Introduction to Cryptography

Lecture 1

Benny Pinkas

Administrative Details

- Grade
- Exam 70\%
- Homework 30\%
- Email: benny@pinkas.net
- Goal: Learn the basics of modern cryptography
- Method: introductory, applied, precise.

Bibliography

- Textbook:
- Cryptography Theory and Practice, Second (or third) edition by D. Stinson. (Also, מדריך למידה בעברית של (האוניברסיטה הפתוחה!
- A new book:
- Introduction to Modern Cryptography, by J. Katz and Y. Lindell. (Just published, hard to obtain.)

Bibliography

- Optional reading:
- Handbook of Applied Cryptography, by A. Menezes, P. Van Oorschot, S. Vanstone. (Free!)
- Introduction to Cryptography Applied to Secure Communication and Commerce, by Amir Herzberg. (Free!)
- Applied Cryptography, by B. Schneier.

Course Outline

- Course Outline
- Data secrecy: encryption
- Symmetric encryption
- Asymmetric (public key) encryption
- Data Integrity: authentication, digital signatures.
- Required background in number theory
- Cryptographic protocols

Encryption

-Two parties: Alice and Bob
-Reliable communication link
-Goal: send a message m while hiding it from Eve (as if they were both in the same room)
-Examples: military communication, Internet transactions, HD encryption.

Secret key

- Alice must have some secret information that Eve does not know. Otherwise...
- In symmetric encryption, Alice and Bob share a secret key k, which they use for encrypting and decrypting the message.

Authentication / Signatures

-Goal:
-Enable Bob to verify that Eve did not change messages sent by Alice
-Enable Bob to prove to others the origin of messages sent by Alice

- (We'll discuss these issues in later classes)

Encryption

- Message space $\{m\} \quad$ (e.g. $\{0,1\}^{n}$)
- Key generation algorithm
- Encryption key k_{1}, decryption key k_{2}
- Encryption function E
- Decryption function D

- For every message m
- $D_{k 2}\left(E_{k 1}(m)\right)=m$
- l.e., the decryption of the encryption of m is m
- Symmetric encryption $k=k_{1}=k_{2}$

Security Goals

(1) No adversary can determine m
or, even better,
(2) No adversary can determine any information about m

- Suppose $m=$ "attack on Sunday, at 17:15".
- The adversary can at most learn that
- $m=$ "attack on $S^{* *}$ day, a^{*} 17:**"
- $\mathrm{m}={ }^{" * * * * * * * * * * * * * * * * ~ * * * * * " ~}$
- Here, goal (1) is satisfied, but not goal (2)
- We will discuss this is more detail...

Adversarial Model

- To be on the safe side, assume that adversary knows the encryption and decryption algorithms E and D, and the message space.
- Kerckhoff's Principle (1883):
- The only thing Eve does not know is the secret key k
- The design of the cryptosystem is public
- This is convenient
- Easier to only keep secret a short key
- If the key is revealed, replacing it is easier than replacing the entire cryptosystem
- Supports standards: the standard describes the cryptosystem and any vendor can write its own implementation (e.g., SSL)

Adversarial Model

- Keeping the design public is also crucial for security
- Allows public scrutiny of the design (Linus' law: "given enough eyeballs, all bugs are shallow")
- The cryptosystem can be examined by "ethical hackers"
- Being able to reuse the same cryptosystem in different applications enables to spend more time on investigating its security
- No need to take extra measures to prevent reverse engineering
- Focus on securing the key
- Examples
- Security through obscurity, Intel's HDCP, GSM A5/1. ©
- DES, AES, SSL ©

Adversarial Power

- Types of attacks:
- Ciphertext only attack - ciphertext known to the adversary (eavesdropping)
- Known plaintext attack - plaintext and ciphertext are known to the adversary
- Chosen plaintext attack - the adversary can choose the plaintext and obtain its encryption (e.g. he has access to the encryption system)
- Chosen ciphertext attack - the adversary can choose the ciphertext and obtain its decryption
- Assume restrictions on the adversary's capabilities, but not that it is using specific attacks or strategies.

