
1

page 1April 15, 2008 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 10

Signatures, Public Key Infrastructure (PKI), hash chains,
hash trees, SSL.

Benny Pinkas

2

page 2April 15, 2008 Introduction to Cryptography, Benny Pinkas

Some more signature schemes

3

page 3April 15, 2008 Introduction to Cryptography, Benny Pinkas

Rabin signatures

• Same paradigm as RSA signatures:
– f(m) = m2 mod N. (N=pq).
– Sig(m) = s, s.t. s2 = m mod N. I.e., the square root of m.

• Unlike RSA,
– Not all m are QR mod N.
– Therefore, only ¼ of messages can be signed.

• Solutions:
– Use random padding. Choose padding until you get a QR.
– Deterministic padding (Williams system).

• A total break given a chosen message attack. (show)
• Must therefore use a hash function H as in RSA.

4

page 4April 15, 2008 Introduction to Cryptography, Benny Pinkas

El Gamal signature scheme

• Invented by same person but different than the
encryption scheme. (think why)

• A randomized signature: same message can have
different signatures.

• Based on the hardness of extracting discrete logs

• The DSA (Digital Signature Algorithm/Standard) that
was adopted by NIST in 1994 is a variation of El-Gamal
signatures.

5

page 5April 15, 2008 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Key generation:
– Work in a group Zp

* where discrete log is hard.
– Let g be a generator of Zp

*.
– Private key 1 < a < p-1.
– Public key p, g, y=ga.

• Signature: (of M)
– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.

6

page 6April 15, 2008 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Signature:
– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:
– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead:
– Signature: one (offline) exp. Verification: three exps.

same r in
both places!

7

page 7April 15, 2008 Introduction to Cryptography, Benny Pinkas

El Gamal signature: comments

• Can work in any finite Abelian group
– The discrete log problem appears to be harder in elliptic

curves over finite fields than in Zp* of the same size.
– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find yr · rs = gm mod p
– E.g., choose random r = gk and either solve dlog of gm/yr to

the base r, or find s=k-1(m - loggy · r) (????)
• Notes:

– A different k must be used for every signature
– If no hash function is used (i.e. sign M rather than

m=H(M)), existential forgery is possible
– If receiver doesn’t check that 0<r<p, adversary can sign

messages of his choice.

8

page 8April 15, 2008 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure

9

page 9April 15, 2008 Introduction to Cryptography, Benny Pinkas

Key Infrastructure for symmetric key encryption

• Each user has a shared key with each other user
– A total of n(n-1)/2 keys
– Each user stores n-1 keys

10

page 10April 15, 2008 Introduction to Cryptography, Benny Pinkas

Key Distribution Center (KDC)

• The KDC shares a symmetric key Ku with every user u
• Using this key they can establish a trusted channel
• When u wants to communicate with v

– u sends a request to the KDC
– The KDC

• authenticates u

• generates a key Kuv to be used by u and v

• sends Enc(Ku, Kuv) to u, and Enc(Kv, Kuv) to v

11

page 11April 15, 2008 Introduction to Cryptography, Benny Pinkas

Key Distribution Center (KDC)

• Advantages:
– A total of n keys, one key per user.
– easier management of joining and leaving users.

• Disadvantages:
– The KDC can impersonate anyone
– The KDC is a single point of failure, for both

• security

• quality of service

• Multiple copies of the KDC
– More security risks
– But better availability

12

page 12April 15, 2008 Introduction to Cryptography, Benny Pinkas

Trusting public keys

• Public key technology requires every user to remember
its private key, and to have access to other users’
public keys

• How can the user verify that a public key PKv
corresponds to user v?
– What can go wrong otherwise?

• A simple solution:
– A trusted public repository of public keys and

corresponding identities
• Doesn’t scale up

• Requires online access per usage of a new public key

13

page 13April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• A method to bootstrap trust
– Start by trusting a single party and knowing its public key
– Use this to establish trust with other parties (and associate

them with public keys)

• The Certificate Authority (CA) is trusted party.
– All users have a copy of the public key of the CA
– The CA signs Alice’s digital certificate. A simplified

certificate is of the form (Alice, Alice’s public key).

