
1

page 1December 27, 2006 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 9

Digital signatures,
Public Key Infrastructure (PKI)

Benny Pinkas

page 2December 27, 2006 Introduction to Cryptography, Benny Pinkas

Desiderata for digital signatures

• Associate a document to an signer

• A digital signature is attached to a document (rather
then be part of it)

• The signature is easy to verify but hard to forge
– Signing is done using knowledge of a private key
– Verification is done using a public key associated with the

signer (rather than comparing to an original signature)
– It is impossible to change even one bit in the signed

document
• A copy of a digitally signed document is as good as the

original signed document.
• Digital signatures could be legally binding…

page 3December 27, 2006 Introduction to Cryptography, Benny Pinkas

Non Repudiation

• Prevent signer from denying that it signed the message
• I.e., the receiver can prove to third parties that the

message was signed by the signer

• This is different than message authentication (MACs)
– There the receiver is assured that the message was sent

by the receiver and was not changed in transit
– But the receiver cannot prove this to other parties

• MACs: sender and receiver share a secret key K

• If R sees a message MACed with K, it knows that it could
have only been generated by S

• But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R

page 4December 27, 2006 Introduction to Cryptography, Benny Pinkas

Signing/verification process

Document M
signing

algorithm

Private signature key

Signature of M

Public verification key

verification

algorithm

valid / invalid

signer

verifier Signature
depends on M

2

page 5December 27, 2006 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman
“New directions in cryptography” (1976)

• In public key encryption
– The encryption function is a trapdoor permutation f

• Everyone can encrypt = compute f(). (using the public key)

• Only Alice can decrypt = compute f- -1(). (using her private key)

• Alice can use f for signing
– Alice signs m by computing s=f -1(m).
– Verification is done by computing m=f(s).

• Intuition: since only Alice can compute f- -1(), forgery is
infeasible.

• Caveat: none of the established practical signature
schemes following this paradigm is provably secure

page 6December 27, 2006 Introduction to Cryptography, Benny Pinkas

Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Finds e·d=1 mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d

• Signing: Given m, Alice computes s=md mod N.

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.

page 7December 27, 2006 Introduction to Cryptography, Benny Pinkas

Message lengths

• A technical problem:
– |m| might be longer than |N|
– m might not be in the domain of f -1()

Solution:
• Signing: First compute H(m), then compute the

signature f -1(H(M)). Where,
– H() must be collision intractable. I.e. it is hard to find m, m’

s.t. H(m)=H(m’).
– The range of H() must be contained in the domain of f -1().

• Verification:
– Compute f(s). Compare to H(m).

• Use of H() is also good for security reasons. See below.
page 8December 27, 2006 Introduction to Cryptography, Benny Pinkas

Security of using hash function

• Intuitively
– Adversary can compute H(), f(), but not H -1(), f -1().
– Can only compute (m,H(m)) by choosing m and computing H().
– Adversary wants to compute (m ,f -1(H(m))).
– To break signature needs to show s s.t. f(s)=H(m). (E.g. se=H(m).)

– Failed attack strategy 1:
• Pick s, compute f(s), and look for m s.t. H(m)=f(s).

– Failed attack strategy 2:
• Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’

(which is also a signature of m).
• (If H() is not collision resistant, adversary could find m,m’

s.t. H(m) = H(m’).)
– This doesn’t mean that the scheme is secure, only that these attacks

fail.

3

page 9December 27, 2006 Introduction to Cryptography, Benny Pinkas

Security definitions for digital signatures

• Attacks against digital signatures

– Key only attack: the adversary knows only the verification
key

– Known signature attack: in addition, the adversary has
some message/signature pairs.

– Chosen message attack: the adversary can ask for
signatures of messages of its choice (e.g. attacking a
notary system).
(Seems even more reasonable than chosen message
attacks against encryption.)

page 10December 27, 2006 Introduction to Cryptography, Benny Pinkas

Security definitions for digital signatures

• Several levels of success for the adversary
– Existential forgery: the adversary succeeds in forging the

signature of one message.
– Selective forgery: the adversary succeeds in forging the

signature of one message of its choice.
– Universal forgery: the adversary can forge the signature of

any message.
– Total break: the adversary finds the private signature key.

