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Introduction to Cryptography
Lecture 10

Signatures, Public Key Infrastructure (PKI), hash chains, 
hash trees, SSL.

Benny Pinkas
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Some more signature schemes
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Rabin signatures

• Same paradigm as RSA signatures:
– f(m) = m2 mod N.   (N=pq).
– Sig(m) = s, s.t. s2 = m mod N. I.e., the square root of m.

• Unlike RSA, 
– Not all m are QR mod N. 
– Therefore, only ¼ of messages can be signed.

• Solutions:
– Use random padding. Choose padding until you get a QR.
– Deterministic padding (Williams system).

• A total break given a chosen message attack. (show)
• Must therefore use a hash function H as in RSA.
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El Gamal signature scheme

• Invented by same person but different than the 
encryption scheme. (think why)

• A randomized signature: same message can have 
different signatures.

• Based on the hardness of extracting discrete logs 

• The DSA (Digital Signature Algorithm/Standard) that 
was adopted by NIST in 1994 is a variation of El-Gamal 
signatures. 
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El Gamal signatures

• Key generation:
– Work in a group Zp

* where discrete log is hard. 
– Let g be a generator of Zp

*.
– Private key  1 < a < p-1.
– Public key p, g, y=ga.

• Signature: (of M)
– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.
– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.
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El Gamal signatures

• Signature:
– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.
– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:
– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead: 
– Signature: one (offline) exp.    Verification: three exps.

same r in 
both places!
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El Gamal signature: comments

• Can work in any finite Abelian group
– The discrete log problem appears to be harder in elliptic 

curves over finite fields than in Zp* of the same size.
– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find  yr · rs = gm mod p
– E.g., choose random r = gk and either solve dlog of gm/yr to 

the base r,   or find s=k-1(m - loggy · r)    (????)
• Notes:

– A different k must be used for every signature
– If no hash function is used (i.e. sign M rather than 

m=H(M)), existential forgery is possible
– If receiver doesn’t check that 0<r<p, adversary can sign 

messages of his choice.
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Public Key Infrastructure
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Key Infrastructure for symmetric key encryption

• Each user has a shared key with each other user
– A total of n(n-1)/2 keys
– Each user stores n-1 keys
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Key Distribution Center (KDC)

• The KDC shares a symmetric key Ku with every user u
• Using this key they can establish a trusted channel
• When u wants to communicate with v

– u sends a request to the KDC
– The KDC 

• authenticates u

• generates a key Kuv to be used by u and v

• sends Enc(Ku, Kuv) to u, and Enc(Kv, Kuv) to v
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Key Distribution Center (KDC)

• Advantages: 
– A total of n keys, one key per user.
– easier management of joining and leaving users.

• Disadvantages:
– The KDC can impersonate anyone
– The KDC is a single point of failure, for both

• security 

• quality of service

• Multiple copies of the KDC
– More security risks
– But better availability
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Trusting public keys

• Public key technology requires every user to remember 
its private key, and to have access to other users’
public keys

• How can the user verify that a public key PKv
corresponds to user v?
– What can go wrong otherwise?

• A simple solution:
– A trusted public repository of public keys and 

corresponding identities
• Doesn’t scale up

• Requires online access per usage of a new public key
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Certification Authorities (CA)

• A method to bootstrap trust
– Start by trusting a single party and knowing its public key
– Use this to establish trust with other parties (and associate 

them with public keys)

• The Certificate Authority (CA) is trusted party.
– All users have a copy of the public key of the CA
– The CA signs Alice’s digital certificate. A simplified 

certificate is of the form  (Alice, Alice’s public key).
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Certification Authorities (CA)

• When we get Alice’s certificate, we 
– Examine the identity in the certificate
– Verify the signature
– Use the public key given in the certificate to

• Encrypt messages to Alice

• Or, verify signatures of Alice

• The certificate can be sent by Alice without any online 
interaction with the CA.
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Certification Authorities (CA)

• Unlike KDCs, the CA does not have to be online to 
provide keys to users
– It can therefore be better secured than a KDC
– The CA does not have to be available all the time

• Users only keep a single public key – of the CA
• The certificates are not secret. They can be stored in a 

public place. 
• When a user wants to communicate with Alice, it can 

get her certificate from either her, the CA, or a public 
repository. 

