Introduction to Cryptography Lecture 9

Rabin encryption, Digital signatures, Public Key Infrastructure (PKI)

Benny Pinkas

Rabin's encryption systems

- Key generation:
- Private key: random primes p, q (e.g. 512 bits long).
- Public key: $N=p q$.
- Encryption:
- Plaintext $m \in Z_{N}$.
- Ciphertext: $c=m^{2} \bmod N$. (very efficient)
- Decryption: Compute $c^{1 / 2} \bmod N$.

Square roots modulo N

- \Rightarrow Let x be a quadratic residue (QR) modulo $N=p q$, then
$-x \bmod p$ is a QR $\bmod p . \quad x \bmod q$ is a QR $\bmod q$
$-x \bmod p$ has two roots $\bmod p: y$ and $p-y$
$-x \bmod q$ has two roots $\bmod q: z$ and $q-z$
- \Leftarrow If x is a QR $\bmod p$ and $\bmod q$, it is also a QR $\bmod N$. (Follows from the Chinese remainder theorem.)

Square roots modulo N

- If x has a square root modulo N then it has 4 different square roots modulo N.
- Let A be s.t. $A^{2}=x \bmod N$.
- Let c be s.t. $c=1 \bmod p, c=-1 \bmod q$.
- Then $A,-A, c A,-c A$ are all square roots of x modulo N.
- Each combination of roots modulo p and q results in a root modulo N.
$-x$ therefore has four roots modulo $p q$:
$-(y, z)->A, \quad(p-y, q-z)->p q-A$
$-(y, q-z)->B, \quad(p-y, z)->p q-B$

$$
=(y, z) \cdot(1,-1)
$$

Square roots modulo N

- Exactly $1 / 4$ of the elements are $Q R \bmod N$.
$-\mathrm{QR}_{\mathrm{N}}=\mathrm{QR}_{\mathrm{p}} \times \mathrm{QR}_{\mathrm{q}} . \quad\left|\mathrm{QR}_{\mathrm{N}}\right|=(\mathrm{p}-1)(\mathrm{q}-1) / 4$
- Assume that $p=q=3$ mod 4. (Blum integers.)
- Then it is easy to see that exactly one of the four roots is a QR $\bmod N$.
- Note that -1 is an NQR mod p and mod q (Euler's thm).
- Let one of the square roots of x modulo N be A.
- Then the other square roots are $-A, c A,-c A$, where $c=1 \mathrm{mod}$ $p, c=-1 \bmod q$.
- Assume that A is a QR mod N, and therefore it is a QR p and a QR mod q. Then none of the other roots is a QR $\bmod p$ and a QR mod q.

Finding square roots modulo N

- Need to compute $y=x^{1 / 2} \bmod N$.
- Suppose we know (the private key) p, q.
- Compute the roots of x modulo p, q. Use Chinese remainder theorem to find x.
- Computing square roots in $Z_{p}{ }^{*}$,
- Recall, $x \in Q R_{p}$ iff $x^{(p-1) / 2}=1 \bmod p$.
- Assume $p=3 \bmod 4$. (p is a Blum integer).
- Compute the root as $y=x^{(p+1) / 4} \bmod p$.
- $(p+1) / 4$ is an integer
- $y^{2}=\left(x^{(p+1) / 4}\right)^{2}=x^{(p+1) / 2}=x^{(p-1) / 2} x=x$
- If $p=1$ mod 4 the computation is more complicated (no deterministic algorithm is known)

Decryption of Rabin cryptosystem

- Input: $c, p, q .(p=q=3 \bmod 4)$
- Decryption:
- Compute $m_{p}=C^{(p+1) / 4} \bmod p$.
- Compute $m_{q}=C^{(q+1) / 4} \bmod q$.
- Use CRT to compute the four roots $\bmod N$, i.e. four values $\bmod N$ corresponding to $\left(m_{p}, m_{q}\right),\left(p-m_{p}, m_{q}\right),\left(m_{p}, q-m_{q}\right)$, $\left(p-m_{p}, q-m_{q}\right)$.
- There are four possible options for the plaintext!
- The receiver must select the correct plaintext
- This can be solved by requiring the sender to embed some redundancy in m
- E.g., a string of bits of specific form
- Make sure that m is always a QR

Security of the Rabin cryptosystem

- Good news:
- The Rabin cryptosystem is secure against passive attacks iff factoring is hard. ©
- Bad news:
- The Rabin cryptosystem is completely insecure against chosen-ciphertext attacks $\%$

Security of the Rabin cryptosystem

- Security against chosen plaintext attacks
- Suppose there is an adversary that completely breaks the system
- Adversary's input: N, c
- Adversary's output: m s.t. $m^{2}=c \bmod N$.
- We show a reduction showing that given this adversary we can break the factoring assumption.
- I.e., we build an algorithm:
- Input: N
- Operation: can ask queries to the Rabin decryption oracle
- Output: the factoring of N.
- Therefore, if one can break Rabin's cryptosystem it can also solve factoring.
- Therefore, if factoring is hard the Rabin cryptosystem is "secure" in the sense defined here.

