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Integer Multiplication & Factoring as a One Way 
Function.

p,q N=pq

hard

easy

Can a public key system be based
on this observation ?????
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Excerpts from RSA paper (CACM, 1978)

The era of  “electronic mail” may soon be upon us; we must
ensure that two important properties of the current “paper 
mail” system are preserved: (a) messages are private, and (b) 
messages can be signed. We demonstrate in this paper how
to build these capabilities into an electronic mail system.

At the heart of our proposal is a new encryption method. 
This method provides an implementation of a “public-key 
cryptosystem,” an elegant concept invented by Diffie and 
Hellman. Their article motivated our research, since they 
presented the concept but not any practical implementation
of such system.  
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The Multiplicative Group Zpq*

• p and q denote two large primes (e.g. 512 bits long).
• Denote their product as N = pq.
• The multiplicative group ZN

* =Zpq
* contains all integers 

in the range [1,pq-1] that are relatively prime to both p
and q.

• The size of the group is 
– φ(n) = φ(pq) = (p-1) (q-1) = N - (p+q) + 1

• For every x ∈∈ ZN
*, xφ(N)=x(p-1)(q-1) = 1 mod N.
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Exponentiation in ZN*

• Motivation: use exponentiation for encryption. 

• Let e be an integer, 1 < e < φ(N) = (p-1)(q-1). 
– Question: When is exponentiation to the eth power, (x → xe), a one-to-

one operation in ZN* ?

• Claim: If e is relatively prime to (p-1)(q-1) (namely gcd(e, (p-1)(q-
1))=1) then x → xe is  a one-to-one operation in ZN*.

• Constructive proof:
– Since  gcd(e, (p-1)(q-1) )=1, e has a multiplicative inverse modulo (p-

1)(q-1).
– Denote it by d, then ed=1+c(p-1)(q-1)=1+cφ(N).
– Let y=xe, then yd = (xe)d = x1+cφ(N) = x.
– I.e., y → yd is the inverse of x → xe.
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The RSA Public Key Cryptosystem

• Public key:
– N=pq the product of two primes (we assume that factoring 

N is hard)
– e such that gcd(e,φ(N))=1        (are these hard to find?)

• Private key:
– d such that de≡1 mod φ(N)

• Encryption of M∈ZN*
– C=E(M)=Me mod N

• Decryption of C∈ZN*
– M=D(C)=Cd mod N    (why does it work?)
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Constructing an instance of the RSA PKC

• Alice
– picks at random two large primes, p and q.
– picks (uniformly at random) a (large) d that is relatively 

prime to (p-1)(q-1)  (namely, gcd(d,φ(N))=1 ).
– Alice computes e such that de≡1 mod φ(N)

• Let N=pq be the product of p and q.
• Alice publishes the public key (N,e).
• Alice keeps the private key d, as well as the primes p, q

and the number φ(N), in a safe place.
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Efficiency

• The public exponent e may be small.
– It is common to choose its value to be either 3 or 216+1. 

The private key d must be long. 
– Each encryption involves only a few modular 

multiplications. Decryption requires a full exponentiation.

• Usage of a small e ⇒ Encryption is more efficient than 
a full blown exponentiation. 

• Decryption requires a full exponentiation (M=Cd mod N)
• Can this be improved?
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The Chinese Remainder Theorem (CRT)

• Thm:
– Let N=pq with gcd(p,q)=1. 
– Then for every pair (y,z) ∈ Zp× Zq there exists a unique x∈Zn, s.t.

• x=y mod p

• x=z mod q

• Proof:
– The extended Euclidian algorithm finds a,b s.t. ap+bq=1.
– Define c=bq.  Therefore c=1 mod p.   c=0 mod q.  
– Define d=ap.  Therefore d=0 mod p.   d=1 mod q.
– Let x=cy+dz mod N.

• cy+dz = 1y + 0 = y   mod p.

