Introduction to Cryptography: Homework 3

Submit by May 6, 2008. Solve three of the following questions.

Note: If you cannot solve an item which is part of a question, you can still solve other items in this question assuming that the first holds.

1. Let p, q be prime numbers, and $n=p q$. For a number $m \in[0,1,2, \ldots, n-1]$ we can use the representation $[a, b]$, where $a=m \bmod p$, and $b=m \bmod q$.
a. Show that for $m_{1}, m_{2}, m \in[0,1,2, \ldots, n-1]$, if the representation of m_{1} is [$\left.a_{1}, b_{1}\right]$ and the representation of m_{2} is $\left[a_{2}, b_{2}\right]$, then the representation of $m=m_{1}+m_{2}$ is $[a, b]$, where $a=a_{1}+a_{2} \bmod p$, and $b=b_{1}+b_{2} \bmod q$.
b. State and prove a similar claim for multiplication.
c. For $x, y \in[0,1,2, \ldots, p-1]$, how is it possible to efficiently compute $z=x / y \bmod$ p ? I.e., compute a number $z \in[0,1,2, \ldots, p-1]$ that satisfies $y z=x \bmod p$.
d. State and prove a claim (similar to (a) and (b)) for division modulo n.
2. Let $n=p q$. Define $\lambda(n)=\operatorname{lcm}(p-1, q-1)$, i.e., $\lambda(n)$ is the least common multiplier of $p-1$ and $q-1$. (If $p=11, q=19$, then $\lambda(n)=90$.)
a. Show that if $a=1 \bmod \lambda(n)$ then for all $m \in Z_{n}{ }^{*}$ it holds that $m^{a}=m \bmod n$. (Hint: use the CRT.)
b. Show that in the RSA cryptosystem one can choose e, d to satisfy $e d=1$ $\bmod \lambda(n)$. (Instead of satisfying $e d=1 \bmod \phi(n)$.)
3. This question shows that the El Gamal signature scheme is insecure if the signer does not use a new k for every signature.

- If the same value of k is used for signing m_{l} and m_{2}, then $s_{l}=\left(m_{l}-\right.$ ar) $k^{-1} \bmod p-1$, and $s_{2}=\left(m_{2}-a r\right) k^{-1} \bmod p-1$.
- Then, $\left(s_{1}-s_{2}\right) k=\left(m_{1}-m_{2}\right) \bmod p-1$.
a. Show that if $s_{1}-s_{2} \neq 0 \bmod p-1$, then k can be easily found.
(Note that $\operatorname{gcd}\left(s_{1}-s_{2}, p-1\right)$ might be different from 1. You will get a small bonus for handling this case.)
b. Show that if k is known, the secret key can be easily found.
c.

4. This question shows that the El Gamal signature scheme is insecure if the verifier does not check that $r<p$.
Let (r, s) be a signature on a message m.
The adversary can compute a signature on an arbitrary message m ' as follows:

- Set $u=m^{\prime} \cdot m^{-1} \bmod p-1$.
- Set $s^{\prime}=s \cdot u \bmod p-1$.
- Compute r ' satisfying - $r^{\prime}=r \cdot u \bmod p-1$.
- $r^{\prime}=r \bmod p$.

The signature of m^{\prime} is $\left(r^{\prime}, s^{\prime}\right)$.
a. How is r^{\prime} computed and what is the range of its possible values?
b. Show that $\left(r^{\prime}, s^{\prime}\right)$ is a valid signature of m^{\prime}.