The reduction

- Input: N
- Operation:
- Choose random x.
- Send N and $c=x^{2} \bmod N$, to adversary.
- Adversary answers with y s.t. $c=y^{2}$ mod N.
- If $y=x$ or $y=N-x$, go back to step 1 .
- Otherwise
- $x^{2}-y^{2}=0 \bmod N$.
happens with prob 1/2
- $0 \neq(x-y)(x+y)=c N=c p q$.
- Compute $\operatorname{gcd}(x+y, N), \operatorname{gcd}(x-y, N)$ and obtain p or q.
- (The gcd is not N since $0<x, y<N$, and therefore $-N<x+y, x-y<2 N$, and it is known that $x+y, x-y \neq 0, N$.

Insecurity against chosen-ciphertext attacks

- A chosen-ciphertext attack reveals the factorization of N.
- The attacker's challenge is to decrypt a ciphertext c.
- It can ask the receiver to decrypt any ciphertext except c.
- The attacker can use the receiver as the "adversary" in the reduction, namely
- Chooses a random x and send $c=x^{2} \bmod N$ to the receiver
- The receiver returns a square root y of c
- With probability $1 / 2, x \neq y$ and $x \neq-y$. In this case the attacker can factor N by computing $\operatorname{gcd}(x-y, N)$.
- (The attack does not depend on homomorphic properties of the ciphertext. Namely, it is not required that $E(x) E(y)=E(x y)$.)

Comparing RSA and Rabin encryption

- RSA encryption is infinitely more popular than Rabin encryption (also more popular than El Gamal)
- Advantage of Rabin encryption: it seems more secure, security of Rabin is equivalent to factoring and we don't know to show that for RSA.
- Advantages of RSA
- RSA is a permutation, whereas decryption in Rabin is more complex
- Security of Rabin is only proven for encryption as $\mathrm{C}=\mathrm{M}^{2}$ $\bmod \mathrm{N}$, and this mode
- does not enable to identify the plaintext
- is susceptible to chosen ciphertext attack.

Digital Signatures

Handwritten signatures

- Associate a document with an signer (individual)
- Signature can be verified against a different signature of the individual
- It is hard to forge the signature...
- It is hard to change the document after it was signed...
- Signatures are legally binding

Desiderata for digital signatures

- Associate a document to an signer
- A digital signature is attached to a document (rather then be part of it)
- The signature is easy to verify but hard to forge
- Signing is done using knowledge of a private key
- Verification is done using a public key associated with the signer (rather than comparing to an original signature)
- It is impossible to change even one bit in the signed document
- A copy of a digitally signed document is as good as the original signed document.
- Digital signatures could be legally binding...

Non Repudiation

- Prevent signer from denying that it signed the message
- I.e., the receiver can prove to third parties that the message was signed by the signer
- This is different than message authentication (MACs)
- There the receiver is assured that the message was sent by the receiver and was not changed in transit
- But the receiver cannot prove this to other parties
- MACs: sender and receiver share a secret key K
- If R sees a message MACed with K, it knows that it could have only been generated by S
- But if R shows the MAC to a third party, it cannot prove that the MAC was generated by S and not by R

Signing/verification process

Diffie-Hellman
 "New directions in cryptography" (1976)

- In public key encryption
- The encryption function is a trapdoor permutation f
- Everyone can encrypt = compute $f($). (using the public key)
- Only Alice can decrypt = compute $f^{-1}()$. (using her private key)
- Alice can use f for signing
- Alice signs m by computing $s=f^{-1}(m)$.
- Verification is done by computing $m=f(s)$.
- Intuition: since only Alice can compute $f^{-1}()$, forgery is infeasible.
- Caveat: none of the established practical signature schemes following this paradigm is provably secure

Example: simple RSA based signatures

- Key generation: (as in RSA)
- Alice picks random p, q. Finds $e \cdot d=1 \bmod (p-1)(q-1)$.
- Public verification key: (N, e)
- Private signature key: d
- Signing: Given m, Alice computes $s=m^{d} \bmod N$.
- Verification: given m, s and public key (N, e).
- Compute $m^{\prime}=s^{e} \bmod N$.
- Output "valid" iff m'=m.