• cy+dz =  0 + 1z = z mod q.

– (How efficient is this?)
– (The inverse operation, finding (y,z) from x, is easy.)
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More efficient RSA decryption

• CRT: 
– Given p,q compute a,b s.t. ap+bq=1.
– c=bq;  d=ap

• Decryption, given C:
– Compute y’=Cd mod p. (instead of d can use d’=d mod p-1)
– Compute z’=Cd mod q. (instead of d can use d’’=d mod q-1)
– Compute M=cy’+dz’ mod N.

• Overhead: 
– Two exponentiations modulo p,q, instead of one 

exponentiation modulo N.
– Overhead of exponentiation is cubic in length of modulus.
– I.e., save a factor of 23/2.

Once for all 
messages
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RSA as a One Way Trapdoor Permutation

x xe mod N

hard

easy

Easy with trapdoor info ( d )
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Security reductions

• Security by reduction
– Define what it means for the system to be “secure”

(chosen plaintext/ciphertext attacks, etc.)
– State a “hardness assumption” (e.g., that it is hard to 

extract discrete logarithms in a certain group).
– Show that if the hardness assumption holds then the 

cryptosystem is secure. 

• Benefits:
– To examine the security of the system it is sufficient to 

check whether the assumption holds
– Similarly, for setting parameters (e.g. group size).
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RSA Security

• (For ElGamal encryption, we showed that if the DDH assumption 
holds then El Gamal encryption has semantic security.)

• If factoring N is easy then RSA is insecure 
– (factor N ⇒ find p,q ⇒ find (p-1)(q-1) ⇒ find d from e)

• Factoring assumption: 
– For a randomly chosen prime numbers p,q of appropriate length, it is 

infeasible to factor N=pq.
• This assumption might be too weak (might not ensure secure 

RSA encryption)
– Maybe it is possible to break RSA without factoring N ?
– We don’t know how to reduce RSA security to the hardness of 

factoring. 

• Fact: finding d is equivalent to factoring.
– I.e., if it is possible to find d given (N,e) , then it is easy to factor N.  

• Therefore, “hardness of finding d assumption” no stronger than hardness 
of factoring. 
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The RSA assumption: Trap-Door One-Way 
Function (OWF)

• (what is the minimal assumption required to show that RSA 
encryption is secure?)

• (Informal) definition:   f : D→R is a trapdoor one way 
function if there is a trap-door d such that:
– Without knowledge of d, the function f is a one way. I.e., 

for a randomly chosen x, it is hard to invert f(x).
– Given d, inverting f is easy

• Example: fg,p(x) = gx mod p is not a trapdoor one way 
function.

• Example: the assumption that RSA is a trapdoor OWF
– fN,e(x) = xe mod N.    (assumption: for a random N,e,x, 

inverting is hard.)
– The trapdoor is d s.t. ed = 1 mod φ(N)
– [fN,e(x)]d = x mod N
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RSA as a One Way Trapdoor Permutation

x xe mod N

hard

easy

Easy with trapdoor info ( d )
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RSA assumption: cautions

• The RSA assumption is quite well established:
– RSA is actually a Trapdoor One-Way Permutation
– Hard to invert on random input (if you don’t know the 

secret key)

• But is it a secure cryptosystem?
– Given the assumption it is hard to reconstruct the input, 

but is it hard to learn anything about the input?
• Theorem [G]: RSA hides the log(log(N)) least and most 

significant bits of a uniformly-distributed random input
– But some (other) information about pre-image may leak
– And… adversary can detect a repeating message

• And, of course, as a deterministic cipher RSA does not 
provide semantic security.



17

page 17December 20, 2006 Introduction to Cryptography, Benny Pinkas

Security of RSA

• Chosen ciphertext attack: (homomorphic property)
– Textbook RSA is also susceptible to chosen ciphertext 

attacks:
• We are given a ciphertext C=Me

• We can choose a random R and generate C’=CRe (an 
encryption of M·R). 

