
1

page 1December 20, 2006 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture

RSA encryption, Rabin encryption, digital
signatures

Benny Pinkas

2

page 2December 20, 2006 Introduction to Cryptography, Benny Pinkas

Integer Multiplication & Factoring as a One Way
Function.

p,q N=pq

hard

easy

Can a public key system be based
on this observation ?????

3

page 3December 20, 2006 Introduction to Cryptography, Benny Pinkas

The Multiplicative Group Zpq*

• p and q denote two large primes (e.g. 512 bits long).
• Denote their product as N = pq.
• The multiplicative group ZN

* =Zpq
* contains all integers

in the range [1,pq-1] that are relatively prime to both p
and q.

• The size of the group is
– φ(n) = φ(pq) = (p-1) (q-1) = N - (p+q) + 1

• For every x ∈∈ ZN
*, xφ(N)=x(p-1)(q-1) = 1 mod N, and

therefore x1+c⋅φ(N) = x mod N

4

page 4December 20, 2006 Introduction to Cryptography, Benny Pinkas

The RSA Public Key Cryptosystem

• Public key:
– N=pq the product of two primes (we assume that factoring

N is hard)
– e such that gcd(e,φ(N))=1

• Private key:
– d such that de≡1 mod φ(N)

• Encryption of M∈ZN*
– C=E(M)=Me mod N

• Decryption of C∈ZN*
– M=D(C)=Cd mod N (why does it work?)

5

page 5December 20, 2006 Introduction to Cryptography, Benny Pinkas

Efficiency

• The public exponent e may be small.
– It is common to choose its value to be either 3 or 216+1.

The private key d must be long.
– Each encryption involves only a few modular

multiplications. Decryption requires a full exponentiation.

• Usage of a small e ⇒ Encryption is more efficient than
a full blown exponentiation.

• Decryption requires a full exponentiation (M=Cd mod N)
• Can this be improved?

6

page 6December 20, 2006 Introduction to Cryptography, Benny Pinkas

The Chinese Remainder Theorem (CRT)

• Thm:
– Let N=pq with gcd(p,q)=1.
– Then for every pair (y,z) ∈ Zp× Zq there exists a unique x∈Zn, s.t.

• x=y mod p
• x=z mod q

• Proof:
– gcd(p,q)=1 ⇒ The extended Euclidian alg finds a,b s.t. ap+bq=1.
– Define c=bq. It holds that c=1 mod p, c=0 mod q.
– Define d=ap. It holds that d=0 mod p, d=1 mod q.
– Given y,z, define x = cy+dz mod N.

• cy+dz = 1y + 0 = y mod p.
• cy+dz = 0 + 1z = z mod q.

– (How efficient is this?)
– (The inverse operation, finding (y,z) from x, is easy.)

7

page 7December 20, 2006 Introduction to Cryptography, Benny Pinkas

More efficient RSA decryption

• CRT:
– Given p,q compute a,b s.t. ap+bq=1.
– c=bq; d=ap

• Decryption, given C:
– Compute y’=Cd mod p. (instead of d can use d’=d mod p-1)
– Compute z’=Cd mod q. (instead of d can use d’’=d mod q-1)
– Compute M=cy’+dz’ mod N.

• Overhead:
– Two exponentiations modulo p,q, instead of one

exponentiation modulo N.
– Overhead of exponentiation is cubic in length of modulus.
– I.e., save a factor of 23/2.

Once for all
messages

8

page 8December 20, 2006 Introduction to Cryptography, Benny Pinkas

Security reductions

• Security by reduction
– Define what it means for the system to be “secure”

(chosen plaintext/ciphertext attacks, etc.)
– State a “hardness assumption” (e.g., that it is hard to

extract discrete logarithms in a certain group).
– Show that if the hardness assumption holds then the

cryptosystem is secure.

• Benefits:
– To examine the security of the system it is sufficient to

check whether the assumption holds
– Similarly, for setting parameters (e.g. group size).

