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Topics in Cryptography

Lecture 5: Basic Number Theory

Benny Pinkas
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Classical symmetric ciphers

• Alice and Bob share a private key k.
• System is secure as long as k is secret.
• Major problem: generating and distributing k.

Alice Bob

k k
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Diffie and Hellman: “New Directions in 
Cryptography”, 1976.

• “We stand today on the brink of a revolution in 
cryptography. The development of cheap digital 
hardware has freed it from the design limitations of 
mechanical computing…
…such applications create a need for new types of 
cryptographic systems which minimize the necessity of 
secure key distribution…
…theoretical developments in information theory and 
computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science.”
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Diffie-Hellman

• Came up with the idea of public key cryptography

Alice Bob

public keyBob secret keyBob

Everyone can learn Bob’s public key and encrypt messages to Bob. 
Only Bob knows the decryption key and can decrypt. 

Key distribution is greatly simplified. 
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But before we get to public key cryptography…

• Basic number theory
– Divisors, modular arithmetic
– The GCD algorithm
– Groups

• References:
– Many books on number theory
– Almost all books on cryptography
– Cormen, Leiserson, Rivest, (Stein), “Introduction to 

Algorithms”,  chapter on Number-Theoretic Algorithms.
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Divisors, prime numbers

• We work over the integers
• A non-zero integer b divides an integer a if there exists 

an integer c s.t. a=c·b.
– Denoted as b|a
– I.e. b divides a with no remainder 

• Examples
– Trivial divisors: 1|a,  a|a
– Each of {1,2,3,4,6,8,12,24} divides 24
– 5 does not divide 24

• Prime numbers
– An integer a is prime if it is only divisible by 1 and by itself.
– 23 is prime, 24 is not.
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Modular Arithmetic

• Modular operator:
– a mod b,  (or a%b) is the remainder of a when divided by b
– I.e., the smallest r ≥ 0 s.t. ∃ integer q for which a = qb+r.
– (Thm: there is a single choice for such q,r)

– Examples
• 12 mod 5 = 2

• 10 mod 5 = 0

• -5 mod 5 = 0

• -1 mod 5 = 4
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Modular congruency

• a is congruent to b modulo n (a ≡ b mod n) if 
– (a-b) = 0 mod n
– Namely, n divides a-b
– In other words, (a mod n) = (b mod n)

• E.g.,
– 23 ≡ 12 mod 11
– 4 ≡ -1 mod 5
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Modular congruency

• Modular congruency is an equivalence relation:
– ∀a, (a ≡ a mod n)
– (a ≡ b mod n) implies (b ≡ a mod n) 
– (a ≡ b mod n) and (b ≡ c mod n)   imply  (a ≡ c mod n) 
– There are n equivalence classes modulo n

• [3]7 = {…,-11,-4,3,10,17,…}

• If (a ≡ a’ mod n) and (b ≡ b’ mod n) then
– ((a+b) ≡ (a’+b’) mod n)
– ((a⋅b) ≡ (a’⋅b’) mod n)
– But ((a⋅b) ≡ (c⋅b) mod n) does not imply that (a ≡ c mod n)

• 3⋅2 = 15⋅2 = 6 mod 24. But, (3≠15 mod 24). 
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Greatest Common Divisor (GCD)

• d is a common divisor of a and b, if d|a and d|b. 
• gcd(a,b) (Greatest Common Divisor), is the largest 

integer that divides both a and b. (a,b >= 0)
– gcd(a,b) = max k s.t. k|a and k|b.

• Examples:
– gcd(30,24) = 6
– gcd(30,23) = 1

• If gcd(a,b)=1 then a and b are said to be relatively 
prime. 
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Facts about the GCD

• gcd(a,b) = gcd(b, a mod b)    (interesting when a>b)
• Since

– If c|a and c|b then c|(a mod b)
– If c|b and c|(a mod b) then c|a

• If a mod b = 0, then gcd(a,b)=b.

• Therefore, 
gcd(19,8) = 

gcd(8, 3) =  

gcd(3,2) =  

gcd(2,1) = 1

gcd(20,8) =

gcd(8, 4) = 4 

(e.g., a=33, b=15)
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Euclid’s algorithm

Input: a>b>0
Output: gcd(a,b)
Algorithm:

1. if (a mod b) = 0 return (b)
2. else return( gcd(b, a mod b) )

Complexity: 
– O(log a) rounds
– Each round requires O(log2 a) bit operations
– Actually, the total overhead can be shown to be O(log2 a)
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The extended gcd algorithm

Finding s, t such that gcd(a,b) = a⋅ s + b ⋅ t

Extended-gcd(a,b)  /* output is (gcd(a,b), s, t)

1. If (a mod b=0) then return(b,0,1)

2. (d’,s’,t’) = Extended-gcd(b, a mod b)

3. (d,s,t) = (d’, t’, s’- a/b·t’)

4. return(d,s,t)