14

page 14April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• When we get Alice’s certificate, we
– Examine the identity in the certificate
– Verify the signature
– Use the public key given in the certificate to

• Encrypt messages to Alice

• Or, verify signatures of Alice

• The certificate can be sent by Alice without any online
interaction with the CA.

15

page 15April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• Unlike KDCs, the CA does not have to be online to
provide keys to users
– It can therefore be better secured than a KDC
– The CA does not have to be available all the time

• Users only keep a single public key – of the CA
• The certificates are not secret. They can be stored in a

public place.
• When a user wants to communicate with Alice, it can

get her certificate from either her, the CA, or a public
repository.

• A compromised CA
– can mount active attacks (certifying keys as being Alice’s)
– but it cannot decrypt conversations.

16

page 16April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• An example.
– To connect to a secure web site using SSL or TLS, we

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.

17

page 17April 15, 2008 Introduction to Cryptography, Benny Pinkas

An example of an X.509 certificate

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consult ing cc,

OU=Certification Services Division, CN=Thawte Server
CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU= FreeSoft,
CN=www.freesoft.org/emailAddress=baccala@freesoft.o rg

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35 :1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d: 9d:
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f: 92:…

18

page 18April 15, 2008 Introduction to Cryptography, Benny Pinkas

19

page 19April 15, 2008 Introduction to Cryptography, Benny Pinkas

20

page 20April 15, 2008 Introduction to Cryptography, Benny Pinkas

21

page 21April 15, 2008 Introduction to Cryptography, Benny Pinkas

22

page 22April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certificates

• A certificate usually contains the following information
– Owner’s name
– Owner’s public key
– Encryption/signature algorithm
– Name of the CA
– Serial number of the certificate
– Expiry date of the certificate
– …

• Your web browser contains the public keys of some
CAs

• A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

23

page 23April 15, 2008 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

• The goal: build trust on a global level

• Running a CA:
– If people trust you to vouch for other parties, everyone

needs you.
– A license to print money
– But,

• The CA should limit its responsibilities, buy insurance…

• It should maintain a high level of security

• Bootstrapping: how would everyone get the CA’s public key?

24

page 24April 15, 2008 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
– Suitable in particular for enterprises.

• Monopoly + delegated CAs:
– top level CA can issue speial certificates for other CAs
– Certificates of the form

• [(Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)ROOT-CA]

Root CA

CA1 CA2

CA3

Alice

Bob

25

page 25April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certificate chain

26

page 26April 15, 2008 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure

• Oligarchy
– Multiple trust anchors (top level CAs)

• Pre-configured in software

• User can add/remove CAs

• Top-down with name constraints
– Like monopoly + delegated CAs
– But every delegated CA has a predefined portion of the

name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)
– More trustworthy

27

page 27April 15, 2008 Introduction to Cryptography, Benny Pinkas

Revocation

• Revocation is a key component of PKI
– Each certificate has an expiry date
– But certificates might get stolen, employees might leave

companies, etc.
– Certificates might therefore need to be revoked before

their expiry date
– New problem: before using a certificate we must verify that

it has not been revoked
• Often the most costly aspect of running a large scale public

key infrastructure (PKI)

• How can this be done efficiently?

28

page 28April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certificate Revocation Lists (CRLs)

• A revocation agency (RA) issues a list of revoked
certificates (i.e., “bad” certificates)
– The list is updated and published regularly (e.g. daily)
– Before trusting a certificate, users must consult the most

recent CRL in addition to checking the expiry date.
• Advantages: simple.
• Drawbacks:

– Scalability. CRLs can be huge. There is no short proof that
a certificate is valid.

– There is a vulnerability windows between a compromise of
certificate and the next publication of a CRL.

– Need a reliable way of distributing CRLs.
• Improving scalability using “delta CRLs”: a CRL that only

lists certificates which were revoked since the issuance of a
specific, previously issued CRL.