9

page 9December 20, 2006 Introduction to Cryptography, Benny Pinkas

RSA Security

• (For ElGamal encryption, we showed that if the DDH assumption
holds then El Gamal encryption has semantic security.)

• If factoring N is easy then RSA is insecure
– (factor N ⇒ find p,q ⇒ find (p-1)(q-1) ⇒ find d from e)

• Factoring assumption:
– For a randomly chosen p,q of appropriate length, it is infeasible to

factor N=pq.
• This assumption might be too weak (might not ensure secure

RSA encryption)
– Maybe it is possible to break RSA without factoring N ?
– We don’t know how to reduce RSA security to the hardness of

factoring.

• Fact: finding d is equivalent to factoring.
– I.e., if it is possible to find d given (N,e) , then it is easy to factor N.

• Therefore, “hardness of finding d assumption” no stronger than hardness
of factoring.

10

page 10December 20, 2006 Introduction to Cryptography, Benny Pinkas

The RSA assumption: Trap-Door One-Way
Function (OWF)

• (what is the minimal assumption required to show that RSA
encryption is secure?)

• (Informal) definition: f : D→R is a trapdoor one way
function if there is a trap-door s such that:
– Without knowledge of s, the function f is a one way. I.e.,

for a randomly chosen x, it is hard to invert f(x).
– Given s, inverting f is easy

• Example: fg,p(x) = gx mod p is not a trapdoor one way
function.

• Example: the assumption that RSA is a trapdoor OWF
– fN,e(x) = xe mod N. (assumption: for a random N,e,x,

inverting is hard.)
– The trapdoor is d s.t. ed = 1 mod φ(N)
– [fN,e(x)]d = x mod N

11

page 11December 20, 2006 Introduction to Cryptography, Benny Pinkas

RSA as a One Way Trapdoor Permutation

x xe mod N

hard

easy

Easy with trapdoor info (d)

12

page 12December 20, 2006 Introduction to Cryptography, Benny Pinkas

RSA assumption: cautions

• The RSA assumption is quite well established:
– RSA is actually a Trapdoor One-Way Permutation
– Hard to invert on random input (if you don’t know the

secret key)

• But is it a secure cryptosystem?
– Given the assumption it is hard to reconstruct the input,

but is it hard to learn anything about the input?
• Theorem [G]: RSA hides the log(log(N)) least and most

significant bits of a uniformly-distributed random input
– But some (other) information about pre-image may leak
– And… adversary can detect a repeating message

• And, of course, as a deterministic cipher RSA does not
provide semantic security.

13

page 13December 20, 2006 Introduction to Cryptography, Benny Pinkas

Is it safe to use a common modulus ?

• Consider the following environment:
– There is a global modulus N. No one knows its factoring.
– Each party has a pair (ei,di), such that ei,di = 1 mod φ(N).

• Used as a public/private key pair.

• The system is insecure.

• Party 1, knowing (e1,d1)
– can factor N
– Find di for any other party i.

14

page 14December 20, 2006 Introduction to Cryptography, Benny Pinkas

RSA with a small exponent

• Setting e=3 enables efficient encryption
• Might be insecure if not used properly

– Assume three users with public keys N1, N2, N3.
– Alice encrypts the same message to all of them

• C1 = m3 mod N1

• C2 = m3 mod N2

• C3 = m3 mod N3

• Can an adversary which sees C1,C2,C3 find m?
– m3 < N1N2N3
– N1, N2 and N3 are most likely relatively prime (otherwise

we can factor them).
– Chinese remainder theorem -> can find m3 mod N (and

therefore m3 over the integers)
– Easy to extract 3rd root over the integers.

15

page 15December 20, 2006 Introduction to Cryptography, Benny Pinkas

Reminder: RSA Public Key Cryptosystem

• The multiplicative group ZN
* =Zpq

*. The size of the group is
φ(n) = φ(pq) = (p-1) (q-1)

• Public key:
– N=pq the product of two primes
– e such that gcd(e, φ(N))=1 (are these hard to find?)