• A compromised CA 
– can mount active attacks (certifying keys as being Alice’s)
– but it cannot decrypt conversations. 
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Certification Authorities (CA)

• An example.
– To connect to a secure web site using SSL or TLS, we 

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key 
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to 
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.
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An example of an X.509 certificate

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consult ing cc, 

OU=Certification Services Division, CN=Thawte Server  
CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU= FreeSoft, 
CN=www.freesoft.org/emailAddress=baccala@freesoft.o rg

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb: 

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1: 
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66: 
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17: 
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b: 
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77: 
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3: 
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35 :1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d: 9d: 
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f: 92:…
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Certificates

• A certificate usually contains the following information
– Owner’s name
– Owner’s public key
– Encryption/signature algorithm
– Name of the CA
– Serial number of the certificate
– Expiry date of the certificate
– …

• Your web browser contains the public keys of some 
CAs

• A web site identifies itself by presenting a certificate 
which is signed by a chain starting at one of these CAs
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Public Key Infrastructure (PKI)

• The goal: build trust on a global level

• Running a CA:
– If people trust you to vouch for other parties, everyone 

needs you.
– A license to print money
– But,

• The CA should limit its responsibilities, buy insurance…

• It should maintain a high level of security

• Bootstrapping: how would everyone get the CA’s public key?
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Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
– Suitable in particular for enterprises.

• Monopoly + delegated CAs:
– top level CA can issue speial certificates for other CAs
– Certificates of the form 

• [ (Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)ROOT-CA ]

Root CA

CA1 CA2

CA3

Alice

Bob
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Certificate chain



26

page 26April 15, 2008 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure

• Oligarchy
– Multiple trust anchors (top level CAs)

• Pre-configured in software

• User can add/remove CAs

• Top-down with name constraints
– Like monopoly + delegated CAs
– But every delegated CA has a predefined portion of the 

name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)
– More trustworthy
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Revocation

• Revocation is a key component of PKI
– Each certificate has an expiry date
– But certificates might get stolen, employees might leave 

companies, etc.
– Certificates might therefore need to be revoked before 

their expiry date
– New problem: before using a certificate we must verify that 

it has not been revoked
• Often the most costly aspect of running a large scale public 

key infrastructure (PKI)

• How can this be done efficiently?
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Certificate Revocation Lists (CRLs)

• A revocation agency (RA) issues a list of revoked 
certificates (i.e., “bad” certificates)
– The list is updated and published regularly (e.g. daily)
– Before trusting a certificate, users must consult the most 

recent CRL in addition to checking the expiry date.
• Advantages: simple.
• Drawbacks:

– Scalability. CRLs can be huge. There is no short proof that 
a certificate is valid. 

– There is a vulnerability windows between a compromise of 
certificate and the next publication of a CRL.

– Need a reliable way of distributing CRLs.
• Improving scalability using “delta CRLs”: a CRL that only 

lists certificates which were revoked since the issuance of a 
specific, previously issued CRL.



29

page 29April 15, 2008 Introduction to Cryptography, Benny Pinkas

Explicit revocation: OCSP

• OCSP (Online Certificate Status Protocol) 
– RFC 2560, June 1999.

• OCSP can be used in place, or in addition, to CRLs
• Clients send a request for certificate status information.

– An OCSP server sends back a response of "current", 
"expired," or "unknown“.

– The response is signed (by the CA, or a Trusted Responder,  
or an Authorized Responder certified by the CA).

• Provides instantaneous status of certificates
– Overcomes the chief limitation of CRL: the fact that updates 

must be frequently downloaded and parsed by clients to 
keep the list current 
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Certificate Revocation System (CRS)

• Certificate Revocation System (Micali’96)
• Puts the burden of proof on the certificate holder (who 

must prove that the certificate is still valid).

• In theory, we could limit the lifetime of certificates to a 
single day, and require the certificate holder to ask for a 
new certificate every day.
– This would result in a high overhead at the CA
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Certificate Revocation System (CRS)

• It is possible to reduce the overhead of the CA by using 
a hash chain
– The certificate includes Y365 = f 365(Y0 ). This value is part 

of the information signed by the CA. f is one-way.
– On day d, 

• If the certificate is valid, then Y365-d = f 365-d(Y0) is sent by the 
CA to the certificate holder or to a directory. 

• The certificate receiver uses the daily value (f 365-d(Y0) ) to 
verify that the certificate is still valid. (how?)

• Advantage: A short, individual, proof per certificate.

• Disadvantage: Daily overhead, even when a cert is valid.
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Merkle Hash Tree (will be useful later)

• A method of committing to (by hashing together) n
values, x1,…,xn, such that
– The result is a single hash value
– For any xi, it is possible to prove that it appeared in the 

original list, using a proof of length O(log n).

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)
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Merkle Hash Tree

• H is a collision intractable hash function
• Any change to a leaf results in a change to the root
• To sign the set of values it is sufficient to sign the root 

(a single signature instead of n).
• How do we verify that an element appeared in the 

signed set?

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)
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Verifying that a appears in the signed set

• Provide a’s leaf, and the siblings of the nodes in the path 
from a to the root. (O(log n) values)

• The verifier can use H to compute the values of the 
nodes in the path from the leaf to the root. 

