

Benny Pinkas

March 4, 2008

Introduction to Cryptography, Benny Pinkas

page 1

1

Feistel Networks

- Encryption:
- Input: $P = L_{i-1} | R_{i-1} . |L_{i-1}| = |R_{i-1}|$ - $L_i = R_{i-1}$
 - $R_{i} = L_{i-1} \oplus F(K_{i}, R_{i-1})$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if *f* is not).
- The same code/circuit, with keys in reverse order, can be used for decryption.
- Theoretical result [LubRac]: If f is a pseudo-random function then a 4 rounds Feistel network gives a pseudo-random permutation

Introduction to Cryptography, Benny Pinkas

page 2

DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
 - How many rounds?
 - How are the round keys generated?
 - What is F?
- DES (Data Encryption Standard)
 - Designed by IBM and the NSA, 1977.
 - 64 bit input and output
 - 56 bit key
 - 16 round Feistel network
 - Each round key is a 48 bit subset of the key
- Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).

March 4, 2008

DES F functions

- Very careful design (it is now known that random choices for the S-boxes result in weak encryption).
- Each s-box maps 6 bits to 4 bits:
 - A 4×16 table of 4-bit entries.
 - Bits 1 and 6 choose the row, and bits 2-5 choose column.
 - Each row is a *permutation* of the values 0,1,...,15.
 - Therefore, given an output there are exactly 4 options for the input
 - Changing one input bit changes at least two output bits \Rightarrow avalanche effect.

March 4, 2008

Differential Cryptanalysis of DES

Distribution of Y' for S1

- dX=110100
- There are 2⁶=64 input pairs with this difference, { (000000,110100), (000001,110101),...}
- For each pair we can compute the xor of outputs of S1
- E.g., S1(00000)=1110, S1(110100)=1001. dY=0111.
- Table of frequencies of each dY:

3 Round DES

The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

Introduction to Cryptography, Benny Pinkas

Intermediate differences equal to plaintext/ciphertext differences

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if dL₀=40080000_x, dR₀=04000000_x
 Then, with probability ¼, dL₃=04000000_x, dR₃=4008000_x
- 8 round DES is broken given 2¹⁴ chosen plaintexts.
- 16 round DES is broken given 2⁴⁷ chosen plaintexts...

Definitions

- Scenario: Alice and Bob share a secret key K.
- Authentication algorithm:
 - Compute a Message Authentication Code: $\alpha = MAC_{\kappa}(m)$.
 - Send m and α
- Verification algorithm: $V_{\kappa}(m, \alpha)$.
 - $V_{\kappa}(m, MAC_{\kappa}(m)) = accept.$
 - For $\alpha \neq MAC_{\kappa}(m)$, $V_{\kappa}(m, \alpha) = reject$.
- How does $V_k(m)$ work?
 - Receiver knows k. Receives m and α .
 - Receiver uses k to compute $MAC_{\kappa}(m)$.

$$-V_{\kappa}(m, \alpha) = 1$$
 iff $MAC_{\kappa}(m) = \alpha$.

- Security: The adversary,
 - Knows the MAC algorithm (but not *K*).
 - Is given many pairs $(m_i, MAC_{\kappa}(m_i))$, where the m_i values might also be chosen by the adversary (chosen plaintext).
 - Cannot compute (*m*, $MAC_{\kappa}(m)$) for any new *m* ($\forall i \ m \neq m_i$).
 - The adversary must not be able to compute $MAC_{K}(m)$ even for a message m which is "meaningless" (since we don't know the context of the attack).
- Efficiency: MAC output must be of fixed length, and as short as possible.
 - \Rightarrow The MAC function is not 1-to-1.
 - \Rightarrow An n bit MAC can be broken with prob. of at least 2⁻ⁿ.

- Weak collision resistance: for any x∈X, it is hard to find x'≠x such that h(x)=h(x'). (Also known as "universal one-way hash", or "second preimage resistance").
 - In other words, there is no efficient algorithm which is given x and can find an x' such that h(x)=h(x').
- 2. Strong collision resistance: it is hard to find any x,x' for which h(x)=h(x').
 - In other words, there is no no efficient algorithm which can find a pair x,x' such that h(x)=h(x').

- For 23 people chosen at random, the probability that two of them have the same birthday is 1/2.
- Compare to: the prob. that one or more of them has the same birthday as Alan Turing is 23/365 (actually, 1-(1-1/365)²³.)
- More generally, for a random h:X \rightarrow Z, if we choose about $|Z|^{\frac{1}{2}}$ elements of Z at random (1.17 $|Z|^{\frac{1}{2}}$), the probability that two of them are mapped to the same image is > $\frac{1}{2}$.
- Implication: it's harder to achieve strong collision resistance
 - A random function with a n bit output
 - Find x,x' with h(x)=h(x') after about $2^{n/2}$ tries.
 - Find $x \neq 0$ s.t. h(x)=h(0) after about 2^n attempts.

From collision-resistance for fixed length inputs, to collision-resistance for arbitrary input lengths

- Hash function:
 - Input block length is usually 512 bits (|X|=512)
 - Output length is at least 160 bits (birthday attacks)
- Extending the domain to arbitrary inputs (Damgard-Merkle)
 - Suppose h: $\{0,1\}^{512}$ -> $\{0,1\}^{160}$
 - − Input: $M=m_1...m_s$, $|m_i|=512-160=352$. (what if $|M|\neq352$ ·i bits?)
 - Define: $y_0=0^{160}$. $y_i=h(y_{i-1},m_i)$. $y_{s+1}=h(y_s,s)$. $h(M)=y_{s+1}$.
 - Why is it secure? What about different length inputs?

Basing MACs on Hash Functions

- Hash functions are not keyed. MAC_{K} uses a key.
- Best attack should not succeed with prob > $max(2^{-|k|}, 2^{-|MAC()|})$.
- Idea: MAC combines message and a secret key, and hashes them with a collision resistant hash function.
 - E.g. MAC_K(m) = h(k,m). (insecure.., given MAC_K(m) can compute MAC_K(m,|m|,m'), if using the MD construction)
 - MAC_K(m) = h(m,k). (insecure.., regardless of key length, use a birthday attack to find m,m' such that h(m)=h(m').)
- How should security be proved?:
 - Show that if MAC is insecure then so is hash function h.
 - Insecurity of MAC: adversary can generate $MAC_{\kappa}(m)$ without knowing k.
 - Insecurity of h: adversary finds collisions ($x \neq x'$, h(x)=h(x').)

March 4, 2008

HMAC

- Input: message *m*, a key *K*, and a hash function *h*.
- $HMAC_{K}(m) = h(K \oplus opad, h(K \oplus ipad, m))$
 - where ipad, opad are 64 byte long fixed strings
 - K is 64 byte long (if shorter, append 0s to get 64 bytes).
- Overhead: the same as that of applying h to m, plus an additional invocation to a short string.
- It was proven [BCK] that if HMAC is broken then either
 - h is not collision resistant (even when the initial block is random and secret), or
 - The output of h is not "unpredcitable" (when the initial block is random and secret)
- HMAC is used everywhere (SSL, IPSec).

