Introduction to Cryptography
Lecture 9

Digital signatures,
Public Key Infrastructure (PKI)

Benny Pinkas

December 27, 2006 Introduction to Cryptography, Benny Pinkas page

» Associate a document to an signer

« A digital signature is attached to a document (rather
then be part of it)

- The signature is easy to verify but hard to forge
- Signing is done using knowledge of a private key

- Verification is done using a public key associated with the
signer (rather than comparing to an original signature)

- Itis impossible to change even one bit in the signed
document
- A copy of a digitally signed document is as good as the
original signed document.

- Digital signatures could be legally binding...

December 27, 2006 Introduction to Cryptography, Benny Pinkas page 2

- Prevent signer from denying that it signed the message

. l.e., the receiver can prove to third parties that the
message was signed by the signer

- This is different than message authentication (MACs)
— There the receiver is assured that the message was sent
by the receiver and was not changed in transit
— But the receiver cannot prove this to other parties
« MACs: sender and receiver share a secret key K

« If R sees a message MACed with K, it knows that it could
have only been generated by S

« But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R

December 27, 2006

Introduction to Cryptography, Benny Pinkas page

Private signature key

Document M

signer

Public verification key

Signature of M

&
<

Signature verifier
depends on M

December 27, 2006

valid / invalid

ntroduction to Cryptography, Benny Pinkas page 4

Diffie-Hellman
“New directions in cryptography” (1976)

« In public key encryption
— The encryption function is a trapdoor permutation f
« Everyone can encrypt = compute f(). (using the public key)

« Only Alice can decrypt = compute f -1(). (using her private key)
« Alice can use f for signing
- Alice signs m by computing s=f-1(m).
— Verification is done by computing m=f(s).

- Intuition: since only Alice can compute f -1(), forgery is
infeasible.

- Caveat: none of the established practical signature
schemes following this paradigm is provably secure

Example: simple RSA based signatures

« Key generation: (as in RSA)
— Alice picks random p,q. Finds e-d=1 mod (p-1)(g-1).
— Public verification key: (N,e)
- Private signature key: d

« Signing: Given m, Alice computes s=m¢ mod N.
- Verification: given m,s and public key (N,e).

- Compute m’ = s mod N.
— Output “valid” iff m’=m.

Message lengths

- A technical problem:
— |m| might be longer than |N|
- m might not be in the domain of f-1()

Solution:

« Signing: First compute H(m), then compute the
signature f -}(H(M)). Where,

- H() must be collision intractable. l.e. it is hard to find m, m’
s.t. Hm)=H(m").
- The range of H() must be contained in the domain of f-1().
« Verification:
— Compute f(s). Compare to H(m).

- Use of H() is also good for security reasons. See below.

Security of using hash function

« Intuitively
- Adversary can compute H(), f(), but not H -1(), f -%().
- Can only compute (m,H(m)) by choosing m and computing H().
- Adversary wants to compute (m ,f -1(H(m))).
- To break signature needs to show s s.t. f(s)=H(m). (E.g. s=H(m).)

- Failed attack strategy 1:
« Pick s, compute f(s), and look for m s.t. H(m)=f(s).
- Failed attack strategy 2:
« Pick m,m’ s.t. H(m)=H(m"). Ask for a signature s of m’
(which is also a signature of m).
« (If H() is not collision resistant, adversary could find m,m’
s.t. H(m) = H(m’).)

- This doesn’t mean that the scheme is secure, only that these attacks
fail.

Security definitions for digital signatures

« Attacks against digital signatures

- Key only attack: the adversary knows only the verification
key

- Known signature attack: in addition, the adversary has
some message/signature pairs.

- Chosen message attack: the adversary can ask for
signatures of messages of its choice (e.g. attacking a
notary system).

(Seems even more reasonable than chosen message
attacks against encryption.)

Security definitions for digital signatures

« Several levels of success for the adversary

- Existential forgery: the adversary succeeds in forging the
signature of one message.

- Selective forgery: the adversary succeeds in forging the
signature of one message of its choice.

- Universal forgery: the adversary can forge the signature of
any message.

- Total break: the adversary finds the private signature key.

- Different levels of security, against different attacks, are
required for different scenarios.

Example: simple RSA based signatures

- Key generation: (as in RSA)
— Alice picks random p,qg. Defines N=pqg and finds e-d=1
mod (p-1)(g-1).
— Public verification key: (N,e)
- Private signature key: d

- Signing: Given m, Alice computes s=md mod N.
« (suppose that there is no hash function H())

« Verification: given m,s and public key (N,e).
— Compute m’ = s mod N.
— Output “valid” iff m’=m.

Attacks against plain RSA signatures

« Signature of mis s=md mod N.