Message lengths

- A technical problem:
- |m| might be longer than |N|
$-m$ might not be in the domain of $f^{-1}()$
Solution "hash-and-sign" paradigm:
- Signing: First compute $H(m)$, then compute the signature $f^{-1}(H(M))$. Where,
- The range of $H()$ must be contained in the domain of $f^{-1}()$.
- $H()$ must be collision intractable. I.e. it is hard to find m, m^{\prime} s.t. $H(m)=H\left(m^{\prime}\right)$.
- Verification:
- Compute $f(s)$. Compare to $H(m)$.
- Use of $H()$ is also good for security reasons. See below.

Security of using a hash function

- Intuitively
- Adversary can compute $H(), f()$, but not $H^{-1}(), f^{-1}()$.
- Can only compute $(m, H(m))$ by choosing m and computing $H()$.
- Adversary wants to compute ($m, f{ }^{-1}(H(m))$).
- To break signature needs to show s s.t. $f(s)=H(m)$. (E.g. $s^{e}=H(m)$.)
- Failed attack strategy 1:
- Pick s, compute $f(s)$, and look for m s.t. $H(m)=f(s)$.
- Failed attack strategy 2 :
- Pick m, m^{\prime} s.t. $H(m)=H\left(m^{\prime}\right)$. Ask for a signature s of m^{\prime} (which is also a signature of m).
- (If $H()$ is not collision resistant, adversary could find m, m, s.t. $H(m)=H\left(m^{\prime}\right)$.)
- This does not mean that the scheme is secure, only that these attacks fail.

Security definitions for digital signatures

- Attacks against digital signatures
- Key only attack: the adversary knows only the verification key
- Known signature attack: in addition, the adversary has some message/signature pairs.
- Chosen message attack: the adversary can ask for signatures of messages of its choice (e.g. attacking a notary system).
(Seems even more reasonable than chosen message attacks against encryption.)

Security definitions for digital signatures

- Several levels of success for the adversary
- Existential forgery: the adversary succeeds in forging the signature of one message.
- Selective forgery: the adversary succeeds in forging the signature of one message of its choice.
- Universal forgery: the adversary can forge the signature of any message.
- Total break: the adversary finds the private signature key.
- Different levels of security, against different attacks, are required for different scenarios.

Example: simple RSA based signatures

- Key generation: (as in RSA)
- Alice picks random p, q. Defines $N=p q$ and finds $e \cdot d=1$ $\bmod (p-1)(q-1)$.
- Public verification key: (N, e)
- Private signature key: d
- Signing: Given m, Alice computes $s=m^{d} \bmod N$.
- (suppose that there is no hash function $H()$)
- Verification: given m, s and public key (N, e).
- Compute $m^{\prime}=s^{e} \bmod N$.
- Output "valid" iff m'=m.

Attacks against plain RSA signatures

- Signature of m is $s=m^{d} \bmod N$.
- Universally forgeable under a chosen message attack:
- Universal forgery: the adversary can forge the signature of any message of its choice.
- Chosen message attack: the adversary can ask for signatures of messages of its choice.
- Existentially forgeable under key only attack.
- Existential forgery: succeeds in forging the signature of at least one message.
- Key only attack: the adversary knows the public verification key but does not ask any queries.

RSA with a full domain hash function

- Signature is $\operatorname{sig}(\mathrm{m})=f^{-1}(H(m))=(H(m))^{d} \bmod N$.
- $H()$ is such that its range is $[1, N]$
- The system is no longer homomorphic
- $\operatorname{sig}(m) \cdot \operatorname{sig}\left(m^{\prime}\right) \neq \operatorname{sig}\left(m \cdot m^{\prime}\right)$
- Seems hard to generate a random signature
- Computing s^{e} is insufficient, since it is also required to show m s.t. $H(m)=s^{e}$.
- Proof of security in the random oracle model - where $\left.H_{(}\right)$is modeled as a random function

RSA with full domain hash -proof of security

- Claim: Assume that H() is a random function, then if there is a polynomial-time $A()$ which performs existential forgery with non-negligible probability, then it is possible to invert the RSA function, on a random input, with non-negligible probability.
- Proof:
- Our input: y. Should compute $y^{d} \bmod N$.
- $A_{(}$) queries $H_{()}$and a signature oracle sig(), and generates a signature s of a message for which it did not query sig().
- Suppose $A()$ made at most t queries to $H()$, asking for $H\left(m_{1}\right), \ldots, H\left(m_{t}\right)$. Suppose also that it always queries $H(m)$ before querying $\operatorname{sig}(m)$. (In particular, it asked for $H(s)$.)
- We will show how to use $A()$ to compute $y^{d} \bmod N$.