• Suppose we can receive the decryption of C’. It is equal to 
M⋅R.

• We divide it by R and reveal M.
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Padded RSA

• In order to make textbook RSA semantically secure we 
must change it to be a probabilistic  encryption

• For example, we could pad the message with random 
bits.
– Suppose that messages are of length |N|-L bits
– To encrypt a message M, choose a random string r of length 

L, and compute (r | M)e mod N.
– When decrypting, output only the last |N|-L bits of Cd mod N

• Any message has 2L possible encryptions. L must be long enough 
so that a search of all 2L pads is inefficient.

• There is no known proof that this secure.
• Similar schemes are known to be secure under certain assumptions
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Is it safe to use a common modulus ?

• Consider the following environment:
– There is a global modulus N. No one knows its factoring.
– Each party has a pair (ei,di), such that ei,di = 1 mod φ(N).

• Used as a public/private key pair.

• The system is insecure.

• Party 1, knowing (e1,d1)
– can factor N
– Find di for any other party i.
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RSA with a small exponent

• Setting e=3 enables efficient encryption
• Might be insecure if not used properly

– Assume three users with public keys N1, N2, N3.
– Alice encrypts the same message to all of them

• C1 = m3 mod N1

• C2 = m3 mod N2

• C3 = m3 mod N3

• Can an adversary which sees C1,C2,C3 find m?
– m3 < N1N2N3
– N1, N2 and N3 are most likely relatively prime (otherwise 

we can factor them).
– Chinese remainder theorem -> can find m3 mod N (and 

therefore m3 over the integers)
– Easy to extract 3rd root over the integers.



21

page 21December 20, 2006 Introduction to Cryptography, Benny Pinkas

Rabin’s encryption systems

• Key generation: 
– Private key: random primes p,q (e.g. 512 bits long).
– Public key: N=pq.  

• Encryption:
– Plaintext m∈ ZN

*.
– Ciphertext: c = m2  mod N.     (very efficient)

• Decryption: Compute c1/2 mod N.
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Square roots modulo N

• ⇒⇒⇒⇒ Let x be a quadratic residue (QR) modulo N=pq, then
– x mod p is a QR mod p.    x mod q is a QR mod q
– x mod p has two roots mod p: y and p - y
– x mod q has two roots mod q: z and q - z

• ⇐⇐⇐⇐ If x is a QR mod p and mod q, it is also a QR mod N. 
(Follows from the Chinese remainder theorem.)
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Square roots modulo N

• If x has a square root modulo N then it has 4 different 
square roots modulo N.
– Let A be s.t. A2=x mod N. 
– Let c be s.t. c=1 mod p,  c=-1 mod q.
– Then A, -A, cA, -cA are all square roots of x modulo N.

• Each combination of roots modulo p and q results in a 
root modulo N. 
– x therefore has four roots modulo pq:
– (y,z) -> A,              (p - y, q - z) -> pq – A
– (y, q - z) -> B,        (p – y, z) -> pq – B

= (y,z) · (1,-1)
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Square roots modulo N

• Exactly ¼ of the elements are QR mod N.
– QRN = QRp × QRq.    |QRN| = (p-1)(q-1)/4

• Assume that p=q=3 mod 4. (Blum integers.)
– Then it is easy to see that exactly one of the four roots is a 

QR mod N.
• Note that -1 is an NQR mod p and mod q   (Euler’s thm).
• Let one of the square roots of x modulo N be A.
• Then the other square roots are -A, cA, -cA, where c=1 mod 

p,  c=-1 mod q.
• Assume that A is a QR mod N, and therefore it is a QR p and 

a QR mod q. Then none of the other roots is a QR mod p and 
a QR mod q.
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Finding square roots modulo N

• Need to compute y=x1/2 mod N. 
• Suppose we know (the private key) p, q. 