- Universally forgeable under a chosen message attack:

— Universal forgery: the adversary can forge the signature of
any message of its choice.

- Chosen message attack: the adversary can ask for
signatures of messages of its choice.

- Existentially forgeable under key only attack.

- Existential forgery: succeeds in forging the signature of at
least one message.

- Key only attack: the adversary knows the public
verification key but does not ask any queries.

RSA with a full domain hash function

- Signature is sig(m) = f -}(H(m)) = (H(m))¢ mod N.
— H() is such that its range is [1,N]

» The system is no longer homomorphic
- sig(m) - sig(m’) # sig(m-m’)

- Seems hard to generate a random signature

— Computing s¢ is insufficient, since it is also required to
show m s.t. H(m) = s€.

« Proof of security in the random oracle model — where
H() is modeled as a random function

RSA with full domain hash —proof of security

« Claim: Assume that H() is a random function, then if

there is a polynomial-time A() which forges a signature

with non-negligible probability, then it is possible to

invert the RSA function, on a random input, with non-

negligible probability.

Proof:

— Our input: y. Should compute yd mod N.

- A() queries H() and a signature oracle sig(), and generates
a signature s of a message for which it did not query sig().

— Suppose A() made at most t queries to H(), asking for
H(m,),...,H(m,). Suppose also that it always queries H(m)
before querying sig(m).

- We will show how to use A() to compute y9 mod N.

RSA with full domain hash —proof of security

« Proof (contd.)
- We can decide how to answer A’s queries to H(),sig().
- Choose a random i in [1,t], answer queries to H() as follows:
- The answer to the ith query (m) is y.

+ The answer to the jth query (j=) is (r))®, where r; is random.

— Answer to sig(m) queries:
« If m=my, j, then answer with r;. (Indeed sig(m)= (H(mj))d =r)
« If m=m; then stop. (we failed)

- A’s output is (m,s).
« If m=m, and s is the correct signature, then we found y<.
 Otherwise we failed.

— Success probability is 1/t times success probability of A().

Rabin signatures

« Same paradigm:
- f(m) =m2mod N. (N=pq).
- Sig(m) = s, s.t. s2=m mod N. l.e., the square root of m.

« Unlike RSA,
- Not all m are QR mod N.
- Therefore, only % of messages can be signed.
- Solutions:
- Use random padding. Choose padding until you get a QR.
— Deterministic padding (Williams system).
« A total break given a chosen message attack. (show)
- Must therefore use a hash function H as in RSA.

- Invented by same person but different than the
encryption scheme. (think why)

- A randomized signature: same message can have
different signatures.

- Based on the hardness of extracting discrete logs

- The DSA (Digital Signature Algorithm/Standard) that
was adopted by NIST in 1994 is a variation of EI-Gamal
signatures.

December 27, 2006 Introduction to Cryptography, Benny Pinkas page 17

« Key generation:
- Work in a group Z," where discrete log is hard.
- Let g be a generator of Z,".
- Private key 1 <a<p-1.
- Public key p, g, y=02.

« Signature: (of M)
- Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
- Compute m=H(M).
« r=g“mod p.
«s=(m-r-a)k!mod (p-1)
- Signature is r, s.

December 27, 2006 Introduction to Cryptography, Benny Pinkas page 18

- Signature:
- Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
- Compute
« r=g“mod p.
« s=(m-r-a)-k!mod (p-1)
« Verification:
— Accept if
e 0<r<

same rin
both places!

« Y- rr=gM™mod p
- It works since y"-rs = (g)" -(g¥)s = g -gm"@ = g™
- Overhead:
- Signature: one (offline) exp. Verification: three exps.

December 27, 2006 Introduction to Cryptography, Benny Pinkas page 19

« Can work in any finite Abelian group

- The discrete log problem appears to be harder in elliptic
curves over finite fields than in Z,* of the same size.

- Therefore can use smaller groups = shorter signatures.
« Forging: find y"- rs=g™ mod p
- E.g., choose random r = gk and either solve dlog of gm/y'to
the base r, or find s=k*(m - loggy - 1) (????)
- Notes:
- A different k must be used for every signature

- If no hash function is used (i.e. sign M rather than
m=H(M)), existential forgery is possible

- If receiver doesn’t check that O<r<p, adversary can sign
messages of his choice.

December 27, 2006 Introduction to Cryptography, Benny Pinkas page 20

Public Key Infrastructure (PKI)

Key Infrastructure for symmetric key encryption

« Each user has a shared key with each other user
- Atotal of n(n-1)/2 keys
- Each user stores n-1 keys

Key Distribution Center (KDC)

- The KDC shares a symmetric key K, with every user u
« Using this key they can establish a trusted channel
« When u wants to communicate with v
- u sends a request to the KDC
— The KDC
- authenticates u
+ generates a key K, to be used by u and v
+ sends Enc(K,, K,,) to u, and Enc(K,, K,,) to v

Key Distribution Center (KDC)

- Advantages:
- Atotal of n keys, one key per user.
- easier management of joining and leaving users.

