Topics in Cryptography

Lecture 3

Benny Pinkas

Block Ciphers

- Plaintexts, ciphertexts of fixed length, |m|. Usually, |m|=64 or $|\mathrm{m}|=128$ bits.
- The encryption algorithm E_{k} is a permutation over $\{0,1\}^{|m|}$, and the decryption D_{k} is its inverse. (They are not permutations of the bit order, but rather of the entire string.)
- Ideally, use a random permutation.
- Can only be implemented using a table with $2^{|m|}$ entries ${ }^{\circ}$
- Instead, use a pseudo-random permutation, keyed by a key k.
- Implemented by a computer program
 whose input is m, k.

Pseudo-random functions

- $F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- The first input is the key, and once chosen it is kept fixed.
- For simplicity, assume $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- $F(k, x)$ is written as $F_{k}(x)$
- F is pseudo-random if $F_{k}()$ (where k is chosen uniformly at random) is indistinguishable (to a polynomial distinguisher D) from a function f chosen at random from all functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{\mathrm{n}}$
- There are 2^{n} choices of F_{k}, whereas there are $\left(2^{n}\right)^{2 n}$ choices for f.
- The distinguisher D's task:
- We choose a function G. With probability $1 / 2 G$ is F_{k} (where $k \in_{R}$ $\{0,1\}^{\mathrm{n}}$), and with probability $1 / 2$ it is a random function f.
- D can compute $G\left(x_{1}\right), G\left(x_{2}\right), \ldots$ for any x_{1}, x_{2}, \ldots it chooses.
- D must say if $G=F_{k}$ or $G=f$.
- F_{k} is pseudo-random if D succeeds with probability $1 / 2$.

Pseudo-random permutations

- $F_{k}(x)$ is a keyed permutation if for every choice of k, $F_{k}()$ is one-to-one.
- Note that in this case $F_{k}(x)$ has an inverse, namely for every y there is exactly one x for which $F_{k}(x)=y$.
- $F_{k}(x)$ is a pseudo-random permutation if
- It is a keyed permutation
- It is indistinguishable (to a polynomial distinguisher D) from a permutation f chosen at random from all permutations mapping $\{0,1\}^{\mathrm{n}}$ to $\{0,1\}^{\text {n }}$.

Block Ciphers

- Modeled as a pseudo-random permutation.
- Encrypt/decrypt whole blocks of bits
- Might provide better encryption by simultaneously working on a block of bits
- One error in ciphertext affects whole block
- Delay in encryption/decryption
- There was more research on the security of block ciphers than on the security of stream ciphers.

Block ciphers

- A block cipher is a function of a key and an |m| bit input, which has an |m| bit output.
- How can we encrypt plaintexts longer than |m|?
- Different modes of operation were designed for this task.

ECB Encryption Mode (Electronic Code Book)

Namely, encrypt each plaintext block separately.

Properties of ECB

- Simple and efficient ()
- Parallel implementation is possible -
- Does not conceal plaintext patterns $*$
$-\operatorname{Enc}\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{1}, \mathrm{P}_{3}\right)$
- Active attacks are possible $:$ (plaintext can be easily manipulated by removing, repeating, or interchanging blocks).

Encrypting bitmap images in ECB mode

CBC Encryption Mode (Cipher Block Chaining)

Previous ciphertext is XORed with current plaintext before encrypting current block. An initialization vector IV is used as a "seed" for the process. IV can be transmitted in the clear (unencrypted).

CBC Mode

Properties of CBC

- Asynchronous: the receiver can start decrypting from any block in the ciphertext. ©
- Errors in one ciphertext block propagate to the decryption of the next block (but that's it). ©
- Conceals plaintext patterns (same block \Rightarrow different ciphertext blocks) ©
- If IV is chosen at random, and E_{K} is a pseudo-random permutation, CBC provides chosen-plaintext security.
- But if IV is fixed, CBC does not even hide not common prefixes.
- No parallel implementation is known $*$
- Plaintext cannot be easily manipulated ©
- Standard in most systems: SSL, IPSec, etc.

OFB Mode (Output FeedBack)

- An initialization vector IV is used as a "seed" for generating a sequence of "pad" blocks
- $E_{k}(I V), E_{k}\left(E_{k}(I V)\right), E_{k}\left(E_{k}\left(E_{k}(I V)\right)\right), \ldots$
- Essentially a stream cipher.
- IV can be sent in the clear. Must never be repeated.

