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The Multiplicative Group Z,*

- p and g denote two large primes (e.g. 512 bits long).
- Denote their product as N = pqg.

- The multiplicative group Z" =Z, " contains all integers
In the range [1,pg-1] that are relatively prime to both p
and g.

 The size of the group is
- @dn) = #pq) = (p-1) (-1) =N - (p+q) + 1

. Forevery x € Z/, x#fN=x(-1)@1) =1 mod N, and
therefore x1*¢4N) = x mod N




- Public key:

— N=pg the product of two primes (we assume that factoring
N is hard)

— e such that gcd(e,#(N))=1
. Private key:
— d such that de=1 mod #N)

- Encryption of MeZ*
~ C=E(M)=M® mod N
- Decryption of C eZ*
- M:D(C):CCI mod N (why does it work?)
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Efficiency

- The public exponent e may be small.

— It is common to choose its value to be either 3 or 216+1.
The private key d must be long.

— Each encryption involves only a few modular
multiplications. Decryption requires a full exponentiation.

- Usage of a small e = Encryption is more efficient than
a full blown exponentiation.

. Decryption requires a full exponentiation (M=C9 mod N)
. Can this be improved?




« Thm:

— Let N=pq with gcd(p,q)=1.
- Then for every pair (y,z) € Z,x Z, there exists a unique xeZ,, s.t.
« X=y mod p
« X=2 mod ¢
 Proof:
- gcd(p,g)=1 = The extended Euclidian alg finds a,b s.t. ap+bg=1.
— Define c=bq. It holds that c=1 mod p, c¢=0 mod q.

— Define d=ap. It holds that d=0 mod p, d=1 mod q.
— Giveny,z, define x = cy+dz mod N.

e cy+tdz=1y+ 0=y mod p.
- cy+tdz = 0+ 1z =2z mod Q.

— (How efficient is this?)
- (The inverse operation, finding (y,z) from X, is easy.)
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More efficient RSA decryption

« CRT:
_ _ Once for all
: S:“lgzn %,gac;ompute a,b s.t. ap+bg=1. }messages

. Decryption, given C:
— Compute y'=C9 mod p. (instead of d can use d’=d mod p-1)
— Compute z'=C9 mod . (instead of d can use d’=d mod g-1)
— Compute M=cy’+dz’ mod N.

« Overhead:

— Two exponentiations modulo p,q, instead of one
exponentiation modulo N.

— Overhead of exponentiation is cubic in length of modulus.
- l.e., save a factor of 23/2.




Security reductions

. Security by reduction

— Define what it means for the system to be “secure”
(chosen plaintext/ciphertext attacks, etc.)

— State a “hardness assumption” (e.g., that it is hard to
extract discrete logarithms in a certain group).

— Show that if the hardness assumption holds then the
cryptosystem is secure.

- Benefits:

— To examine the security of the system it is sufficient to
check whether the assumption holds

— Similarly, for setting parameters (e.g. group size).




RSA Security

(For ElIGamal encryption, we showed that if the DDH assumption
holds then EI Gamal encryption has semantic security.)

- If factoring N is easy then RSA is insecure

— (factor N = find p,q = find (p-1)(g-1) = find d from e)

- Factoring assumption:

— For a randomly chosen p,q of appropriate length, it is infeasible to
factor N=pq.

- This assumption might be too weak (might not ensure secure
RSA encryption)
— Maybe it is possible to break RSA without factoring N ?

— We don’t know how to reduce RSA security to the hardness of
factoring.

- Fact: finding d is equivalent to factoring.
— l.e., ifitis possible to find d given (N,e) , then it is easy to factor N.

- Therefore, “hardness of finding d assumption” no stronger than hardness
of factoring.




The RSA assumption: Trap-Door One-Way
Function (OWF)

- (what is the minimal assumption required to show that RSA
encryption is secure?)

. (Informal) definition: f: D—Ris a trapdoor one way
function if there is a trap-door s such that:

— Without knowledge of s, the function f is a one way. l.e.,
for a randomly chosen x, it is hard to invert f(x).

— Given s, inverting f is easy

- Example: f; ,(x) = g* mod p is not a trapdoor one way
function.

- Example: the assumption that RSA is a trapdoor OWF

- fue(X) =x*mod N.  (assumption: for a random N,e,Xx,
inverting is hard.)

— The trapdoor is d s.t. ed = 1 mod ¢(N)
— [fy (X))@ = x mod N
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RSA assumption: cautions

- The RSA assumption is quite well established:
— RSA is actually a Trapdoor One-Way Permutation

— Hard to invert on random input (if you don’t know the
secret key)

- But is it a secure cryptosystem?

- Given the assumption it is hard to reconstruct the input,
but is it hard to learn anything about the input?

- Theorem [G]. RSA hides the log(log(N)) least and most
significant bits of a uniformly-distributed random input

— But some (other) information about pre-image may leak
— And... adversary can detect a repeating message

- And, of course, as a deterministic cipher RSA does not
provide semantic security.
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- Consider the following environment:
— There is a global modulus N. No one knows its factoring.
— Each party has a pair (e;,d;), such that e;,d; = 1 mod #N).
- Used as a public/private key pair.

