# Introduction to Cryptography

Lecture 2

Benny Pinkas

February 19, 2008

Introduction to Cryptography, Benny Pinkas

# Perfect Cipher

- What type of security would we like to achieve?
- In an "ideal" world, the message will be delivered in a magical way, out of the reach of the adversary
  - An encryption system will therefore be called secure if no adversary can learn any partial information about the plaintext from the ciphertext.
- Definition: a perfect cipher
  - $Pr(plaintext = P \mid ciphertext = C) = Pr(plaintext = P)$
  - The ciphertext does not reveal any information about the plaintext
  - Sometimes called "semantic security".

February 19, 2008

Introduction to Cryptography, Benny Pinkas

- "Perfect cipher" is a definition of a security property
- In the previous lecture, we saw an example of a perfect cipher, the one-time pad.
- When we want to discuss or prove general properties of perfect ciphers, we must refer to every encryption scheme that satisfies the definition.
  - Not only the one-time pad.

February 19, 2008

Introduction to Cryptography, Benny Pinkas

# **Perfect Ciphers**

- A simple criteria for perfect ciphers. :
- The cipher is perfect if, and only if,

```
\forall m_1, m_2 \in M, \forall cipher c,

Pr(Enc(m_1)=c) = Pr(Enc(m_2)=c).

(let's prove it)
```

- This criterion is called "indistinguishability".
- Idea: Regardless of the plaintext, the adversary sees the same distribution of ciphertexts and cannot distinguish between encryptions of different plaintexts.

February 19, 2008

Introduction to Cryptography, Benny Pinkas

#### **Proof** (of one direction)

- Perfect security:
  - ∀ m∈M, ∀cipher c, Pr(plaintext=m / ciphertext=c) =
     Pr(plaintext=m).
- Indistinguishability criterion:
  - $\forall$  m<sub>1</sub>,m<sub>2</sub>∈M,  $\forall$ cipher c,  $Pr(Enc(m_1)=c) = Pr(Enc(m_2)=c)$ .
- Perfect security ⇒ Indistinguishability criterion
   Pr(Enc(m₁)=c) = Pr(ciphertext=c / plaintext=m₁)
  - = Pr(ciphertext=c and plaintext=m<sub>1</sub>) / Pr(plaintext=m<sub>1</sub>)
  - = Pr(plaintext=m<sub>1</sub> / ciphertext=c) · Pr(ciphertext=c) /
    Pr(plaintext=m<sub>1</sub> )
  - = 1. Pr(ciphertext=c) / 1 = Pr(ciphertext=c)

February 19, 2008

Introduction to Cryptography, Benny Pinkas

#### Size of key space

- Perfect security holds even against an adversary that has unlimited computational powers. It is also called "information theoretic security" or "unconditional security".
- However, its key size is inefficient.
- Theorem: For a perfect encryption scheme, the number of possible keys is at least the number of possible plaintexts.
- Proof:
  - Given in class last week
- Corollary: Key length of one-time pad is optimal ☺

February 19, 2008

Introduction to Cryptography, Benny Pinkas

# Computational security

- The computation approach to security is more relaxed
  - It only worries about polynomial adversaries
  - Adversaries may succeed with very small probability
- Why are these relaxations required?
  - We want the number of possible keys to be smaller than the number of possible plaintexts |K|<|M|.</li>
  - (brute force attack) Given a ciphertext, an adversary can decrypt it with all keys. Since |K|<|M|, results cannot contain all messages and this leaks some information about the plaintext.
  - (key guess) Given a ciphertext c and a plaintext m, the adversary can guess at random a key k and check if E<sub>k</sub>(m)=c.

# Computational security

- How this works
  - Define a family of cryptosystems, based on a parameter n
     (often the key length).
  - Each choice of n defines a specific cryptosystem.
  - Encryption and decryption run in time polynomial in n.
  - "negligible probability" = smaller than any inverse polynomial in n. (see below)
  - The system is secure if any polynomial time adversary has a negligible probability of success.

February 19, 2008

Introduction to Cryptography, Benny Pinkas

#### An example

- A cryptosystem
  - Encryption and decryption take 10<sup>6</sup>n<sup>2</sup> cycles.
  - An adversary (who doesn't have the key) that runs 10<sup>8</sup>n<sup>4</sup> cycles, decrypts with probability at most 2<sup>20</sup>2<sup>-n</sup>
- Suppose n=50, and 1Ghz computer
  - Encryption and decryption take 2.5 seconds.
  - Adversary runs 1 week and decrypts with probability 2<sup>-30</sup>
- Suppose we have 16Ghz computers, and set n=100.
  - Encryption and decryption take 0.625 seconds.
  - Adversary runs 1 week and decrypts with probability 2-80.