• Different levels of security, against different attacks, are
required for different scenarios.

page 11December 27, 2006 Introduction to Cryptography, Benny Pinkas

Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Defines N=pq and finds e·d=1

mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d

• Signing: Given m, Alice computes s=md mod N.
• (suppose that there is no hash function H())

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.

page 12December 27, 2006 Introduction to Cryptography, Benny Pinkas

Attacks against plain RSA signatures

• Signature of m is s=md mod N.

• Universally forgeable under a chosen message attack:
– Universal forgery: the adversary can forge the signature of

any message of its choice.
– Chosen message attack: the adversary can ask for

signatures of messages of its choice.

• Existentially forgeable under key only attack.
– Existential forgery: succeeds in forging the signature of at

least one message.
– Key only attack: the adversary knows the public

verification key but does not ask any queries.

4

page 13December 27, 2006 Introduction to Cryptography, Benny Pinkas

RSA with a full domain hash function

• Signature is sig(m) = f -1(H(m)) = (H(m))d mod N.
– H() is such that its range is [1,N]

• The system is no longer homomorphic
– sig(m) · sig(m’) ≠ sig(m·m’)

• Seems hard to generate a random signature
– Computing se is insufficient, since it is also required to

show m s.t. H(m) = se.

• Proof of security in the random oracle model – where
H() is modeled as a random function

page 14December 27, 2006 Introduction to Cryptography, Benny Pinkas

RSA with full domain hash –proof of security

• Claim: Assume that H() is a random function, then if
there is a polynomial-time A() which forges a signature
with non-negligible probability, then it is possible to
invert the RSA function, on a random input, with non-
negligible probability.

• Proof:
– Our input: y. Should compute yd mod N.
– A() queries H() and a signature oracle sig(), and generates

a signature s of a message for which it did not query sig().
– Suppose A() made at most t queries to H(), asking for

H(m1),…,H(mt). Suppose also that it always queries H(m)
before querying sig(m).

– We will show how to use A() to compute yd mod N.

page 15December 27, 2006 Introduction to Cryptography, Benny Pinkas

RSA with full domain hash –proof of security

• Proof (contd.)
– We can decide how to answer A’s queries to H(),sig().
– Choose a random i in [1,t], answer queries to H() as follows:

• The answer to the ith query (mi) is y.

• The answer to the jth query (j≠i) is (rj)
e, where rj is random.

– Answer to sig(m) queries:
• If m=mj, j≠i, then answer with rj. (Indeed sig(mj)= (H(mj))

d = rj)

• If m=mi then stop. (we failed)

– A’s output is (m,s).
• If m=mi and s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability is 1/t times success probability of A().

page 16December 27, 2006 Introduction to Cryptography, Benny Pinkas

Rabin signatures

• Same paradigm:
– f(m) = m2 mod N. (N=pq).
– Sig(m) = s, s.t. s2 = m mod N. I.e., the square root of m.

• Unlike RSA,
– Not all m are QR mod N.
– Therefore, only ¼ of messages can be signed.

• Solutions:
– Use random padding. Choose padding until you get a QR.
– Deterministic padding (Williams system).

• A total break given a chosen message attack. (show)
• Must therefore use a hash function H as in RSA.

5

page 17December 27, 2006 Introduction to Cryptography, Benny Pinkas

El Gamal signature scheme

• Invented by same person but different than the
encryption scheme. (think why)

• A randomized signature: same message can have
different signatures.

• Based on the hardness of extracting discrete logs

• The DSA (Digital Signature Algorithm/Standard) that
was adopted by NIST in 1994 is a variation of El-Gamal
signatures.

page 18December 27, 2006 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Key generation:
– Work in a group Zp

* where discrete log is hard.
– Let g be a generator of Zp

*.
– Private key 1 < a < p-1.
– Public key p, g, y=ga.

• Signature: (of M)
– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.

page 19December 27, 2006 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Signature:
– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:
– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead:
– Signature: one (offline) exp. Verification: three exps.

same r in
both places!

page 20December 27, 2006 Introduction to Cryptography, Benny Pinkas

El Gamal signature: comments

• Can work in any finite Abelian group
– The discrete log problem appears to be harder in elliptic

curves over finite fields than in Zp* of the same size.
– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find yr · rs = gm mod p
– E.g., choose random r = gk and either solve dlog of gm/yr to

the base r, or find s=k-1(m - loggy · r) (????)
• Notes:

– A different k must be used for every signature
– If no hash function is used (i.e. sign M rather than

m=H(M)), existential forgery is possible
– If receiver doesn’t check that 0<r<p, adversary can sign

messages of his choice.