• Private key:
– d such that de≡1 mod φ(N)

• Encryption of M∈ZN*
– C=E(M)=Me mod N

• Decryption of C∈ZN*
– M=D(C)=Cd mod N (why does it work?)

16

page 16December 20, 2006 Introduction to Cryptography, Benny Pinkas

Reminders

• The Chinese Remainder Theorem (CRT):
– Let N=pq with gcd(p,q)=1.
– Then for every pair (y,z) ∈ Zp× Zq there exists a unique

x∈Zn, s.t.
• x=y mod p

• x=z mod q

• Quadratic Residues:
– The square root of x∈Zp

* is y∈Zp
* s.t. y2=x mod p.

– x∈Zp
* has either 2 or 0 square roots, and is denoted as a

Quadratic Residue (QR) or Non Quadratic Residue (NQR),
respectively.

– Euler’s theorem: x∈Zp
* is a QR iff x(p-1)/2 = 1 mod p.

17

page 17December 20, 2006 Introduction to Cryptography, Benny Pinkas

Rabin’s encryption systems

• Key generation:
– Private key: random primes p,q (e.g. 512 bits long).
– Public key: N=pq.

• Encryption:
– Plaintext m∈ ZN

*.
– Ciphertext: c = m2 mod N. (very efficient)

• Decryption: Compute c1/2 mod N.

18

page 18December 20, 2006 Introduction to Cryptography, Benny Pinkas

Square roots modulo N

• ⇒⇒⇒⇒ Let x be a quadratic residue (QR) modulo N=pq, then
– x mod p is a QR mod p. x mod q is a QR mod q
– x mod p has two roots mod p: y and p - y
– x mod q has two roots mod q: z and q - z

• ⇐⇐⇐⇐ If x is a QR mod p and mod q, it is also a QR mod N.
(Follows from the Chinese remainder theorem.)

19

page 19December 20, 2006 Introduction to Cryptography, Benny Pinkas

Square roots modulo N

• If x has a square root modulo N then it has 4 different
square roots modulo N.
– Let A be s.t. A2=x mod N.
– Let c be s.t. c=1 mod p, c=-1 mod q.
– Then A, -A, cA, -cA are all square roots of x modulo N.

• Each combination of roots modulo p and q results in a
root modulo N.
– x therefore has four roots modulo pq:
– (y,z) -> A, (p - y, q - z) -> pq – A
– (y, q - z) -> B, (p – y, z) -> pq – B

= (y,z) · (1,-1)

20

page 20December 20, 2006 Introduction to Cryptography, Benny Pinkas

Square roots modulo N

• If x has a square root modulo N then it has 4 different
square roots modulo N.
Exactly ¼ of the elements are QR mod N.

• QRN = QRp × QRq. |QRN| = (p-1)(q-1)/4

• Assume that p=q=3 mod 4. (Blum integers.)
– Therefore -1 is an NQR mod p and mod q (Euler’s thm).
– We know that the square roots of x modulo N are A, -A,

cA, -cA, where A2=x mod N, and c=1 mod p, c=-1 mod q.
– Therefore exactly one of the roots is a QR mod p and a

QR mod q.

21

page 21December 20, 2006 Introduction to Cryptography, Benny Pinkas

Finding square roots modulo N

• Need to compute y=x1/2 mod N.
• Suppose we know (the private key) p, q.

– Compute the roots of x modulo p, q. Use Chinese
remainder theorem to find x.

• Computing square roots in Zp
*
,

– Recall, x∈QRp iff x(p-1)/2=1 mod p.
– Assume p=3 mod 4. (p is a Blum integer).
– Compute the root as y=x(p+1)/4 mod p.

