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Feistel Networks

• Encryption:
• Input: P = L i-1 | R i-1   . |L i-1|=|R i-1|

– L i = R i-1
– R i = L i-1 ⊕ F(K i, R i-1)

• Decryption?

• No matter which function is used 
as F, we obtain a permutation 
(i.e., F is reversible even if f is not).

• The same code/circuit, with keys 
in reverse order, can be used for 
decryption.

• Theoretical result [LubRac]: If f is 
a pseudo-random function then a  
4 rounds Feistel network gives a 
pseudo-random permutation
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DES  (Data Encryption Standard)

• A Feistel network encryption algorithm:
– How many rounds?
– How are the round keys generated?
– What is F?

• DES (Data Encryption Standard)
– Designed by IBM and the NSA, 1977.
– 64 bit input and output
– 56 bit key
– 16 round Feistel network
– Each round key is a 48 bit subset of the key

• Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec 
(in 1991!).
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DES

Initial permutation of bit 
locations:

- not secret

- makes implementations

in software less efficient
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DES F functions

Expansion

to 48 bits
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The S-boxes

• Very careful design (it is now known that random 
choices for the S-boxes result in weak encryption).

• Each s-box maps 6 bits to 4 bits:
– A 4×16 table of 4-bit entries.
– Bits 1 and 6 choose the row, and bits 2-5 choose column.
– Each row is a permutation of the values 0,1,…,15.

• Therefore, given an output there are exactly 4 options for the 
input

– Changing one input bit changes at least two output bits ⇒
avalanche effect.
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A Linear F in a Feistel Network?

• Suppose F(Ri-1,Ki) = Ri-1 ⊕ Ki

– Namely, that F is linear

• Then Ri = Li-1 ⊕ Ri-1 ⊕ Ki

Li = Ri-1

• Write L16, R16 as linear functions 
of L0, R0 and K. 

– Given L0R0 and L16R16 Solve 
and find K.

• F must therefore be non-linear.

• F is the only source of non-
linearity in DES.
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Differential Cryptanalysis of DES [Biham-Shamir 1990]

• The first attack to reduce the overhead of breaking DES 
to below exhaustive search

• Very powerful when applied to other encryption 
algorithms

• Depends on the structure of the encryption algorithm
• Observation: all operations except for the s-boxes are 

linear
• Linear operations:

– a = b ⊕ c
– a = the bits of b in (known) permuted order

• Linear relations can be exposed by solving a system of 
linear equations
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Differential Cryptanalysis of DES

S-boxes

DES diagram:
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DES F functions

Source of
non-linearity
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Differential Cryptanalysis

• The S-boxes are non-linear
• We study the differences (XOR) of two encryptions of 

two different plaintexts

• Notation:
– The plaintexts are P and P*
– Their difference (XOR) is dP = P ⊕ P*

– Let X and X* be two intermediate values, for P and P*, 
respectively, in the encryption process.

– Their difference is  dX = X ⊕ X*
• Namely, dX is always the result of two inputs
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Differences and S-boxes

• S-box: a function (table) from 6 bit inputs to 4 bit output

• X and X* are inputs to the same S-box. We can 
compute their difference dX = X ⊕ X*.

• Y = S(X)
• When dX = X xor X* = 0, then X=X*, and therefore 

Y=S(X)=S(X*)=Y*, and dY=0.
• When dX≠0,  X≠X* and we don’t know dY for sure, but 

we can investigate its distribution.

• For example,
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Distribution of Y’ for S1

• dX=110100
• There are 26=64 input pairs with this difference, { (000000,110100), 

(000001,110101),…}

• For each pair we can compute the xor of outputs of S1
• E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.
• Table of frequencies of each dY:

60800006

11111110110111001011101010011000

1200261680

01110110010101000011001000010000
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Differential Probabilities

• The probability of dX ⇒ dY is the probability that a pair 
of inputs whose xor is dX, results in a pair of outputs 
whose xor is dY (for a given S-box).

