Introduction to Cryptography: Homework 3

Submit by May 6, 2008. Solve three of the following questions.

Note: If you cannot solve an item which is part of a question, you can still solve other items in this question assuming that the first holds.

- 1. Let p,q be prime numbers, and n=pq. For a number $m \in [0,1,2,...,n-1]$ we can use the representation [a,b], where $a=m \mod p$, and $b=m \mod q$.
 - a. Show that for $m_1, m_2, m \in [0, 1, 2, ..., n-1]$, if the representation of m_1 is $[a_1, b_1]$ and the representation of m_2 is $[a_2, b_2]$, then the representation of $m = m_1 + m_2$ is [a,b], where $a = a_1 + a_2 \mod p$, and $b = b_1 + b_2 \mod q$.
 - b. State and prove a similar claim for multiplication.
 - c. For $x,y \in [0,1,2,...,p-1]$, how is it possible to *efficiently* compute $z=x/y \mod p$? I.e., compute a number $z \in [0,1,2,...,p-1]$ that satisfies $yz=x \mod p$.
 - d. State and prove a claim (similar to (a) and (b)) for division modulo n.
- 2. Let n=pq. Define $\lambda(n)=\text{lcm}(p-1,q-1)$, i.e., $\lambda(n)$ is the least common multiplier of p-1 and q-1. (If p=11,q=19, then $\lambda(n)=90$.)
 - a. Show that if $a=1 \mod \lambda(n)$ then for all $m \in \mathbb{Z}_n^*$ it holds that $m^a = m \mod n$. (Hint: use the CRT.)
 - b. Show that in the RSA cryptosystem one can choose e,d to satisfy $ed=1 \mod \lambda(n)$. (Instead of satisfying $ed=1 \mod \phi(n)$.)
- 3. This question shows that the El Gamal signature scheme is insecure if the signer does not use a new *k* for every signature.
 - If the same value of k is used for signing m_1 and m_2 , then $s_1 = (m_1 ar)k^{-1} \mod p-1$, and $s_2 = (m_2 ar)k^{-1} \mod p-1$.
 - Then, $(s_1 s_2)k = (m_1 m_2) \mod p-1$.
 - a. Show that if $s_1 s_2 \neq 0 \mod p$ -1, then k can be easily found. (Note that $gcd(s_1 s_2, p$ -1) might be different from 1. You will get a small bonus for handling this case.)
 - b. Show that if *k* is known, the secret key can be easily found.

c.

4. This question shows that the El Gamal signature scheme is insecure if the verifier does not check that r < p.

Let (r, s) be a signature on a message m.

The adversary can compute a signature on an arbitrary message m' as follows:

- Set $u = m' \cdot m^{-1} \mod p$ -1.
- Set $s' = s \cdot u \mod p-1$.
- Compute *r*' satisfying
 - \circ $r' = r \cdot u \mod p-1$.
 - \circ $r' = r \mod p$.

The signature of m' is (r', s').

- a. How is r' computed and what is the range of its possible values?
- b. Show that (r', s') is a valid signature of m'.