- Disadvantages:
- The KDC can impersonate anyone
- The KDC is a single point of failure, for both
« security
« quality of service

« Multiple copies of the KDC
— More security risks
- But better availability

Certification Authorities (CA)

- Public key technology requires every user to remember
its private key, and to have access to other users’
public keys

How can the user verify that a public key PK,
corresponds to user v?

- What can go wrong otherwise?

A simple solution:

— Atrusted public repository of public keys and
corresponding identities

« Doesn't scale up
+ Requires online access per usage of a new public key

Certification Authorities (CA)

- The Certificate Authority (CA) is trusted party.
« All users have a copy of the public key of the CA

« The CA signs Alice’s digital certificate. A simplified
certificate is of the form (Alice, Alice’s public key).

« When we get Alice’s certificate, we
- Examine the identity in the certificate
- Verify the signature
- Use the public key given in the certificate to
» Encrypt messages to Alice
« Or, verify signatures of Alice

- The certificate can be sent by Alice without any
interaction with the CA.

Certification Authorities (CA)

- Unlike KDCs, the CA does not have to be online to
provide keys to users
- It can therefore be better secured than a KDC
- The CA does not have to be available all the time

» Users only keep a single public key — of the CA

- The certificates are not secret. They can be stored in a
public place.

- When a user wants to communicate with Alice, it can
get her certificate from either her, the CA, or a public
repository.

« A compromised CA
— can mount active attacks (certifying keys as being Alice’s)
- but it cannot decrypt conversations.

Certification Authorities (CA)

« For example.

- To connect to a secure web site using SSL or TLS, we
send an https:// command

- The web site sends back a public key®, and a certificate.
- Our browser

» Checks that the certificate belongs to the url we're visiting

» Checks the expiration date

» Checks that the certificate is signed by a CA whose public key
is known to the browser

« Checks the signature

« If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

O This is a very simplified version of the actual protocol.

lgonadt=9248nls=HE

| =0 [CL

This certificate has been verified for the following uses:

n... £3Gizmodo FJEducated Guesswork [C1The Mew York Times ... £ The Register: Sqi

SSL Server Certificate

030197 711 4p)

Tssued To

Common Name (CN) ~ www.bankpoaim. co.i

Organization (0) Bank Hapoaim Lid.

Organizational Unit (OU) Internet departement.

Serial Number 6C:F8:30:09:59: 46:C5:FA: 11:84:40:CD: 14:6A:EB:A3

ey
Common Mame (CN) ~ <MNot Part Of Certificate >

Organization (0) Verisign Trust Network.

Organizational Unit {OU) VeriSign, Inc. 7P @ MY non TRy
Validity iawny nows”
Issued On 7/12/2004

Expires On 7/13/2005 : WRNYR TR @
Fingerprints ;LN @
SHA L Fingerprint 1LE2FEAGED:05:F%:06: TFE6:08:40: 17:47: A%:20: 1F:C8:96:9F || 1xnow @
MDS Fingerprint 6CIEGIC5ICD:40:E 11281 3A:0F:40:50:D8: SAF 4:94:E8

MY NLIMR AT

139 T Imarn 2 @

1"NpY DTPan
TN Paynn oInn

Py YWY 1TRan
VIOPRI DO TIT
5¥17 MT NN N
0.25% 5w w1

ATPANN DoON

auN DM

v bankhaposim.coill

) Welcome to Gmail - Mozilla Firefox
Fle Edit Vew Go Bockmarks Took Hep

Q0 09 Q= o T ——— [i=n) =8

E36mail - Inbox (5) BLatestHeadines S Furllt 3 CNET News.com --T... 35lashdot: News forn... E3Gizmodo EIEducated Guesswork 3 The New York Times ... (3 The Register: ¢

Certificate Viewer-"gmail.google.com” x|

M Genera
5

This certificate has been verified for the following uses:
S5L Server Certificate

AGe (' 1ssued

To
Common Name (CN) gmail.google. com
Gmail | | organizaton (0) - delete mail and you

- Gmail Sign In
shoule Organizational Unit (OU) <Not Part Of Certificate>

Serial Nmber o%ELTE Username:

& v bankpod

Tssued By : P
v assword:
Commonhame (CN) <NotPart Of Certificate> received.
N Organization (0) Equifex I Dont ask for my
Organizational Unit (OU) Equifax Secure Certificate Authority password for 2 weeks.
Validity
R Sl
= Forgot your password?
(| Fingerprints
® | -| sHALFingerprint D0:05:54:C0:CF:58: 5E:6C: 32:63:0F 19 1:C 1:CCE2:E0: 23:C0:F8: 70
1 MDS Fingerprint DHALE L= 0:56:59:84C0:56
£
| Leam more about Gmail
Check out our new features!
A few words about privacy and Gmail
s - Terms of Use
Transfering deta from gmad.googleicom. ., B gmaix

ju have certificates on file that identify these certificate authorities: I

ertificate Name | security Deviee
Unizeto Sp. 20.0.
Certum CA Buitin Chject Token
VISA
GPRaot 2 Buitin Object Token
Visa eCommerce Root Buitin Cbject Token
valicert, Inc,
hitp: ffwww.valicert. com/ Buitin Chject Token
hitp: ffwww.valicert. com/ Buitin Cbject Token
http: ffwww.valicert.com/ Buittin Object Token
VeriSign, Tnc
Verisign Class 3 Public Primary Certification Authority Builtin Object Token
Verisign Class 1 Public Primary Certification Authority Builtin Object Token
Verisign Class 2 Public Primary Certification Authority Buitin Cbject Token
Verisign Class 1 Public Primary Certification Authority - G2 Buitin Object Token
Verisign Class 2 Public Primary Cer tification Authority - G2 Buitin Chject Token
Verisign Class 3 Public Primary Certification Authority - G2 Buitin Chject Token
Verisign Class 4 Public Primary Certification Autharity - G2 Buittin Object Token
VeriSign Class 1Public Primary Certification Authority - G3 Buitin Cbject Token
Verisign Class 2 Public Primary Certification Authority - G3 Buitin Object Token
Verisign Class 3 Public Primary Certification Authority - G3 Buitin Chject Token
VeriSign Class 4 Public Primary Certification Authority - G3 Buitin Cbject Token
Class 1 Public Primary OCSP Respander Buitin Object Token
Class 2 Public Primar y OCSP Responder Buitin Cbject Token
Class 3 Public Primary OCSP Responder Buitin Object Token
VeriSign Time Stamping Authority CA Buitin Chject Token
beTRUSTed
beTRUSTed Root CAs Buitin Object Token
‘beTRUSTed Root CA-Baltimore Inplementation Buitin Chject Token
beTRUSTed Root CA - Entrust Implementation Buitin Object Token
beTRUSTed Root CA -RSA Buitin Object Token

Certificates

« A certificate usually contains the following information
- Owner's name
- Owner’s public key
- Encryption/signature algorithm
- Name of the CA
- Serial number of the certificate
- Expiry date of the certificate

Your web browser contains the public keys of some
CAs

A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

mber ntroduction to Cryptography, Benny Pink 1

« The goal: build trust on a global level

» Running a CA:

- If people trust you to vouch for other parties, everyone
needs you.

- Alicense to print money
- But,
« The CA should limit its responsibilities, buy insurance...
« It should maintain a high level of security
« Bootstrapping: how would everyone get the CA’s public key?

December 27, 2006 Introduction to Cryptography, Benny Pinkas page 33

« Monopoly: a single CA vouches for all public keys
- Monopoly + delegated CAs:
- top level CA can issue certificates for other CAs
— Certificates of the form
* [(A”CG, PKA)CAB! (CA‘?” PKCAB)CAl! (CAL PKCAl)TOP-CA]

December 27, 2006 Introduction to Cryptography, Benny Pinkas

page 34

B 0gsercn - Ao PG
§ TTe— 2l
General | Details
N I | General | Detais Cetfication Path | Trust |
s
o =%, Signature Information L Equitax Secure Certficate Athority
- ge format: ShIvE 1 IBM Certfication Authorty
= - —
Signed by: N o.s. o com i
Signature status: Warning: There were problems validating == [
Signing time: 9:20:07 AM 12/24/2004 |
Digest algorithm: SHAL
Signature algorithm: RSA (1024-bits) E
o k e
Certificate Information b
Es
E Issued by: EM Certificaton Authority i it Coicsrs P
= . =
S Certificate status: Warning: The Certificate Revocation List == i Certficate status: :
[This certficate s OK. e
N View Certificate. ..
r [(mesrme ||
E <
_e= | e 1,
I i |'I Y E- i
B & AstaticPersol, |———————————— 2

December 27, 2006 Introduction to Cryptography, Benny Pinkas page 35

« Oligarchy
— Multiple trust anchors (top level CAs)
« Pre-configured in software
« User can add/remove CAs

« Top-down with name constraints
- Like monopoly + delegated CAs

- But every delegated CA has a predefined portion of the
name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)

- More trustworthy

December 27, 2006 Introduction to Cryptography, Benny Pinkas

page 36