Properties of OFB

- Synchronous stream cipher. I.e., the two parties must know s_{0} and the current bit position.
- A block cipher can be used instead of a PRG.
- The parties must synchronize the location they are encrypting/decrypting. :
- Conceals plaintext patterns. If IV is chosen at random, and E_{K} is a pseudo-random permutation, CBC provides chosen-plaintext security. ©
- Errors in ciphertext do not propagate -
- Implementation:
- Pre-processing is possible ©
- No parallel implementation is known $)^{\circ}$
- Active attacks (by manipulating the plaintext) are possible :

CTR (counter) Encryption Mode

Design of Block Ciphers

- More an art/engineering challenge than science. Based on experience and public scrutiny.
- "Diffusion": each intermediate/output bit affected by many input bits
- "Confusion": avoid structural relationships between bits
- Cascaded (round) design: the encryption algorithm is composed of iterative applications of a simple round

Confusion-Diffusion and Substitution-Permutation Networks

- Construct a PRP for a large block using PRPs for small blocks
- Divide the input to small parts, and apply rounds:
- Feed the parts through PRPs ("confusion")
- Mix the parts ("diffusion")
- Repeat
- Why both confusion and diffusion are necessary?
- Design musts: Avalanche effect. Using reversible s-boxes.

Fig ins - Eubstituticn-Fermutation Metwork with the Healanche Charworistir

AES (Advanced Encryption Standard)

- Design initiated in 1997 by NIST
- Goals: improve security and software efficiency of DES
- 15 submissions, several rounds of public analysis
- The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

Rijndael animation

Reversible s-boxes

- Substitution-Permutation networks must use reversible s-boxes
- Allow for easy decryption
- However, we want the block cipher to be "as random as possible"
- s-boxes need to have some structure to be reversible
- Better use non-invertible s-boxes
- Enter Feistel networks
- A round-based block-cipher which uses s-boxes which are not necessarily reversible
- Namely, building an invertible function (permutation) from a non-invertible function.

Feistel Networks

- Encryption:
- Input: $\mathrm{P}=\mathrm{L}_{\mathrm{i}-1}\left|\mathrm{R}_{\mathrm{i}-1} \cdot\right| \mathrm{L}_{\mathrm{i}-1}\left|=\left|\mathrm{R}_{\mathrm{i}-1}\right|\right.$
$-L_{i}=R_{i-1}$
$-R_{i}=L_{i-1} \oplus F\left(K_{i}, R_{i-1}\right)$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).
- The same code/circuit, with keys in reverse order, can be used for decryption.
- Theoretical result [LubRac]: If f is
 a pseudo-random function then a 4 rounds Feistel network gives a pseudo-random permutation

DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
- How many rounds?
- How are the round keys generated?
- What is F ?
- DES (Data Encryption Standard)
- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput \approx software: $10 \mathrm{Mb} / \mathrm{sec}$, hardware: $1 \mathrm{~Gb} / \mathrm{sec}$ (in 1991!).

Security of DES

- Criticized for unpublished design decisions (designers did not want to disclose differential cryptanalysis).
- Very secure - the best attack in practice is brute force - 2006: $\$ 1$ million search machine: 30 seconds
- cost per key: less than \$1
- 2006 : 1000 PCs at night: 1 month
- Cost per key: essentially 0 (+ some patience)
- Some theoretical attacks were discovered in the 90s:
- Differential cryptanalysis
- Linear cryptanalysis: requires about 2^{40} known plaintexts
- The use of DES is not recommend since 2004 , but 3DES is still recommended for use.

Double DES

- DES is out of date due to brute force attacks on its short key (56 bits)
- Why not apply DES twice with two keys?
- Double DES: DES ${ }_{\mathrm{k} 1, \mathrm{k} 2}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right.$)
- Key length: 112 bits

- But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.
- Compared to brute a force attack, requiring 2^{112} operations and $\mathrm{O}(1)$ storage.

Meet-in-the-middle attack

- Meet-in-the-middle attack
$-\mathrm{C}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right)$
$-D_{k 2}(c)=E_{k 1}(m)$
- The attack:
- Input: (m,c) for which $c=E_{k 2}\left(\mathrm{E}_{\mathrm{k} 1}(m)\right)$
- For every possible value of k_{1}, generate and store $E_{k 1}(m)$.
- For every possible value of k_{2}, generate and store $D_{k 2}(c)$.
- Match k_{1} and k_{2} for which $E_{k 1}(m)=D_{k 2}(c)$.
- Might obtain several options for $\left(k_{1}, k_{2}\right)$. Check them or repeat the process again with a new (m, c) pair (see next slide)
- The attack is applicable to any iterated cipher. Running time and memory are $\mathrm{O}\left(2^{|\mathrm{k}|}\right)$, where $|\mathrm{k}|$ is the key size.

Meet-in-the-middle attack: how many pairs to check?