Note that the overhead is as in the basic GCD algorithm
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• Extended gcd algorithm
– Given a,b finds s,t such that gcd(a,b) = a⋅s + b⋅t
– In particular, if p is prime than gcd(a,p)=1, and therefore 

a⋅s+p⋅t=1. This implies that (a⋅s ≡ 1 mod p)

• THM: There is no integer smaller than gcd(a,b) which 
can be represented as a linear combination of a,b.
– For example, a=12, b=8.
– 4= 1⋅12 - 1⋅8
– There are no s,t for which 2=s⋅12 + t⋅8
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Groups

• Definition: a set G with a binary operation °:G×G→G is 
called a group if:
– (closure) ∀ a,b ∈ G, it holds that a° b ∈ G. 
– (associativity) ∀a,b,c ∈ G, (a° b)° c = a° (b° c).
– (identity element) ∃ e ∈ G, s.t.∀ a ∈ G it holds that a° e =a.
– (inverse element) ∀ a ∈ G ∃ a-1∈ G, s.t. a ° a-1 = e.

• A group is Abelian (commutative) if ∀ a,b ∈ G, it holds 
that a° b = b° a.

• Examples:
– Integers under addition 

• (Z,+) = {…,-3,-2,-1,0,1,2,3,…}
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More examples of groups

• Addition modulo N
– (G,° )  =  ({0,1,2,…,N-1}, +)

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,…,p-1}, ×)
– E.g., Z7

* = ( {1,2,3,4,5,6} , ×)

• Trivial: closure  (the result of the multiplication is never divisible 
by p), associativity, existence of identity element.

• The extended GCD algorithm shows that an inverse always 
exists:

– s·a+t·p = 1    ⇒ s·a = 1-t·p ⇒ s·a ≡1 mod p
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More examples of groups

• ZN
*  Multiplication modulo a composite number N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)
– E.g., Z10

* = ( {1,3,7,9}, ×)

– Closure: 
• s·a+t·N = 1

• s’·b+t’·N = 1

• ss’·(ab)+(sat’+s’bt+ tt’N)·N = 1

• Therefore 1=gcd(ab,N).

– Associativity: trivial
– Existence of identity element: 1. 
– Inverse element: as in Zp

*
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Subgroups

• Let (G,° ) be a group. 
– (H,° ) is a subgroup of G if

• (H,° ) is a group

• H ⊆ G 

– For example, H = ( {1,2,4}, ×) is a subgroup of Z7
*.

• Lagrange’s theorem:
If (G,° ) is finite and (H,° ) is a subgroup of (G,° ), then 
|H| divides |G|

In our example: 3|6.
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Cyclic Groups

• Exponentiation is repeated application of °
– a3 = a° a° a.
– a0 = 1.
– a-x = (a-1)x

• A group G is cyclic if there exists a generator g, s.t.          
∀ a∈G, ∃ i s.t. gi=a. 
– I.e., G= <g> = {1, g, g2, g3, …} 
– For example Z7

* = <3> = {1,3,2,6,4,5}
• Not all a∈G are generators of G, but they all generate a 

subgroup of G.
– E.g. 2 is not a generator of Z7

* 

• The order of a group element a is the smallest j>0 s.t. a j=1
• Lagrange’s theorem ⇒ for x∈Zp

*,   ord(x) | p-1.
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Fermat’s theorem

• Corollary of Lagrange’s theorem: if (G,° ) is a finite 
group, then ∀a∈G, a|G|=1. 

• Corollary (Fermat’s theorem): ∀ a∈ Zp
*,  ap-1 =1 mod p. 

E.g., for all ∀a∈Z7
*, a6=1, a7=a.

• Computing inverses:
• Given a∈G, how to compute a-1?

– Fermat’s theorem: a-1 = a|G|-1 (= ap-2 in Zp
* )

– Or, using the extended gcd algorithm (for Zp* or ZN*):
• gcd(a,p) = 1

• s·a + t·p = 1  ⇒ s·a = -t·p + 1 ⇒ s is a-1 !!

– Which is more efficient?
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Computing in Zp
*

• P is a huge prime (1024 bits)
• Easy tasks (measured in bit operations):

– Adding in O(log p)  (namely, linear n the length of p)
– Multiplying in O(log2 p)   (and even in O(log1.7 p) )
– Inverting (a to a-1) in O(log2 p) 
– Exponentiations:

• xr mod p in O(log r · log2 p), using repeated squaring
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Groups we will use

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,…,p-1}, ×)
– E.g., Z7

* = ( {1,2,3,4,5,6} , ×)

• ZN
*  Multiplication modulo a composite number N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)
– E.g., Z10

* = ( {1,3,7,9}, ×)
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Euler’s phi function

• Lagrange’s Theorem: ∀a in a finite group G, a|G|=1.
• Euler’s phi function (aka, Euler’s totient function), 