Breaking the Enigma

- German cipher in WW II
- Kerckhoff's principle
- Known plaintext attack
- (somewhat) chosen plaintext attack

Caesar Cipher

- A shift cipher
- Plaintext: "Attack At DAWN"
- Ciphertext: "DWWDFN DW GDZQ"
- Key: $k \in_{R}\{0,25\}$. (In this example $k=3$)
- More formally:
- Key: $k \in_{R}\{0 \ldots 25\}$, chosen at random.
- Message space: English text (i.e., $\{0 . . .25\}^{|m|}$)
- Algorithm: ciphertext letter = plaintext letter + k mod 26
- Follows Kerckhoff's principle
- But not a good cipher
- A similar "cipher": ROT-13

Brute Force Attacks

- Brute force attack: adversary tests all possible keys and checks which key decrypts the message
- Note that this assumes we can identify the correct plaintext among all plaintexts generated by the attack
- Caesar cipher: |key space| = 26
- We need a larger key space
- Usually, the key is a bit string chosen uniformly at random from $\{0,1\}^{|k|}$. Implying $2^{|k|}$ equiprobable keys.
- How long should k be?
- The adversary should not be able to do $2^{|k|}$ decryption trials

Adversary's computation power

- Theoretically
- Adversary can perform poly(/k/) computation
- Key space $=2^{|k|}$
- Practically
- $|k|=64$ is too short for a key length
- $|k|=80$ starts to be reasonable
- Why? (what can be done by 1000 computers in a year?)
- $2^{55}=2^{20}$ (ops per second)
- $\quad x 2^{20}$ (seconds in two weeks)
- $\quad x 2^{5}$ (\approx fortnights in a year) (might invest more than a year..)
- $\quad x 2^{10}$ (computers in parallel)
- All this, assuming that the adversary cannot do better than a brute force attack

Monoalphabetic Substitution cipher

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W
X	Y	Z																				
Y	A	H	P	O	G	Z	Q	W	B	T	S	F	L	R	C	V	M	U	E	K	J	D
I	X	N																				

- Plaintext: "ATTACK AT DAWN"
- Ciphertext: "YEEYHT YE PYDL"
- More formally:
- Plaintext space $=$ ciphertext space $=\{0 . .25\}^{/ m \mid}$
- Key space $=1$-to- 1 mappings of $\{0 . .25\}$ (i.e., permutations)
- Encryption: map each letter according to the key
- Key space $=26!\approx 4 \times 10^{28} \approx 2^{95}$. (Large enough.)
- Still easy to break

Breaking the substitution cipher

- The plaintext has a lot of structure
- Known letter distribution in English (e.g. $\operatorname{Pr}($ "e") $=13 \%$).
- Known distribution of pairs of letters ("th" vs. "jj")

- We can also use the fact that the mapping of plaintext letters to ciphertext letters is fixed

Cryptanalysis of a substitution cipher

- QEFP FP QEB CFOPQ QBUQ
- QEFP FP QEB CFOPQ QBUQ
-TH TH T T T
- THFP FP THB CFOPT TBUT
-THIS IS TH I ST T T
- THIS IS THB CIOST TBUT
- THIS IS THE I ST TE T
-THIS IS THE FIRST TEXT

The Vigenere cipher

- Plaintext space $=$ ciphertext space $=\{0 . .25\} / \mathrm{ml}$
- Key space = strings of $|\mathrm{k}|$ letters $\{0 . .25\}^{K / K}$
- Generate a pad by repeating the key until it is as long as the plaintext (e.g., "SECRETSECRETSEC..")
- Encryption algorithm: add the corresponding characters of the pad and the plaintext

```
- THIS IS THE PLAINTEXT TO BE ENCRYPTED
- SECR ET SEC RETSECRET SE CR ETSECRETSE
```