• (p+1)/4 is an integer
• y2 = (x(p+1)/4)2 = x(p+1)/2 = x(p-1)/2x = x

– If p=1 mod 4 the computation is more complicated (no
deterministic algorithm is known)

22

page 22December 20, 2006 Introduction to Cryptography, Benny Pinkas

Decryption of Rabin cryptosystem

• Input: c, p, q. (p=q=3 mod 4)
• Decryption:

– Compute mp =c(p+1)/4 mod p.
– Compute mq =c(q+1)/4 mod q.
– Use CRT to compute the four roots mod N, i.e. four values

mod N corresponding to [mp , p-mp] × [mq , q-mq]

• There are four possible options for the plaintext!
– The receiver must select the correct plaintext
– This can be solved by requiring the sender to embed

some redundancy in m
• E.g., a string of bits of specific form

• Make sure that m is always a QR

23

page 23December 20, 2006 Introduction to Cryptography, Benny Pinkas

Security of the Rabin cryptosystem

• The Rabin cryptosystem is secure against passive
attacks iff factoring is hard. ☺

• The Rabin cryptosystem is completely insecure against
chosen-ciphertext attacks �

24

page 24December 20, 2006 Introduction to Cryptography, Benny Pinkas

Security of the Rabin cryptosystem

• Security against chosen plaintext attacks
• Suppose there is an adversary that completely breaks the system

– Adversary’s input: N, c
– Adversary’s output: m s.t. m2= c mod N.

• We show a reduction showing that given this adversary we can
break the factoring assumption.

• I.e., we build an algorithm:
– Input: N
– Operation: can ask queries to the Rabin decryption oracle
– Output: the factoring of N.

• Therefore, if one can break Rabin’s cryptosystem it can also solve
factoring.

• Therefore, if factoring is hard the Rabin cryptosystem is “secure”
in the sense defined here.

25

page 25December 20, 2006 Introduction to Cryptography, Benny Pinkas

The reduction

• Input: N
• Operation:

– Choose random x.
– Send N and c=x2 mod N, to adversary.
– Adversary answers with y s.t. c=y2 mod N.
– If y=x or y=N-x, go back to step 1.
– Otherwise

• x2 - y2 = 0 mod N.

• 0 ≠ (x-y)(x+y) = cN = cpq.

• Compute gcd(x+y,N) , gcd(x-y,N) and obtain p or q.

• (The gcd is not N since 0<x,y<N, and therefore
–N < x+y,x-y < 2N, and it is known that x+y,x-y≠0,N).

happens with
prob 1/2

26

page 26December 20, 2006 Introduction to Cryptography, Benny Pinkas

Insecurity against chosen-ciphertext attacks

• A chosen-ciphertext attack reveals the factorization of N.
• The attacker’s challenge is to decrypt a ciphertext c.
• It can ask the receiver to decrypt any ciphertext except c.
• The attacker can use the receiver as the “adversary” in the

reduction, namely
– Chooses a random x and send c=x2 mod N to the receiver
– The receiver returns a square root y of c
– With probability ½, x ≠ y and x ≠ -y. In this case the attacker

can factor N by computing gcd(x-y,N).

– (The attack does not depend on homomorphic properties of
the ciphertext. Namely, it is not required that E(x)E(y)=E(xy).)

27

page 27December 20, 2006 Introduction to Cryptography, Benny Pinkas

Comparing RSA and Rabin encryption

• RSA encryption is infinitely more popular than Rabin
encryption (also more popular than El Gamal)

• Advantage of Rabin encryption: it seems more secure,
security of Rabin is equivalent to factoring and we don’t
know to show that for RSA.

• Advantages of RSA
– RSA is a permutation, whereas decryption in Rabin is

more complex
– Security of Rabin is only proven for encryption as C=M2

mod N, and this mode
• does not enable to identify the plaintext
• is susceptible to chosen ciphertext attack.