29

page 29April 15, 2008 Introduction to Cryptography, Benny Pinkas

Explicit revocation: OCSP

• OCSP (Online Certificate Status Protocol)
– RFC 2560, June 1999.

• OCSP can be used in place, or in addition, to CRLs
• Clients send a request for certificate status information.

– An OCSP server sends back a response of "current",
"expired," or "unknown“.

– The response is signed (by the CA, or a Trusted Responder,
or an Authorized Responder certified by the CA).

• Provides instantaneous status of certificates
– Overcomes the chief limitation of CRL: the fact that updates

must be frequently downloaded and parsed by clients to
keep the list current

30

page 30April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certificate Revocation System (CRS)

• Certificate Revocation System (Micali’96)
• Puts the burden of proof on the certificate holder (who

must prove that the certificate is still valid).

• In theory, we could limit the lifetime of certificates to a
single day, and require the certificate holder to ask for a
new certificate every day.
– This would result in a high overhead at the CA

31

page 31April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certificate Revocation System (CRS)

• It is possible to reduce the overhead of the CA by using
a hash chain
– The certificate includes Y365 = f 365(Y0). This value is part

of the information signed by the CA. f is one-way.
– On day d,

• If the certificate is valid, then Y365-d = f 365-d(Y0) is sent by the
CA to the certificate holder or to a directory.

• The certificate receiver uses the daily value (f 365-d(Y0)) to
verify that the certificate is still valid. (how?)

• Advantage: A short, individual, proof per certificate.

• Disadvantage: Daily overhead, even when a cert is valid.

32

page 32April 15, 2008 Introduction to Cryptography, Benny Pinkas

Merkle Hash Tree (will be useful later)

• A method of committing to (by hashing together) n
values, x1,…,xn, such that
– The result is a single hash value
– For any xi, it is possible to prove that it appeared in the

original list, using a proof of length O(log n).

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

33

page 33April 15, 2008 Introduction to Cryptography, Benny Pinkas

Merkle Hash Tree

• H is a collision intractable hash function
• Any change to a leaf results in a change to the root
• To sign the set of values it is sufficient to sign the root

(a single signature instead of n).
• How do we verify that an element appeared in the

signed set?

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

34

page 34April 15, 2008 Introduction to Cryptography, Benny Pinkas

Verifying that a appears in the signed set

• Provide a’s leaf, and the siblings of the nodes in the path
from a to the root. (O(log n) values)

• The verifier can use H to compute the values of the
nodes in the path from the leaf to the root.

• It then compares the computed root to the signed value.

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

35

page 35April 15, 2008 Introduction to Cryptography, Benny Pinkas

Using hash trees to improve the overhead of CRS

• Originally (for a year long certificate)
– the certificate includes f 365(Y0)
– On day d, certificate holder obtains f 365-d(Y0)
– The certificate receiver computes f 365(Y0) from f 365-d(Y0)

by invoking f() d times.
• Slight improvement:

– The CA assigns a different leaf for every day, constructs a
hash tree, and signs the root.

– On day d, it releases node d and the siblings of the path
from it to the root.

– This is the proof that the certificate is valid on day d
– The overhead of verification is O(log 365).

36

page 36April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certificate Revocation Tree (CRT) [Kocher]

• (A different usage of a hash tree)

• A CRT is a hash tree with leaves corresponding to
statements about ranges of certificates
– Statements describe regions of certificate ids, in which

only the smallest id is revoked.
• For example, a leaf might read: “if 100 ≤ id <234, then cert is

revoked iff id=100”.

– Each certificate matches exactly one statement.
– The statements are the leaves of a signed hash tree,

ordered according to the ranges of certificate values.
– To examine the state of a certificate we retrieve the

statement for the corresponding region.
– A single hash tree is used for all certs.

37

page 37April 15, 2008 Introduction to Cryptography, Benny Pinkas

Certificate Revocation Tree (CRT)

– Preferred operation mode:
• Every day the CA constructs an updated tree.
• The CA signs a statement including the root of the tree and

the date.
• It is Alice’s responsibility to retrieve the leaf which shows that

her certificate is valid, the route from this leaf to the root, and
the CA’s signature of the root.