– Compute the roots of x modulo p, q. Use Chinese 
remainder theorem to find x.

• Computing square roots in Zp
*
,

– Recall, x∈QRp iff x(p-1)/2=1 mod p.
– Assume p=3 mod 4. (p is a Blum integer).
– Compute the root as y=x(p+1)/4 mod p.

• (p+1)/4 is an integer
• y2 =  (x(p+1)/4)2 =  x(p+1)/2 = x(p-1)/2x = x 

– If p=1 mod 4 the computation is more complicated (no 
deterministic algorithm is known)
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Decryption of Rabin cryptosystem

• Input: c, p, q.  (p=q=3 mod 4)
• Decryption:

– Compute mp =c(p+1)/4 mod p.
– Compute mq =c(q+1)/4 mod q.
– Use CRT to compute the four roots mod N, i.e. four values 

mod N corresponding to (mp ,mq), (p-mp ,mq), (mp ,q-mq), 
(p-mp ,q-mq).

• There are four possible options for the plaintext!
– The receiver must select the correct plaintext
– This can be solved by requiring the sender to embed 

some redundancy in m
• E.g., a string of bits of specific form

• Make sure that m is always a QR
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Security of the Rabin cryptosystem

• Good news:
– The Rabin cryptosystem is secure against passive attacks 

iff factoring is hard. ☺

• Bad news:
– The Rabin cryptosystem is completely insecure against 

chosen-ciphertext attacks �
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Security of the Rabin cryptosystem

• Security against chosen plaintext attacks
• Suppose there is an adversary that completely breaks the system

– Adversary’s input: N, c
– Adversary’s output: m  s.t.  m2= c mod N.

• We show a reduction showing that given this adversary we can 
break the factoring assumption.

• I.e., we build an algorithm:
– Input: N
– Operation: can ask queries to the Rabin decryption oracle
– Output: the factoring of N. 

• Therefore, if one can break Rabin’s cryptosystem it can also solve 
factoring. 

• Therefore, if factoring is hard the Rabin cryptosystem is “secure”
in the sense defined here. 
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The reduction

• Input: N
• Operation:

– Choose random x.
– Send N and c=x2 mod N, to adversary.
– Adversary answers with y s.t. c=y2 mod N.
– If y=x or y=N-x, go back to step 1.
– Otherwise

• x2 - y2 = 0 mod N.

• 0 ≠ (x-y)(x+y) = cN = cpq.

• Compute gcd(x+y,N) , gcd(x-y,N) and obtain p or q.

• (The gcd is not N since 0<x,y<N, and therefore            
–N < x+y,x-y < 2N, and it is known that x+y,x-y≠0,N).

happens with 
prob 1/2
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Insecurity against chosen-ciphertext attacks

• A chosen-ciphertext attack reveals the factorization of N.
• The attacker’s challenge is to decrypt a ciphertext c. 
• It can ask the receiver to decrypt any ciphertext except c.
• The attacker can use the receiver as the “adversary” in the 

reduction, namely
– Chooses a random x and send  c=x2 mod N to the receiver
– The receiver returns a square root y of c
– With probability ½,  x ≠ y and x ≠ -y. In this case the attacker 

can factor N by computing gcd(x-y,N).

– (The attack does not depend on homomorphic properties of 
the ciphertext. Namely, it is not required that E(x)E(y)=E(xy).)
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Comparing RSA and Rabin encryption

• RSA encryption is infinitely more popular than Rabin 
encryption (also more popular than El Gamal)

• Advantage of Rabin encryption: it seems more secure,  
security of Rabin is equivalent to factoring and we don’t 
know to show that for RSA.

• Advantages of RSA
– RSA is a permutation, whereas decryption in Rabin is 

more complex
– Security of Rabin is only proven for encryption as C=M2

mod N, and this mode
• does not enable to identify the plaintext
• is susceptible to chosen ciphertext attack. 