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given one plaintext-ciphertext pair (m,c)
- The attack looks for $k 1, k 2$, such that $D_{k 2}(c)=E_{k 1}(m)$
- The correct values of $\mathrm{k} 1, \mathrm{k} 2$ satisfies this equality
- There are 2^{112} (actually $2^{112}-1$) other values for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Each one of these satisfies the equalities with probability 2^{-64}
- We therefore expect to have $2^{112-64}=2^{48}$ candidates for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Suppose that we are given one pairs (m,c), (m', c')
- The correct values of $\mathrm{k} 1, \mathrm{k} 2$ satisfies both equalities
- There are 2^{112} (actually $2^{112}-1$) other values for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Each one of these satisfies the equalities with probability 2^{-128}
- We therefore expect to have $2^{112-128}<1$ false candidates for k_{1}, k_{2}.

Triple DES

- DDES $_{k 1, k 2}=E_{k 1}\left(D_{k 2}\left(E_{k 1}(m)\right)\right.$
- Why use Enc(Dec(Enc())) ?
- Backward compatibility: setting $\mathrm{k}_{1}=\mathrm{k}_{2}$ is compatible with single key DES
- Only two keys
- Effective key length is 112 bits
- Why not use three keys? There is a meet-in-the-middle attack with 2^{112} operations
- 3DES provides good security. Widely used. Less efficient.

Attacking DES

DES F functions

The S-boxes

- Very careful design (it is now known that random choices for the S-boxes result in weak encryption).
- Each s-box maps 6 bits to 4 bits:
- A 4×16 table of 4 -bit entries.
- Bits 1 and 6 choose the row, and bits 2-5 choose column.
- Each row is a permutation of the values $0,1, \ldots, 15$.
- Therefore, given an output there are exactly 4 options for the input
- Changing one input bit changes at least two output bits \Rightarrow avalanche effect.

Differential Cryptanalysis of DES

Differential Cryptanalysis [Biham-Shamir 1990]

- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
$-a=b \oplus c$
$-a=$ the bits of b in (known) permuted order
- Linear relations can be exposed by solving a system of linear equations

A Linear F in a Feistel Network?

- Suppose $F\left(\mathrm{R}_{\mathrm{i}-1}, \mathrm{~K}_{\mathrm{i}}\right)=\mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$
- Namely, that F is linear
- Then $\mathrm{R}_{\mathrm{i}}=\mathrm{L}_{\mathrm{i}-1} \oplus \mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$

$$
L_{i}=R_{i-1}
$$

- Write L_{16}, R_{16} as linear functions of $\mathrm{L}_{0}, \mathrm{R}_{0}$ and K .
- Given $L_{0} R_{0}$ and $L_{16} R_{16}$ Solve and find K .
- F must therefore be non-linear.

- F is the only source of nonlinearity in DES.

DES F functions

Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
- The plaintexts are P and P^{*}
- Their difference is $d P=P \oplus P^{*}$
- Let X and X^{*} be two intermediate values, for P and P^{*}, respectively, in the encryption process.
- Their difference is $d X=X \oplus X^{*}$
- Namely, dX is always the result of two inputs

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X^{*} are inputs to the same S-box. We can compute their difference $d X=X \oplus X^{*}$.
- $Y=S(X)$
- When $d X=0, X=X^{*}$, and therefore $Y=S(X)=S\left(X^{*}\right)=Y^{*}$, and $\mathrm{dY}=0$.
- When $d X \neq 0, X \neq X^{*}$ and we don't know $d Y$ for sure, but we can investigate its distribution.
- For example,

Distribution of Y^{\prime} for S1

- $d X=110100$
- There are $2^{6}=64$ input pairs with this difference, $\{(000000,110100)$, (000001,110101),...\}
- For each pair we can compute the xor of outputs of S1
- E.g., $\mathrm{S} 1(000000)=1110, \mathrm{~S} 1(110100)=1001$. $\mathrm{dY}=0111$.
- Table of frequencies of each dY:

0000	0001	0010	0011	0100	0101	110	0111
0	8	16	6	2	0	0	12
1000	1001	1010	1017	100	1101	110	1111
6	0	0	0	0	8	0	6

Differential Probabilities

- The probability of $d X \Rightarrow d Y$ is the probability that a pair of inputs whose xor is dX , results in a pair of outputs whose xor is dY (for a given S-box).
- Namely, for $\mathrm{dX}=110100$ these are the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values
$-\mathrm{dX}=0 \Rightarrow \mathrm{dY}=0$
- Entries with value 16/64
- (Recall that the outputs of the S-box are uniformly distributed, so the attacker gains a lot by looking at differentials rather than the original values.)