28

page 28December 20, 2006 Introduction to Cryptography, Benny Pinkas

Digital Signatures

29

page 29December 20, 2006 Introduction to Cryptography, Benny Pinkas

Handwritten signatures

• Associate a document with an signer (individual)
• Signature can be verified against a different signature

of the individual
• It is hard to forge the signature…
• It is hard to change the document after it was signed…
• Signatures are legally binding

30

page 30December 20, 2006 Introduction to Cryptography, Benny Pinkas

Desiderata for digital signatures

• Associate a document to a signer

• A digital signature is attached to a document (rather
then be part of it)

• The signature is easy to verify but hard to forge
– Signing is done using knowledge of a private key
– Verification is done using a public key associated with the

signer (rather than comparing to an original signature)
– It is impossible to change even one bit in the signed

document
• A copy of a digitally signed document is as good as the

original signed document.
• Digital signatures could be legally binding…

31

page 31December 20, 2006 Introduction to Cryptography, Benny Pinkas

Non Repudiation

• Prevent signer from denying that it signed the message
• I.e., the receiver can prove to third parties that the

message was signed by the signer

• This is different than message authentication (MACs)
– There the receiver is assured that the message was sent

by the receiver and was not changed in transit
– But the receiver cannot prove this to other parties

• MACs: sender and receiver share a secret key K

• If R sees a message MACed with K, it knows that it could
have only been generated by S

• But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R

32

page 32December 20, 2006 Introduction to Cryptography, Benny Pinkas

Signing/verification process

Document M
signing

algorithm

Private signature key

Signature of M

Public verification key

verification

algorithm

valid / invalid

signer

verifier Signature
depends on M

33

page 33December 20, 2006 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman
“New directions in cryptography” (1976)

• In public key encryption
– The encryption function is a trapdoor permutation f

• Everyone can encrypt = compute f(). (using the public key)

• Only Alice can decrypt = compute f- -1(). (using her private key)

• Alice can use f for signing
– Alice signs m by computing s=f -1(m).
– Verification is done by computing m=f(s).

• Intuition: since only Alice can compute f- -1(), forgery is
infeasible.

• Caveat: none of the established practical signature
schemes following this paradigm is provably secure

34

page 34December 20, 2006 Introduction to Cryptography, Benny Pinkas

Example: simple RSA based signatures

• Key generation: (as in RSA)
– Alice picks random p,q. Finds e·d=1 mod (p-1)(q-1).
– Public verification key: (N,e)
– Private signature key: d

• Signing: Given m, Alice computes s=md mod N.

• Verification: given m,s and public key (N,e).
– Compute m’ = se mod N.
– Output “valid” iff m’=m.

35

page 35December 20, 2006 Introduction to Cryptography, Benny Pinkas

Message lengths

• A technical problem:
– |m| might be longer than |N|
– m might not be in the domain of f-1()

Solution:
• Signing: First compute H(m), then compute the

signature f -1(H(M)). Where,
– H() is collision intractable. I.e. it is hard to find m, m’ s.t.

H(m)=H(m’).
– The range of H() is contained in the domain of f-1().

• Verification:
– Compute f(s). Compare to H(m).

• Use of H() is also good for security reasons. See below.

36

page 36December 20, 2006 Introduction to Cryptography, Benny Pinkas

Security of using hash function

• Intuitively
– Adversary can compute H(), f(), but not f -1().
– Can only compute (m,H(m)) by choosing m and computing H().
– Adversary wants to compute (m ,f -1(H(m))).
– To break signature needs to show s s.t. f(s)=H(m). (E.g. se=H(m).)

– Failed attack strategy 1:
• Pick s, compute f(s), and look for m s.t. H(m)=f(s).

– Failed attack strategy 2:
• Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’ (which

is also a signature of m).
• (If H() is not collision resistant, adversary could find m,m’ s.t.

H(m) = H(m’).)
– This doesn’t mean that the scheme is secure, only that these attacks

fail.