- \mid Key space $\mid=26^{|k|} . \quad\left(\mathrm{k}=17\right.$ implies \mid key space $\left.\mid \approx 2^{80}\right)$
- Each plaintext letter is mapped to $\mid k /$ different letters

Attacking the Vigenere cipher

- Known plaintext attack (or rather, known plaintext distribution)
- Guess the key length $/ k /$
- Examine every $/ k /$ th letter, this is a shift cipher
- THIS IS THE PLAINTEXT TO BE ENCRYPTED
- SECR ET SEC RETSECRET SE CR ETSECRETS
- Attack time: $(|k-1|+|k|) \times$ time of attacking a shift cipher ${ }^{(1)}$
- Chosen plaintext attack:
- Use the plaintext "aaaaaaa..."
(1) How?
- $\quad|k-1|$ failed tests for key lengths $1, \ldots,|k-1| .|k|$ tests covering all |k| letters of the key.
- Attacking the shift cipher: Assume known letter frequency (no known plaintext). Can check the difference of resulting histogram from the English letters histogram.

Perfect Cipher

- What type of security would we like to achieve?
- "Given the ciphertext, the adversary has no idea what the plaintext is"
- Impossible since the adversary might have a-priori information
- In an "ideal" world, the message will be delivered in a magical way, out of the reach of the adversary
- We would like to achieve similar security
- Definition: a perfect cipher
- The ciphertext does not add information about the plaintext
- $\operatorname{Pr}($ plaintext $=P /$ ciphertext $=C)=\operatorname{Pr}($ plaintext $=P)$

Probability distributions

- $\operatorname{Pr}($ plaintext $=P /$ ciphertext $=C)$
- Probability is taken over the choices of the key, the plaintext, and the ciphertext.
- Key: Its probability distribution is usually uniform (all keys have the same probability of being chosen).
- Plaintext: has an arbitrary distribution
- Not necessarily uniform (Pr (" ${ }^{\prime}$ ") $>\operatorname{Pr}\left({ }^{(4 j} j^{\prime}\right)$).
- Ciphertext: Its distribution is determined given the cryptosystem and the distributions of key and plaintext.
- A simplifying assumption: All plaintext and ciphertext values have positive probability.

Perfect Cipher

- For a perfect cipher, it holds that given ciphertext C,
$-\operatorname{Pr}($ plaintext $=P / C)=\operatorname{Pr}($ plaintext $=P)$
- i.e., knowledge of ciphertext does not change the a-priori distribution of the plaintext
- Probabilities taken over key space and plaintext space
- Does this hold for monoalphabetic substitution?

Perfect Cipher

- Perfect secrecy is a property (which we would like cryptosystems to have)
- We will now show a specific cryptosystem that has this property
- One Time Pad (Vernam cipher): (for a one bit plaintext)
- Plaintext $p \in\{0,1\}$
$-\operatorname{Key} k \in_{R}\{0,1\} \quad$ (i.e. $\left.\operatorname{Pr}(k=0)=\operatorname{Pr}(k=1)=1 / 2\right)$
- Ciphertext $=p \oplus k$
- Is this a perfect cipher? What happens if we know a-priori that $\operatorname{Pr}($ plaintext $=1)=0.8$?

The one-time-pad is a perfect cipher

ciphertext $=$ plaintext $\oplus \mathrm{k}$

Lemma: $\operatorname{Pr}($ ciphertext $=0)=\operatorname{Pr}($ ciphertext $=1)=1 / 2$ (regardless of the distribution of the plaintext)
$\operatorname{Pr}($ ciphertext $=0)$
$=\operatorname{Pr}($ plaintext \oplus key $=0)$
$=\operatorname{Pr}($ key $=$ plaintext $)$
$=\operatorname{Pr}($ key $=0) \cdot \operatorname{Pr}($ plaintext $=0)+\operatorname{Pr}($ key $=1) \cdot \operatorname{Pr}($ plaintext $=1)$
$=1 / 2 \cdot \operatorname{Pr}($ plaintext $=0)+1 / 2 \cdot \operatorname{Pr}($ plaintext $=1)$
$=1 / 2 \cdot(\operatorname{Pr}($ plaintext $=0)+\operatorname{Pr}($ plaintext $=1))=1 / 2$

