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Desiderata for digital signatures

• Associate a document to an signer

• A digital signature is attached to a document (rather 
then be part of it)

• The signature is easy to verify but hard to forge
– Signing is done using knowledge of a private key
– Verification is done using a public key associated with the 

signer (rather than comparing to an original signature)
– It is impossible to change even one bit in the signed 

document 
• A copy of a digitally signed document is as good as the 

original signed document.
• Digital signatures could be legally binding…
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Non Repudiation

• Prevent signer from denying that it signed the message
• I.e., the receiver can prove to third parties that the 

message was signed by the signer

• This is different than message authentication (MACs)
– There the receiver is assured that the message was sent 

by the receiver and was not changed in transit
– But the receiver cannot prove this to other parties

• MACs: sender and receiver share a secret key K

• If R sees a message MACed with K, it knows that it could 
have only been generated by S

• But if R shows the MAC to a third party, it cannot prove that 
the MAC was generated by S and not by R
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Signing/verification process
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Diffie-Hellman 
“New directions in cryptography” (1976) 

• In public key encryption
– The encryption function is a trapdoor permutation f

• Everyone can encrypt =  compute  f(). (using the public key)

• Only Alice can decrypt = compute  f- -1(). (using her private key)

• Alice can use f  for signing
– Alice signs m by computing  s=f -1(m).
– Verification is done by computing  m=f(s).

• Intuition: since only Alice can compute f- -1(), forgery is 
infeasible. 

• Caveat: none of the established practical signature 
schemes following this paradigm is provably secure
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Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Finds e·d=1 mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d

• Signing: Given m, Alice computes s=md mod N. 

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.
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Message lengths

• A technical problem: 
– |m| might be longer than |N|
– m might not be in the domain of f -1()

Solution:
• Signing: First compute H(m), then compute the 

signature f -1(H(M)).  Where, 
– H() must be collision intractable. I.e. it is hard to find m, m’

s.t. H(m)=H(m’).
– The range of H() must be contained in the domain of f -1().

• Verification: 
– Compute f(s). Compare to H(m).

• Use of H() is also good for security reasons. See below.
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Security of using hash function

• Intuitively
– Adversary can compute H(), f(), but not H -1(), f -1().
– Can only compute (m,H(m)) by choosing m and computing H().
– Adversary wants to compute (m ,f -1(H(m))).
– To break signature needs to show s s.t. f(s)=H(m). (E.g. se=H(m).)

– Failed attack strategy 1:
• Pick s, compute f(s), and look for m s.t. H(m)=f(s).

– Failed attack strategy 2:
• Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’

(which is also a signature of m). 
• (If H() is not collision resistant, adversary could find m,m’

s.t. H(m) = H(m’).)
– This doesn’t mean that the scheme is secure, only that these attacks 

fail. 
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Security definitions for digital signatures

• Attacks against digital signatures

– Key only attack: the adversary knows only the verification 
key

– Known signature attack: in addition, the adversary has 
some message/signature pairs.

– Chosen message attack: the adversary can ask for 
signatures of messages of its choice (e.g. attacking a 
notary system). 
(Seems even more reasonable than chosen message 
attacks against encryption.)
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Security definitions for digital signatures

• Several levels of success for the adversary
– Existential forgery: the adversary succeeds in forging the 

signature of one message.
– Selective forgery: the adversary succeeds in forging the 

signature of one message of its choice.
– Universal forgery: the adversary can forge the signature of 

any message.
– Total break: the adversary finds the private signature key.

• Different levels of security, against different attacks, are 
required for different scenarios. 

page 11December 27, 2006 Introduction to Cryptography, Benny Pinkas

Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Defines N=pq and finds e·d=1 

mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d

• Signing: Given m, Alice computes s=md mod N. 
• (suppose that there is no hash function H())

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.
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Attacks against plain RSA signatures

• Signature of m is s=md mod N.

• Universally forgeable under a chosen message attack:
– Universal forgery: the adversary can forge the signature of 

any message of its choice.
– Chosen message attack: the adversary can ask for 

signatures of messages of its choice.

• Existentially forgeable under key only attack.
– Existential forgery: succeeds in forging the signature of at 

least one message.
– Key only attack: the adversary knows the public 

verification key but does not ask any queries.
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RSA with a full domain hash function

• Signature is sig(m) = f -1(H(m)) = (H(m))d mod N.
– H() is such that its range is [1,N]

• The system is no longer homomorphic
– sig(m) · sig(m’) ≠ sig(m·m’)

• Seems hard to generate a random signature 
– Computing se is insufficient, since it is also required to 

show m s.t. H(m) = se.

• Proof of security in the random oracle model – where 
H() is modeled as a random function
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RSA with full domain hash –proof of security

• Claim: Assume that H() is a random function, then if 
there is a polynomial-time A() which forges a signature 
with non-negligible probability, then it is possible to 
invert the RSA function, on a random input, with non-
negligible probability.

• Proof:
– Our input: y. Should compute yd mod N.
– A() queries H() and a signature oracle sig(), and generates 

a signature s of a message for which it did not query sig().
– Suppose A() made at most t queries to H(), asking for 

H(m1),…,H(mt ). Suppose also that it always queries H(m) 
before querying sig(m).

– We will show how to use A() to compute yd mod N.
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RSA with full domain hash –proof of security

• Proof (contd.)
– We can decide how to answer A’s queries to H(),sig().
– Choose a random i in [1,t], answer queries to H() as follows:

• The answer to the ith query (mi) is y.

• The answer to the jth query (j≠i) is (rj)
e, where rj is random.