• To prove the validity of her cert, Alice sends this information.
• The receiver verifies the value in the leaf, the route to the

tree, and the signature.

– Advantage:
• a short proof for the status of a certificate.
• The CA does not have to handle individual requests.

– Drawback: the entire hash tree must be updated daily.

38

page 38April 15, 2008 Introduction to Cryptography, Benny Pinkas

SSL / TLS

39

page 39April 15, 2008 Introduction to Cryptography, Benny Pinkas

SSL/TLS

• General structure of secure HTTP connections
– To connect to a secure web site using SSL or TLS, we

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.

40

page 40April 15, 2008 Introduction to Cryptography, Benny Pinkas

SSL/TLS

• SSL (Secure Sockets Layer)
– SSL v2

• Released in 1995 with Netscape 1.1

• A flaw found in the key generation algorithm

– SSL v3
• Improved, released in 1996

• Public design process

• TLS (Transport Layer Security)
– IETF standard, RFC 2246

• Common browsers support all these protocols

41

page 41April 15, 2008 Introduction to Cryptography, Benny Pinkas

SSL Protocol Stack

• SSL/TLS operates over TCP, which ensures reliable
transport.

• Supports any application protocol (usually used with
http).

42

page 42April 15, 2008 Introduction to Cryptography, Benny Pinkas

SSL/TLS Overview

• Handshake Protocol - establishes a session
– Agreement on algorithms and security parameters
– Identity authentication
– Agreement on a key
– Report error conditions to each other

• Record Protocol - Secures the transferred data
– Message encryption and authentication

• Alert Protocol – Error notification (including “fatal”
errors).

• Change Cipher Protocol – Activates the pending crypto
suite

43

page 43April 15, 2008 Introduction to Cryptography, Benny Pinkas

Simplified SSL Handshake

Client Server

I want to talk, ciphers I support, RC

Certificate (PKServer), cipher I choose, RS

{S}PKserver , {keyed hash of handshake message}

{keyed hash of handshake message}

Data protected by keys derived from K

K= f (S,RC,RS) K= f (S,RC,RS)
compute compute

44

page 44April 15, 2008 Introduction to Cryptography, Benny Pinkas

A typical run of a TLS protocol

• C ⇒ S
– ClientHello.protocol.version = “TLS version 1.0”
– ClientHello.random = TC, NC
– ClientHello.session_id = “NULL”
– ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ClientHello.compression_method = “NULL”

• S ⇒ C
– ServerHello.protocol.version = “TLS version 1.0”
– ServerHello.random = TS, NS
– ServerHello.session_id = “1234”
– ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ServerHello.compression_method = “NULL”
– ServerCertificate = pointer to server’s certificate
– ServerHelloDone

45

page 45April 15, 2008 Introduction to Cryptography, Benny Pinkas

Some additional issues

• More on S ⇒ C
– The ServerHello message can also contain Certificate

Request Message
– I.e., server may request client to send its certificate
– Two fields: certificate type and acceptable CAs

• Negotiating crypto suites
– The crypto suite defines the encryption and authentication

algorithms and the key lengths to be used.
– ~30 predefined standard crypto suites
– Selection (SSL v3): Client proposes a set of suites. Server

selects one.

46

page 46April 15, 2008 Introduction to Cryptography, Benny Pinkas

Key generation

• Key computation:
– The key is generated in two steps:
– pre-master secret S is exchanged during handshake
– master secret K is a 48 byte value calculated using pre-

master secret and the random nonces

• Session vs. Connection: a session is relatively long lived. Multiple
TCP connections can be supported under the same SSL/TSL
connection.

• For each connection: 6 keys are generated from the master
secret K and from the nonces. (For each direction: encryption
key, authentication key, IV.)

47

page 47April 15, 2008 Introduction to Cryptography, Benny Pinkas

TLS Record Protocol