The one-time-pad is a perfect cipher

$$
\begin{aligned}
& \text { ciphertext }=\text { plaintext } \oplus \mathrm{k} \\
& \operatorname{Pr}(\text { plaintext }=1 \mid \text { ciphertext }=1) \\
= & \operatorname{Pr}(\text { plaintext }=1 \& \text { ciphertext }=1) / \operatorname{Pr}(\text { ciphertext }=1) \\
= & \operatorname{Pr}(\text { plaintext }=1 \& \text { ciphertext }=1) / 1 / 2 \\
= & \operatorname{Pr}(\text { ciphertext }=1 \mid \text { plaintext }=1) \cdot \operatorname{Pr}(\text { plaintext }=1) / 1 / 2 \\
= & \operatorname{Pr}(\text { key }=0) \cdot \operatorname{Pr}(\text { plaintext }=1) / 1 / 2 \\
= & 1 / 2 \cdot \operatorname{Pr}(\text { plaintext }=1) / 1 / 2 \\
= & \operatorname{Pr}(\text { plaintext }=1)
\end{aligned}
$$

The perfect security property holds

One-time-pad (OTP) - the general case

- Plaintext $=p_{1} p_{2} \ldots p_{m} \in \Sigma^{m} \quad$ (e.g. $\Sigma=\{0,1\}$, or $\left.\Sigma=\{A \ldots Z\}\right)$
- key $=\mathrm{k}_{1} \mathrm{k}_{2} \ldots \mathrm{k}_{\mathrm{m}} \in_{\mathrm{R}} \Sigma^{\mathrm{m}}$
- Ciphertext $=c_{1} c_{2} \ldots c_{m}, \quad c_{i}=p_{i}+k_{i} \bmod |\Sigma|$
- Essentially a shift cipher with a different key for every character, or a Vigenere cipher with $|\mathrm{k}|=|\mathrm{P}|$
- Shannon [47,49]:
- An OTP is a perfect cipher, unconditionally secure. ©
- As long as the key is a random string, of the same length as the plaintext. :
- Cannot use
- Shorter key (e.g., Vigenere cipher)
- A key which is not chosen uniformly at random

Size of key space

- Theorem: For a perfect encryption scheme, the number of keys is at least the size of the message space (number of messages that have a non-zero probability).
- Proof:
- Consider ciphertext C.
- C must be a possible encryption of any plaintext m .
- But, for this we need a different key per message m.
- Corollary: Key length of one-time pad is optimal $(\underset{ }{*}$

Perfect Ciphers

- A simple criteria for perfect ciphers.
- Claim: The cipher is perfect if, and only if, $\forall \mathrm{m}_{1}, \mathrm{~m}_{2} \in \mathrm{M}, \forall$ cipher c ,

$$
\operatorname{Pr}\left(\operatorname{Enc}\left(m_{1}\right)=c\right)=\operatorname{Pr}\left(\operatorname{Enc}\left(m_{2}\right)=c\right) . \quad \text { (homework??) }
$$

- Idea: Regardless of the plaintext, the adversary sees the same distribution of ciphertexts.
- Note that the proof cannot assume that the cipher is the one-time-pad, but rather only that $\operatorname{Pr}($ plaintext $=P /$ ciphertext $=C)=\operatorname{Pr}($ plaintext $=P)$

What we've learned today

- Introduction
- Kerckhoff's Principle
- Some classic ciphers
- Brute force attacks
- Required key length
- A large key does no guarantee security
- Perfect ciphers