• Namely, for dX=110100 these are the entries in the 
table divided by 64.

• Differential cryptanalysis uses entries with large values
– dX=0 ⇒ dY=0
– Entries with value 16/64
– (Recall that the outputs of the S-box are uniformly 

distributed, so the attacker gains a lot by looking at 
differentials rather than the original values.)
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Warmup

dL0 dR0= 0 (R0=R0*)

F K

dL1 = dR0 = 0 dR1 = dL0

Inputs: L0R0,   L0*R0*,    s.t. R0=R0*.  
Namely, inputs whose xor is dL0 0
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3 Round DES

dL0 = 01960018 dR0 = 0

F K

F K

dL3 =48000000 dR3=4196401A

F K

The attacker knows the two 
plaintext/ciphertext pairs, 
and therefore also their 
differences
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Intermediate differences equal to 
plaintext/ciphertext differences

dL0 = 01960018 dR0 = 0

F K

F K

dL3=48000000 dR3=4196401A

F K

dL1 = 0 dR1 =01960018

dR2 =48000000dL2 =01960018

dF = 4196401A 
⊕ 01960018
=    40004002

Note that here the 
adversary also
knows the actual 
two values 
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Finding K

L3’ =48000000 R3’ =4196401A

K3

R2’ =48000000L2’ =01960018

S boxes

Output xor of F (i.e., 

S boxes) is 40004002

⇒Table enumerates

options for the pairs of

inputs to S box

The actual two inputs

to F are known

Find which K3 maps the inputs to an 

s-box input pair that results in the output pair!
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DES with more than 3 rounds

• Carefully choose pairs of plaintexts with specific xor, and 
determine xor of pairs of intermediate values at various 
rounds. 

• E.g., if dL0=40080000x, dR0=04000000x

Then, with probability ¼, dL3=04000000x, dR3=4008000x

• 8 round DES is broken given 214 chosen plaintexts.
• 16 round DES is broken given 247 chosen plaintexts...
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Message Authentication
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Data Integrity, Message Authentication

• Risk: an active adversary might change messages 
exchanged between Alice and Bob

Alice

Eve

Bob

• Authentication is orthogonal to secrecy. It is a relevant  
challenge regardless of whether encryption is applied.

M
M M’

M’
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One Time Pad

• OTP is a perfect cipher, yet provides no authentication
– Plaintext x1x2…xn

– Key k1k2…kn

– Ciphertext c1=x1⊕k1, c2=x2⊕k2,…,cn=xn⊕kn

• Adversary changes, e.g., c2 to 1⊕c2

• User decrypts 1⊕x2

• Error-detection codes are insufficient. (For example, 
linear codes can be changed by the adversary, even if 
encrypted.)
– They were not designed to withstand adversarial behavior.
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Definitions

• Scenario: Alice and Bob share a secret key K.
• Authentication algorithm:

– Compute a Message Authentication Code: α = MACK(m).
– Send m and α

• Verification algorithm: VK(m, α).
– VK(m, MACK(m)) = accept.  
– For α ≠ MACK(m),  VK(m, α) = reject.

• How does Vk(m) work?
– Receiver knows k. Receives m and α.
– Receiver uses k to compute MACK(m).
– VK(m, α) = 1 iff MACK(m)= α.
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Common Usage of MACs for message authentication 

Alice Bob
k

m, MACk(m)
Is α = MACk(m) ?

α

k

Eve

Alice Bob
k

m, MACk(m)

Got you !           
α’ ≠ MACk(m’) !

m’,α’

k

does not know k
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Requirements

• Security: The adversary,
– Knows the MAC algorithm (but not K).
– Is given many pairs (mi , MACK(mi)), where the mi values 

might also be chosen by the adversary (chosen plaintext).
– Cannot compute (m, MACK(m)) for any new m (∀i m≠mi).
– The adversary must not be able to compute MACK(m) 

even for a message m which is “meaningless” (since we 
don’t know the context of the attack).