6

page 21December 27, 2006 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

page 22December 27, 2006 Introduction to Cryptography, Benny Pinkas

Key Infrastructure for symmetric key encryption

• Each user has a shared key with each other user
– A total of n(n-1)/2 keys
– Each user stores n-1 keys

page 23December 27, 2006 Introduction to Cryptography, Benny Pinkas

Key Distribution Center (KDC)

• The KDC shares a symmetric key Ku with every user u
• Using this key they can establish a trusted channel
• When u wants to communicate with v

– u sends a request to the KDC
– The KDC

• authenticates u

• generates a key Kuv to be used by u and v

• sends Enc(Ku, Kuv) to u, and Enc(Kv, Kuv) to v

page 24December 27, 2006 Introduction to Cryptography, Benny Pinkas

Key Distribution Center (KDC)

• Advantages:
– A total of n keys, one key per user.
– easier management of joining and leaving users.

• Disadvantages:
– The KDC can impersonate anyone
– The KDC is a single point of failure, for both

• security

• quality of service

• Multiple copies of the KDC
– More security risks
– But better availability

7

page 25December 27, 2006 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• Public key technology requires every user to remember
its private key, and to have access to other users’
public keys

• How can the user verify that a public key PKv
corresponds to user v?
– What can go wrong otherwise?

• A simple solution:
– A trusted public repository of public keys and

corresponding identities
• Doesn’t scale up

• Requires online access per usage of a new public key

page 26December 27, 2006 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• The Certificate Authority (CA) is trusted party.
• All users have a copy of the public key of the CA
• The CA signs Alice’s digital certificate. A simplified

certificate is of the form (Alice, Alice’s public key).

• When we get Alice’s certificate, we
– Examine the identity in the certificate
– Verify the signature
– Use the public key given in the certificate to

• Encrypt messages to Alice
• Or, verify signatures of Alice

• The certificate can be sent by Alice without any
interaction with the CA.

page 27December 27, 2006 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• Unlike KDCs, the CA does not have to be online to
provide keys to users
– It can therefore be better secured than a KDC
– The CA does not have to be available all the time

• Users only keep a single public key – of the CA
• The certificates are not secret. They can be stored in a

public place.
• When a user wants to communicate with Alice, it can

get her certificate from either her, the CA, or a public
repository.

• A compromised CA
– can mount active attacks (certifying keys as being Alice’s)
– but it cannot decrypt conversations.

page 28December 27, 2006 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• For example.
– To connect to a secure web site using SSL or TLS, we

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.

8

page 29December 27, 2006 Introduction to Cryptography, Benny Pinkas page 30December 27, 2006 Introduction to Cryptography, Benny Pinkas

page 31December 27, 2006 Introduction to Cryptography, Benny Pinkas page 32December 27, 2006 Introduction to Cryptography, Benny Pinkas

Certificates

• A certificate usually contains the following information
– Owner’s name
– Owner’s public key
– Encryption/signature algorithm
– Name of the CA
– Serial number of the certificate
– Expiry date of the certificate
– …

• Your web browser contains the public keys of some
CAs

• A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

9

page 33December 27, 2006 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

• The goal: build trust on a global level

• Running a CA:
– If people trust you to vouch for other parties, everyone

needs you.
– A license to print money
– But,

• The CA should limit its responsibilities, buy insurance…

• It should maintain a high level of security

• Bootstrapping: how would everyone get the CA’s public key?

page 34December 27, 2006 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
• Monopoly + delegated CAs:

– top level CA can issue certificates for other CAs
– Certificates of the form

• [(Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)TOP-CA]

Root CA

CA1 CA2

CA3

Alice

Bob

page 35December 27, 2006 Introduction to Cryptography, Benny Pinkas

Certificate chain

page 36December 27, 2006 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure

• Oligarchy
– Multiple trust anchors (top level CAs)

• Pre-configured in software

• User can add/remove CAs

• Top-down with name constraints
– Like monopoly + delegated CAs
– But every delegated CA has a predefined portion of the

name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)
– More trustworthy

