)
• Notes:

– A different k must be used for every signature
– If no hash function is used (i.e. sign M rather than 

m=H(M)), existential forgery is possible
– If receiver doesn’t check that 0<r<p, adversary can sign 

messages of his choice.