• Efficiency: MAC output must be of fixed length, and as 
short as possible.
– ⇒ The MAC function is not 1-to-1.
– ⇒ An n bit MAC can be broken with prob. of at least 2-n.
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Constructing MACs

• Based on block ciphers (CBC-MAC)
or, 

• Based on hash functions
– More efficient
– At the time, encryption technology was controlled (export 

restricted) and it was preferable to use other means when 
possible.
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CBC

• Reminder: CBC encryption
• Plaintext block is xored with previous ciphertext block 

P1

Ek

C1

P2

Ek

C2

Pn

Ek

Cn

IV …

…
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CBC MAC

• Use IV=0. Adversary does not know k.
• Encrypt M in CBC mode, using the MAC key. Discard 

C1,…,Cn-1 and define MACK(M1,…,Mn)=Cn.

M1

Ek

C1

M2

Ek

C2

Mn

Ek

Cn

0...0 …

…

output
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Security of CBC-MAC

• Claim: if EK is pseudo-random then CBC-MAC, applied to 
fixed length messages,  is a pseudo-random function, 
and is therefore resilient to forgery.

• But, insecure if variable lengths messages are allowed
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Security of CBC-MAC

• Insecurity of CBC-MAC when applied to messages of 
variable length:
– Get C1 = CBC-MACK(M1) = EK(0 ⊕ M1)
– Ask for MAC of C1, i.e., C2 = CBC-MACK(C1) = EK(0 ⊕ C1)
– But, EK(C1 ⊕ 0) = EK( EK(0 ⊕ M1) ⊕ 0) = CBC-MACK(M1 | 0)

• It’s known that CBC-MAC is secure if message space is prefix-free.

• Can you show, for every n,  a collision between two messages of 
lengths 1 and n+1?

M1

Ek

C1

0..0

Ek

C2

0...0M1

Ek

C1

0...0 C1

Ek

C2

0...0
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CBC-MAC for variable length messages

• Solution 1: The first block of the message is set to be 
its length. I.e., to authenticate M1,…,Mn, apply CBC-
MAC to (n,M1,…,Mn).
– Works since now message space is prefix-free.
– Drawback: The message length (n) must be known in 

advance.
• “Solution 2”: apply CBC-MAC to (M1,…,Mn,n)

– Message length does not have to be known is advance
– But, this scheme is broken (see, M. Bellare, J. Kilian, P. 

Rogaway, The Security of Cipher Block Chaining, 1984)

• Solution 3: (preferable)
– Use a second key K’.
– Compute MACK,K’(M1,…,Mn) = EK’(MACK(M1,…,Mn))
– Essentially the same overhead as CBC-MAC
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Hash functions

• MACs can be constructed based on hash functions.

• A hash function h:X → Y maps long inputs to fixed size 
outputs.  (|X|>|Y|)

• No secret key. The hash function algorithm is public.

• If |X|>|Y| there are collisions (x≠x’ for which h(x)=h(x’)).
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Security definitions for hash functions

1. Weak collision resistance: for any x∈X, it is hard to find 
x’≠x such that  h(x)=h(x’). (Also known as “universal 
one-way hash”, or “second preimage resistance”).

• In other words, there is no efficient algorithm which is 
given x and can find an x’ such that h(x)=h(x’).

2. Strong collision resistance: it is hard to find any x,x’ for 
which h(x)=h(x’).

• In other words, there is no no efficient algorithm which can 
find a pair x,x’ such that h(x)=h(x’).
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Security definitions for hash functions

• It’s easier to find collisions. (Namely, under reasonable 
assumptions it holds that if it is possible to achieve 
security according to definition (2) then it is also 
possible to achieve security according to definition(1).)    

• Therefore strong collision resistance is a stronger 
assumption. 

• Real world hash functions: MD5, SHA-1, SHA-256. 

Hmm..
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The Birthday Phenomenon (Paradox)

• For 23 people chosen at random, the probability that two of 
them have the same birthday is ½.