– Answer to sig(m) queries:
• If m=mj, j≠i, then answer with rj. (Indeed sig(mj)= (H(mj))

d = rj ) 

• If m=mi then stop. (we failed)

– A’s output is (m,s).
• If m=mi and s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability is 1/t times success probability of A().
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Rabin signatures

• Same paradigm:
– f(m) = m2 mod N.   (N=pq).
– Sig(m) = s, s.t. s2 = m mod N. I.e., the square root of m.

• Unlike RSA, 
– Not all m are QR mod N. 
– Therefore, only ¼ of messages can be signed.

• Solutions:
– Use random padding. Choose padding until you get a QR.
– Deterministic padding (Williams system).

• A total break given a chosen message attack. (show)
• Must therefore use a hash function H as in RSA.
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El Gamal signature scheme

• Invented by same person but different than the 
encryption scheme. (think why)

• A randomized signature: same message can have 
different signatures.

• Based on the hardness of extracting discrete logs 

• The DSA (Digital Signature Algorithm/Standard) that 
was adopted by NIST in 1994 is a variation of El-Gamal 
signatures. 
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El Gamal signatures

• Key generation:
– Work in a group Zp

* where discrete log is hard. 
– Let g be a generator of Zp

*.
– Private key  1 < a < p-1.
– Public key p, g, y=ga.

• Signature: (of M)
– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.
– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.
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El Gamal signatures

• Signature:
– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.
– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:
– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead: 
– Signature: one (offline) exp.    Verification: three exps.

same r in 
both places!

page 20December 27, 2006 Introduction to Cryptography, Benny Pinkas

El Gamal signature: comments

• Can work in any finite Abelian group
– The discrete log problem appears to be harder in elliptic 

curves over finite fields than in Zp* of the same size.
– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find  yr · rs = gm mod p
– E.g., choose random r = gk and either solve dlog of gm/yr to 

the base r,   or find s=k-1(m - loggy · r)    (????)
• Notes:

– A different k must be used for every signature
– If no hash function is used (i.e. sign M rather than 

m=H(M)), existential forgery is possible
– If receiver doesn’t check that 0<r<p, adversary can sign 

messages of his choice.
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Public Key Infrastructure (PKI) 
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Key Infrastructure for symmetric key encryption

• Each user has a shared key with each other user
– A total of n(n-1)/2 keys
– Each user stores n-1 keys
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Key Distribution Center (KDC)

• The KDC shares a symmetric key Ku with every user u
• Using this key they can establish a trusted channel
• When u wants to communicate with v

– u sends a request to the KDC
– The KDC 

• authenticates u

• generates a key Kuv to be used by u and v

• sends Enc(Ku, Kuv) to u, and Enc(Kv, Kuv) to v
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Key Distribution Center (KDC)

• Advantages: 
– A total of n keys, one key per user.
– easier management of joining and leaving users.

• Disadvantages:
– The KDC can impersonate anyone
– The KDC is a single point of failure, for both

• security 

• quality of service 

• Multiple copies of the KDC
– More security risks
– But better availability
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Certification Authorities (CA)

• Public key technology requires every user to remember 
its private key, and to have access to other users’
public keys

• How can the user verify that a public key PKv
corresponds to user v?
– What can go wrong otherwise?

• A simple solution:
– A trusted public repository of public keys and 

corresponding identities
• Doesn’t scale up

• Requires online access per usage of a new public key
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Certification Authorities (CA)

• The Certificate Authority (CA) is trusted party.
• All users have a copy of the public key of the CA
• The CA signs Alice’s digital certificate. A simplified 

certificate is of the form  (Alice, Alice’s public key).

• When we get Alice’s certificate, we 
– Examine the identity in the certificate
– Verify the signature
– Use the public key given in the certificate to

• Encrypt messages to Alice
• Or, verify signatures of Alice

• The certificate can be sent by Alice without any 
interaction with the CA.
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Certification Authorities (CA)

• Unlike KDCs, the CA does not have to be online to 
provide keys to users
– It can therefore be better secured than a KDC
– The CA does not have to be available all the time

• Users only keep a single public key – of the CA
• The certificates are not secret. They can be stored in a 

public place. 
• When a user wants to communicate with Alice, it can 

get her certificate from either her, the CA, or a public 
repository. 

• A compromised CA 
– can mount active attacks (certifying keys as being Alice’s)
– but it cannot decrypt conversations. 
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Certification Authorities (CA)

• For example.
– To connect to a secure web site using SSL or TLS, we 

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key 
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to 
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.
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Certificates

• A certificate usually contains the following information
– Owner’s name
– Owner’s public key
– Encryption/signature algorithm
– Name of the CA
– Serial number of the certificate
– Expiry date of the certificate
– …

• Your web browser contains the public keys of some 
CAs

• A web site identifies itself by presenting a certificate 
which is signed by a chain starting at one of these CAs
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Public Key Infrastructure (PKI)

• The goal: build trust on a global level

• Running a CA:
– If people trust you to vouch for other parties, everyone 

needs you.
– A license to print money
– But,

• The CA should limit its responsibilities, buy insurance…

• It should maintain a high level of security

• Bootstrapping: how would everyone get the CA’s public key?
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Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
• Monopoly + delegated CAs:

– top level CA can issue certificates for other CAs
– Certificates of the form 

• [ (Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)TOP-CA ]

Root CA

CA1 CA2

CA3

Alice

Bob
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Certificate chain
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Public Key Infrastructure

• Oligarchy
– Multiple trust anchors (top level CAs)

• Pre-configured in software

• User can add/remove CAs

• Top-down with name constraints
– Like monopoly + delegated CAs
– But every delegated CA has a predefined portion of the 

name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)
– More trustworthy