February 19, 2008

Introduction to Cryptography, Benny Pinkas

# Negligible success probability

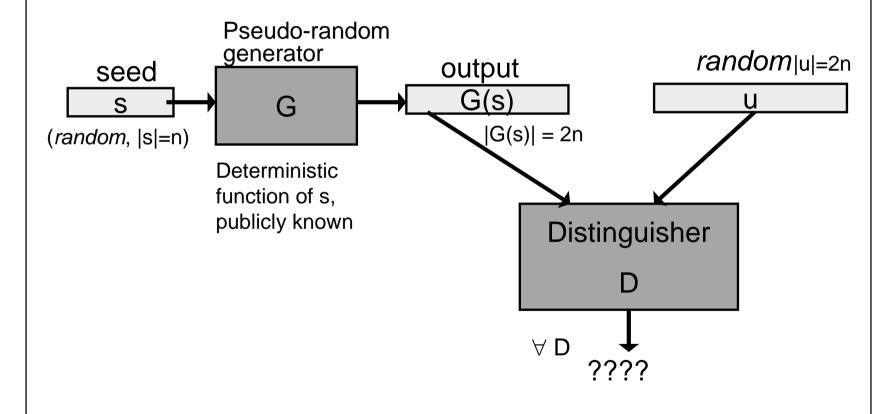
- A function f() is negligible if ∀ polynomial p(), ∃ N,
   s.t. ∀ n>N it holds that f(n) < 1/p(n).</li>
- The functions 2<sup>-n</sup>, 2<sup>-n<sup>0.5</sup></sup>, and 2<sup>-log(n)</sup> are all negligible.
  - 2<sup>-n</sup> is smaller than 10<sup>-6</sup> for all n>20
  - $-2^{-n^{0.5}}$  is smaller than  $10^{-6}$  for all n>400
  - $-2^{-log(n)}$  is smaller than  $10^{-6}$  for all  $n > \approx 10^6$
  - (Note however that for n>65536  $2^{-n^{0.5}} < 2^{-\log(n)}$ )

# Computational security

- We should only worry about polynomial adversaries
- Idea: Generate a string which "looks random" to any polynomial adversary. Use it instead of a OTP.
- What does it mean for a string to look random?
  - Fraction of bits set to 1 is ≈ 50%
  - Longest run of 0's is of length ≈ log(n),
  - Is that sufficient?...
- Enumerating a set of statistical tests that the string should pass is not enough.

#### Computational security – Pseudo-randomness

- Pseudo-random string:
  - No efficient observer can distinguish it from a uniformly random string of the same length
  - It "looks" random as long as the observer runs in polynomial time
- Motivation: Indistinguishable objects are equivalent
  - So, can use the pseudo-random string instead of a random one
- The foundation of modern cryptography
- (Note that no fixed string can be pseudo-random, or random. We consider a distribution of strings. A distribution of strings of length m is pseudo-random if it is indistinguishable from the uniform distribution of m bit strings.)


# Pseudo-random generators

- Pseudo-random generator (PRG)
  - $G: \{0,1\}^n \Rightarrow \{0,1\}^m$ 
    - A deterministic function, computable in polynomial time.
    - It must hold that m > n. Let us assume m=2m.
    - The function has only 2<sup>n</sup> possible outputs.
- Pseudo-random property:
  - $\forall$  polynomial time adversary D, (whose output is 0/1) if we choose inputs  $s \in_R \{0,1\}^n$ ,  $u \in_R \{0,1\}^m$ , (in other words, choose s and u uniformly at random), then it holds that D(G(s)) is similar to D(u) namely, Pr[ D(G(s)) ≠ D(u) ] is negligible

February 19, 2008

Introduction to Cryptography, Benny Pinkas

# Pseudo-random generator



February 19, 2008

Introduction to Cryptography, Benny Pinkas

# Properties of PRGs

- How can the adversary distinguish the PRG's output from a random one? (Exhaustive search?)
- Claim: If G is a PRG then it passes all statistical tests (e.g., the probability that the number of 1 bits in the PRG's output is < |m|/3 is negligible).</li>
- Can the output of G contain its input?
  - G(seed)= seed | G'(seed)
- Implementation of PRGs:
  - Based on mathematical/computational assumptions
  - Ad-hoc constructions

February 19, 2008

Introduction to Cryptography, Benny Pinkas

# Using a PRG for Encryption

- Replace the one-time-pad with the output of the PRG
- Key: a (short) random key k∈{0,1}<sup>|k|</sup>.
- Message  $m = m_1, \dots, m_{|m|}$ .
- Use a PRG G:  $\{0,1\}^{|k|} \rightarrow \{0,1\}^{|m|}$
- Key generation: choose  $k \in \{0,1\}^{|k|}$  uniformly at random.
- Encryption:
  - Use the output of the PRG as a one-time pad. Namely,
  - Generate  $G(k) = g_1, ..., g_{|m|}$
  - Ciphertext  $C = g_1 \oplus m_1, ..., g_{|m|} \oplus m_{|m|}$
- This is an example of a stream cipher.