• Compare to: the prob. that one or more of them has the 
same birthday as Alan Turing is 23/365 (actually, 1-(1-
1/365)23.)

• More generally, for a random h:X → Z, if we choose about 
|Z|½ elements of Z at random (1.17 |Z|½), the probability that 
two of them are mapped to the same image is > ½. 

• Implication: it’s harder to achieve strong collision resistance
– A random function with a n bit output

• Find x,x’ with h(x)=h(x’) after about 2n/2 tries.

• Find x≠0 s.t. h(x)=h(0) after about 2n attempts. 
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From collision-resistance for fixed length inputs, 
to collision-resistance for arbitrary input lengths

• Hash function: 
– Input block length is usually 512 bits (|X|=512)
– Output length is at least 160 bits (birthday attacks)

• Extending the domain to arbitrary inputs (Damgard-Merkle)
– Suppose h:{0,1}512 -> {0,1}160

– Input: M=m1…ms,  |mi|=512-160=352.  (what if |M|≠352·i bits?)

– Define: y0=0160.  yi=h(yi-1,mi).  ys+1=h(ys,s).  h(M)=ys+1.
– Why is it secure? What about different length inputs?

m1

0160

h
m2

h
ms

h(M)… h
s
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Proof

• Show that if we can find M≠M’ for which H(M)=H(M’), 
we can find blocks m ≠ m’ for which h(m)=h(m’).

• Case 1: suppose |M|=s, |M’|=s’, and s ≠ s’
– Then, collision: H(M)=h(ys,s) = h(ys’,s’)=H(M’)

• Case 2: |M|=|M’|=s
– We know that H(M)=h(ys,s)=h(y’s,s)=H(M’)
– If ys ≠ y’s then we found a collision in h.
– Otherwise, go from i=s-1 to i=1:

• yi+1 = y’i+1 implies h(yi,mi+1) = h(y’I,m’i+1).

• If yi ≠ y’i or  mi+1 ≠ m’i+1, then we found a collision.

• M ≠ M’ and therefore there is an i for which mi+1 ≠ m’i+1
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The implication of collisions

• Given a hash function with 2n possible outputs. 
Collisions can be found
– after a search of 2n/2 values
– even faster if the function is weak (MD5, SHA-1)

• We find x, x’ such that h(x)=h(x’), but we cannot control 
the value of x, x’.

• Can we find “meaningful” colliding values x, x’ ?
– The case of pdf files…
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Basing MACs on Hash Functions 

• Hash functions are not keyed. MACK uses a key.
• Best attack should not succeed with prob > max(2-|k|,2-|MAC()|).
• Idea: MAC combines message and a secret key, and hashes 

them with a collision resistant hash function.
– E.g. MACK(m) = h(k,m). (insecure.., given MACK(m) can compute 

MACK(m,|m|,m’), if using the MD construction)
– MACK(m) = h(m,k). (insecure.., regardless of key length, use a 

birthday attack to find m,m’ such that h(m)=h(m’).)

• How should security be proved?:
– Show that if MAC is insecure then so is hash function h.
– Insecurity of MAC: adversary can generate MACK(m) without knowing 

k.
– Insecurity of h: adversary finds collisions (x≠x’, h(x)=h(x’).)
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HMAC

• Input: message m, a key K, and a hash function h.
• HMACK(m) = h( K ⊕ opad, h(K ⊕ ipad, m))

– where ipad, opad are 64 byte long fixed strings
– K is 64 byte long (if shorter, append 0s to get 64 bytes).

• Overhead: the same as that of applying h to m, plus an 
additional invocation to a short string.

• It was proven [BCK] that if HMAC is broken then either
– h is not collision resistant (even when the initial block is 

random and secret), or
– The output of h is not “unpredcitable” (when the initial 

block is random and secret)
• HMAC is used everywhere (SSL, IPSec).
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What we learned today

• Differential cryptanalysis of DES
• Message authentication

– CBC MAC
– Hash functions
– The birthday paradox
– HMAC