• It then compares the computed root to the signed value.

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)
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Using hash trees to improve the overhead of CRS

• Originally (for a year long certificate)
– the certificate includes f 365(Y0) 
– On day d, certificate holder obtains f 365-d(Y0)
– The certificate receiver computes f 365(Y0) from f 365-d(Y0)

by invoking f() d times.
• Slight improvement:

– The CA assigns a different leaf for every day, constructs a 
hash tree, and signs the root.

– On day d, it releases node d and the siblings of the path 
from it to the root.

– This is the proof that the certificate is valid on day d
– The overhead of verification is O(log 365).
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Certificate Revocation Tree (CRT)  [Kocher]

• (A different usage of a hash tree)

• A CRT is a hash tree with leaves corresponding to 
statements about ranges of certificates
– Statements describe regions of certificate ids, in which 

only the smallest id is revoked.
• For example, a leaf might read: “if 100 ≤ id <234, then cert is 

revoked iff id=100”.

– Each certificate matches exactly one statement.
– The statements are the leaves of a signed hash tree, 

ordered according to the ranges of certificate values.
– To examine the state of a certificate we retrieve the 

statement for the corresponding region.
– A single hash tree is used for all certs.
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Certificate Revocation Tree (CRT) 

– Preferred operation mode:
• Every day the CA constructs an updated tree.
• The CA signs a statement including the root of the tree and 

the date.
• It is Alice’s responsibility to retrieve the leaf which shows that 

her certificate is valid, the route from this leaf to the root, and 
the CA’s signature of the root.

• To prove the validity of her cert, Alice sends this information.
• The receiver verifies the value in the leaf, the route to the 

tree, and the signature.  

– Advantage:
• a short proof for the status of a certificate.
• The CA does not have to handle individual requests.

– Drawback: the entire hash tree must be updated daily.
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SSL / TLS
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SSL/TLS

• General structure of secure HTTP connections
– To connect to a secure web site using SSL or TLS, we 

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key 
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to 
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.
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SSL/TLS

• SSL (Secure Sockets Layer)
– SSL v2

• Released in 1995 with Netscape 1.1

• A flaw found in the key generation algorithm

– SSL v3
• Improved, released in 1996

• Public design process

• TLS (Transport Layer Security)
– IETF standard, RFC 2246

• Common browsers support all these protocols
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SSL Protocol Stack

• SSL/TLS operates over TCP, which ensures reliable 
transport.

• Supports any application protocol (usually used with 
http).
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SSL/TLS Overview

• Handshake Protocol - establishes a session
– Agreement on algorithms and security parameters
– Identity authentication
– Agreement on a key
– Report error conditions to each other

• Record Protocol - Secures the transferred data
– Message encryption and authentication

• Alert Protocol – Error notification (including “fatal”
errors).

• Change Cipher Protocol – Activates the pending crypto 
suite
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Simplified SSL Handshake

Client Server

I want to talk, ciphers I support, RC

Certificate (PKServer), cipher I choose, RS

{S}PKserver , {keyed hash of handshake message}

{keyed hash of handshake message}

Data protected by keys derived from K

K= f (S,RC,RS) K= f (S,RC,RS)
compute compute
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A typical run of a TLS protocol

• C ⇒ S
– ClientHello.protocol.version = “TLS version 1.0”
– ClientHello.random = TC, NC
– ClientHello.session_id = “NULL”
– ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ClientHello.compression_method = “NULL”

• S ⇒ C
– ServerHello.protocol.version = “TLS version 1.0”
– ServerHello.random = TS, NS
– ServerHello.session_id = “1234”
– ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ServerHello.compression_method = “NULL”
– ServerCertificate = pointer to server’s certificate
– ServerHelloDone
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Some additional  issues

• More on S ⇒ C
– The ServerHello message can also contain Certificate 

Request Message
– I.e., server may request client to send its certificate 
– Two fields: certificate type and acceptable CAs

• Negotiating crypto suites
– The crypto suite defines the encryption and authentication 

algorithms and the key lengths to be used. 
– ~30 predefined standard crypto suites
– Selection (SSL v3): Client proposes a set of suites. Server 

selects one. 
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Key generation

• Key computation:
– The key is generated in two steps:
– pre-master secret S is exchanged during handshake
– master secret K is a 48 byte value calculated using pre-

master secret and the random nonces

• Session vs. Connection: a session is relatively long lived. Multiple 
TCP connections can be supported under the same SSL/TSL 
connection.

• For each connection: 6 keys are generated from the master 
secret K and from the nonces. (For each direction: encryption 
key, authentication key, IV.)
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TLS Record Protocol