February 19, 2008

Introduction to Cryptography, Benny Pinkas

#### Security of encryption against polynomial adversaries

- Perfect security (previous equivalent defs):
  - (indistinguishability)  $\forall$   $m_0, m_1 \in M$ ,  $\forall$ c, the probability that c is an encryption of  $m_0$  is equal to the probability that c is an encryption of  $m_1$ .
  - (semantic security) The distribution of m given the encryption of m is the same as the a-priori distribution of m.
- Security of pseudo-random encryption (equivalent defs):
  - (indistinguishability)  $\forall$  m<sub>0</sub>,m<sub>1</sub>∈M, no polynomial time adversary D can distinguish between the encryptions of m<sub>0</sub> and of m<sub>1</sub>. Namely,  $Pr[D(E(m_0))=1] \approx Pr[D(E(m_1))=1)$
  - (semantic security)  $\forall$  m<sub>0</sub>,m<sub>1</sub> $\in$ M, a polynomial time adversary which is given E(m<sub>b</sub>), where b $\in$ <sub>r</sub>{0,1}, succeeds in finding b with probability  $\approx$  ½.

#### Proofs by reduction

- We don't know how to prove unconditional proofs of computational security; we must rely on assumptions.
  - We can simply assume that the encryption scheme is secure. This is bad.
  - Instead, we will assume that some low-level problem is hard to solve, and then prove that the cryptosystem is secure under this assumption.
  - (For example, the assumption might be that a certain function G is a pseudo-random generator.)
  - Advantages of this approach:
    - It is easier to design a low-level function.
    - There are (very few) "established" assumptions in cryptography, and people prove the security of cryptosystem based on these assumptions.

February 19, 2008

Introduction to Cryptography, Benny Pinkas

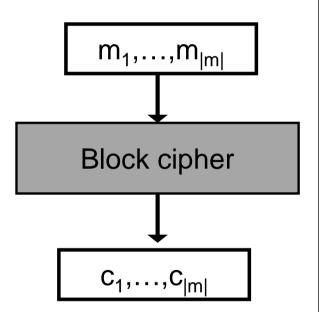
# Using a PRG for Encryption: Security

- The output of a pseudo-random generator is used for the encryption.
- Proof of security by reduction:
  - The assumption is that the PRG is strong (its output is indistinguishable from random).
  - We want to prove that in this case the encryption is strong (it satisfies the indistinguishability definition above).
  - In other words, prove that if one can break the security of the encryption (distinguish between encryptions of m<sub>0</sub> and of m<sub>1</sub>), then it is also possible to break the security of the PRG (distinguish its output from random).

# **Proof of Security**

- Suppose that there is a D() which distinguishes between (1) and (2)
- We know that no D() can distinguish between (3) and (4)
- We are given a string S and need to decide whether it is drawn from a pseudorandom distribution or from a uniformly random distribution
- Choose a random  $b \in \{0,1\}$  and compute  $m_b \oplus S$ . Give the result to D().
  - if S was chosen uniformly, D() must distinguish (3) from (4). (impossible)
  - if S is pseudorandom, D() must distinguish (1) from (2). (easy)
- If D() outputs b then declare "pseudorandom", otherwise declare "random".

February 19, 2008

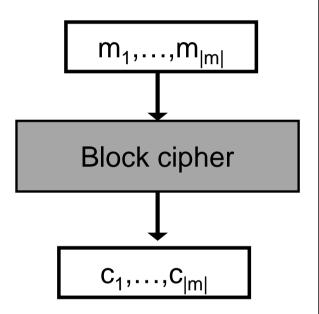

Introduction to Cryptography, Benny Pinkas

#### Stream ciphers

- Stream ciphers are based on pseudo-random generators.
  - Usually used for encryption in the same way as OTP
- Examples: A5, SEAL, RC4.
  - Very fast implementations.
  - RC4 is popular and secure when used correctly, but it was shown that its first output bytes are biased. This resulted in breaking WEP encryption in 802.11.
- Some technical issues:
  - Stream ciphers require synchronization (for example, if some packets are lost in transit).

# **Block Ciphers**

- Plaintexts, ciphertexts of fixed length, |m|.
   Usually, |m|=64 or |m|=128 bits.
- The encryption algorithm  $E_k$  is a *permutation* over  $\{0,1\}^{|m|}$ , and the decryption  $D_k$  is its inverse. (They *are not* permutations of the bit order, but rather of the entire string.)
- Ideally, use a random permutation. Instead, use a pseudo-random permutation, keyed by a key k.




February 19, 2008

Introduction to Cryptography, Benny Pinkas

# **Block Ciphers**

- Modeled as a pseudo-random permutation.
- Encrypt/decrypt whole blocks of bits
  - Might provide better encryption by simultaneously working on a block of bits
  - One error in ciphertext affects whole block
  - Delay in encryption/decryption
  - There was more research on the security of block ciphers than on the security of stream ciphers.
- Different modes of operation (for encrypting longer inputs)



February 19, 2008

Introduction to Cryptography, Benny Pinkas

# What we've learned today

- Perfect security implies |M| ≤ |K|
- Computational security
- Pseudo-randomness, Pseudo-random generator
- Block ciphers

February 19, 2008

Introduction to Cryptography, Benny Pinkas