– φ(n) = number of elements in Z*
n    (i.e. | {x | gcd(x,n)=1, 1≤x≤n} |

– φ(p) = p-1 for a prime p.
– n=∏i=1..k pi

e(i) ⇒ φ(n) = n·∏i=1..k (1-1/pi)
– φ(p2) = p(p-1) for a prime p. 
– n=p·q ⇒ φ(n) =(p-1)(q-1) 

• Corollary: For Zn
* (n=p·q),    |Zn

*|= φ(n) =(p-1)(q-1).
• ∀a∈ Zn

* it holds that aφ(n) =1 mod n
– For Zp

* (prime p),   ap-1 =1 mod p    (Fermat’s theorem).
– For Zn

* (n=p·q),   a(p-1)(q-1) =1 mod n
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Finding prime numbers
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Finding prime numbers

• Prime number theorem: #{primes ≤ x} ≈ x / lnx as x→∞

• How can we find a random k-bit prime?
– Choose x at random in {2k,…,2k+1-1}

• (About 1 / ln(2k) of the numbers in that range are prime)

– Test if x is prime
• (more on this later in the course)

• The probability of success is ≈ 1/ln(2k) = O(1/k).
• The expected number of trials is O(k).
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Finding generators

• How can we find a generator of Zp
*?

• Pick a random number a∈ [1,p-1], check if is a generator
– Can check whether ∀ 1≤i≤p-2 ai ≠ 1   �
– We know that if ai=1 mod p then i | p-1.
– Therefore need to check only i for which i | p-1.

• Easy if we know the factorization of (p-1)
– For all a∈Zp

*, the order of a divides (p-1)
– For every integer divisor b of (p-1), check if ab=1 mod p.
– If none of these checks succeeds, then a is a generator.
– a is a generator iff ord(a)=p-1.
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Finding prime numbers of the right form

• How can we know the factorization of p-1
• Easy, for example, if p=2q+1, and q is prime.
• How can we find a k-bit prime of this form?

1. Search for a prime number q of length k-1 bits. (Will be 
successful after about O(k) attempts.)

2. Check if 2q+1 is prime (we will see how to do this later in the 
course).

3. If not, go to step 1.
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Hard problems in cyclic groups

A hard problem can be useful for constructing 
cryptographic systems, if we can show that breaking 
the system is equivalent to solving this problem.
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The Discrete Logarithm

• Let G be a cyclic group of order q, with a generator g.
– ∀h∈G,  ∃ x∈[1,…,q], such that  gx=h.
– This x is called the discrete logarithm of h to the base g.

– logg h = x.
– logg1 = 0,  and logg(h1⋅ h2) = logg(h1)+ logg(h2) mod q.
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The Discrete Logarithm Problem and Assumption

• The discrete log problem
– Choose G,g at random (from a certain family G of groups), 

where G is a cyclic group and g is a generator
– Choose a random element h∈ G
– Give the adversary the input (G,|G|,g,h)
– The adversary succeeds if it outputs loggh

• The discrete log assumption
– There exists a family G of groups for which the discrete log 

problem is hard
• Namely, the adversary has negligible success probability.
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Classical symmetric ciphers

• Alice and Bob share a private key k.
• System is secure as long as k is secret.
• Major problem: generating and distributing k.

Alice Bob

k k
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Diffie and Hellman: “New Directions in 
Cryptography”, 1976.

• “We stand today on the brink of a revolution in 
cryptography. The development of cheap digital 
hardware has freed it from the design limitations of 
mechanical computing…
…such applications create a need for new types of 
cryptographic systems which minimize the necessity of 
secure key distribution…
…theoretical developments in information theory and 
computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science.”
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Diffie-Hellman

• Came up with the idea of public key cryptography

• Diffie and Hellman did not have an implementation for a 
public key encryption system

• Suggested a method for key exchange over insecure 
communication lines, that is still in use today.

Alice Bob

public keyBob secret keyBob

Everyone can learn Bob’s public key and encrypt messages to Bob. 
Only Bob knows the decryption key and can decrypt. 

Key distribution is greatly simplified. 
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Public Key-Exchange

• Goal: Two parties who do not share any secret 
information, perform a protocol and derive the same 
shared key.

• No eavesdropper can obtain the new shared key (if it 
has limited computational resources).

• The parties can  therefore safely use the key as an 
encryption key.
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The Diffie-Hellman Key Exchange Protocol

• Alice:
– picks a random a∈[1,q].
– Sends ga mod p to Bob.

– Computes k=(gb)a mod p

• Bob:
– picks a random b∈[1,q].
– Sends gb mod p to Bob.

– Computes k=(ga)b mod p

• Public parameters: a group where the DDH assumption 
holds. For example, Zp* (where |p|= 768 or 1024, 
p=2q+1), and a generator g of H⊂ Zp* of order q.

• K = gab is used as a shared key between Alice and Bob.
• DDH assumption ⇒ K is indistinguishable from a random key