RSA with full domain hash -proof of security

- Proof (contd.)
- Let us first assume that A always forges the signature of m_{t} (the last query it sends to $H()$),
- We can decide how to answer A's queries to $H(), \operatorname{sig}()$.
- Answer queries to $H_{()}$as follows:
- The answer to the th query $\left(m_{t}\right)$ is y.
- The answer to the $j^{\text {th }}$ query $(j<t)$ is $\left(r_{j}\right)^{e}$, where r_{j} is random.
- Answer to $\operatorname{sig}(m)$ queries:
- These are only asked for m_{j} where $j<t$. Answer with $r_{j^{\prime}}\left(\right.$ Indeed $\operatorname{sig}\left(m_{j}\right)=$ $\left.\left(H\left(m_{j}\right)\right)^{d}=r_{j}\right)$
- A 's output is $\left(m_{t}, s\right)$.
- If s is the correct signature, then we found y^{d}.
- Otherwise we failed.
- Success probability the same as the success probability of $A()$.

RSA with full domain hash -proof of security

- Proof (without assuming which $\mathrm{m}_{\mathrm{i}} A$ will try to sign)
- We can decide how to answer A's queries to $H()$, sig().
- Choose a random i in $[1, t]$, answer queries to $H()$ as follows:
- The answer to the th query $\left(m_{i}\right)$ is y.
- The answer to the j th query $(j \neq l)$ is $\left(r_{j}\right)^{e}$, where r_{j} is random.
- Answer to $\operatorname{sig}(m)$ queries:
- If $m=m_{j}, j \neq i$, then answer with $r_{j \cdot}$ (Indeed $\left.\operatorname{sig}\left(m_{j}\right)=\left(H\left(m_{j}\right)\right)^{d}=r_{j}\right)$
- If $\mathrm{m}=\mathrm{m}_{\mathrm{i}}$ then stop. (we failed)
- A's output is (m, s).
- If $m=m_{i}$ and s is the correct signature, then we found y^{d}.
- Otherwise we failed.
- Success probability is $1 / t$ times success probability of $A()$.

Rabin signatures

- Same paradigm:
$-f(m)=m^{2} \bmod N$. $\quad(N=p q)$.
- $\operatorname{Sig}(m)=s$, s.t. $s^{2}=m \bmod N$. I.e., the square root of m.
- Unlike RSA,
- Not all m are QR mod N.
- Therefore, only $1 / 4$ of messages can be signed.
- Solutions:
- Use random padding. Choose padding until you get a QR.
- Deterministic padding (Williams system).
- A total break given a chosen message attack. (show)
- Must therefore use a hash function H as in RSA.

El Gamal signature scheme

- Invented by same person but different than the encryption scheme. (think why)
- A randomized signature: same message can have different signatures.
- Based on the hardness of extracting discrete logs
- The DSA (Digital Signature Algorithm/Standard) that was adopted by NIST in 1994 is a variation of El-Gamal signatures.

El Gamal signatures

- Key generation:
- Work in a group $Z_{p}{ }^{*}$ where discrete log is hard.
- Let g be a generator of Z_{p}.
- Private key $1<a<p-1$.
- Public key $p, g, y=g^{a}$.
- Signature: (of M)
- Pick random $1<k<p-1$, s.t. $\operatorname{gcd}(k, p-1)=1$.
- Compute $m=H(M)$.
- $r=g^{k} \bmod p$.
- $s=(m-r \cdot a) \cdot k^{-1} \bmod (p-1)$
- Signature is r, s.

El Gamal signatures

- Signature:
- Pick random $1<k<p-1$, s.t. $\operatorname{gcd}(k, p-1)=1$.
- Compute
- $r=g^{k} \bmod p$.
- $s=(m-r \cdot a) \cdot k^{1} \bmod (p-1)$
- Verification:
- Accept if
- $0<r<p$
- $y^{r} \cdot r^{s}=g^{m} \bmod p$
- It works since $y^{r} \cdot r^{\beta}=\left(g^{a}\right)^{r} \cdot\left(g^{k}\right)^{s}=g^{a r} \cdot g^{m-r a}=g^{m}$
- Overhead:
- Signature: one (offline) exp. Verification: three exps.

El Gamal signature: comments

- Can work in any finite Abelian group
- The discrete log problem appears to be harder in elliptic curves over finite fields than in $Z_{p}{ }^{*}$ of the same size.
- Therefore can use smaller groups \Rightarrow shorter signatures.
- Forging: find $y^{r} \cdot r^{s}=g^{m} \bmod p$
- E.g., choose random $r=g^{k}$ and either solve dlog of g^{m} / y^{r} to the base r, or find $s=k^{-1}\left(m-\log _{g} y \cdot r\right) \quad$ (????)
- Notes:
- A different k must be used for every signature
- If no hash function is used (i.e. sign M rather than $m=H(M)$), existential forgery is possible
- If receiver doesn't check that $0<r<p$, adversary can sign messages of his choice.