- The system is insecure.

- Party 1, knowing (e,,d,)
— can factor N
— Find d, for any other party i.
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RSA with a small exponent

. Setting e=3 enables efficient encryption

- Might be insecure if not used properly
— Assume three users with public keys N;, N,, N..
— Alice encrypts the same message to all of them
« C; =m3 mod N;
« C,=m3 mod N,
« C;=m3 mod N,
- Can an adversary which sees C,,C,,C; find m?
- m3< N;N,N,
- N, N, and N are most likely relatively prime (otherwise
we can factor them).

— Chinese remainder theorem -> can find m® mod N (and
therefore m3 over the integers)

— Easy to extract 39 root over the integers.
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- The multiplicative group Z" =Z,.,". The size of the group is
@(n) = @(pq) = (p-1) (9-1)
- Public key:
— N=pg the product of two primes
— e such that gcd(e, ¢(N))=1 (are these hard to find?)
. Private key:
— d such that de=1 mod #(N)

- Encryption of MeZ*
~ C=E(M)=M® mod N
- Decryption of C eZ*
- M:D(C):CCI mod N (why does it work?)
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- The Chinese Remainder Theorem (CRT):
— Let N=pqg with gcd(p,q)=1.
- Then for every pair (y,z) € Z,x Z, there exists a unique
XelZ,, s.t.
« X=y mod p

« X=2 mod ¢

- Quadratic Residues:
- The square root of xeZ" isyeZ," s.t. y*=x mod p.

- XEZ has either 2 or O square roots, and is denoted as a
Quadratlc Residue (QR) or Non Quadratic Residue (NQR),
respectively.

— Euler's theorem: xeZ" is a QR iff x(-1"2 = 1 mod p.
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- Key generation:
— Private key: random primes p,q (e.g. 512 bits long).
— Public key: N=pq.

 Encryption:
- Plaintext me Z,".
— Ciphertext: ¢ =m? mod N. (very efficient)

« Decryption: Compute c2mod N.
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- = Let x be a quadratic residue (QR) modulo N=pq, then
-xmodpisaQRmodp. xmodqisaQR modq
— xmod p has two roots mod p:yand p -y
— xmod g has two roots mod q: zand q - z

- < Ifxisa QR mod p and mod q, itis also a QR mod N.
(Follows from the Chinese remainder theorem.)
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- If x has a square root modulo N then it has 4 different
square roots modulo N.

— Let A be s.t. A2=x mod N.
— Letc be s.t. c=1 mod p, c=-1 mod q.
— Then A, -A, cA, -cA are all square roots of x modulo N.

- Each combination of roots modulo p and g results in a
root modulo N.

— X therefore has four roots modulo pqQ:
- (y,2) > A (P-y,q-2)->pg-A

-(¥,q-2)->B, (P-y,2)->pg-B
- (y;Z) . (1,_1)
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Square roots modulo N

. If X has a square root modulo N then it has 4 different
sguare roots modulo N.
Exactly ¥4 of the elements are QR mod N.

* QRy = QR x QR |QRy[ = (p-1)(a-1)/4

- Assume that p=g=3 mod 4. (Blum integers.)
— Therefore -1 is an NQR mod p and mod q (Euler’'s thm).
-~ We know that the square roots of x modulo N are A, -A,

CA, -CA, where A°=x mod N, and c=1 mod p, ¢c=-1 mod g.

— Therefore exactly one of the roots is a QR mod p and a
QR mod q.
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Finding square roots modulo N

. Need to compute y=x2mod N.

- Suppose we know (the private key) p, Q.

— Compute the roots of x modulo p, g. Use Chinese
remainder theorem to find x.

- Computing square roots in Z
- Recall, xeQR, iff x(P-Di2=1 mod p.
— Assume p=3 mod 4. (p is a Blum integer).
— Compute the root as y=x**1/4 mod p.
« (p+1)/4 is an integer
e y2= (X(p+1)/4)2 = x(P*t1)/2 = y(P-1)2y = x

— If p=1 mod 4 the computation is more complicated (no
deterministic algorithm is known)
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Decryption of Rabin cryptosystem

. Input: ¢, p, 9. (pP=9=3 mod 4)
. Decryption:
- Compute m, =cP** mod p.
- Compute m, =c@*1" mod q.
— Use CRT to compute the four roots mod N, i.e. four values
mod N corresponding to [m,, p-my] x[m,, g-m,]

- There are four possible options for the plaintext!
— The receiver must select the correct plaintext

— This can be solved by requiring the sender to embed
some redundancy in m

- E.g., a string of bits of specific form
- Make sure that m is always a QR
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- The Rabin cryptosystem is secure against passive
attacks iff factoring is hard. ©

- The Rabin cryptosystem is completely insecure against

chosen-ciphertext attacks ®
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Security of the Rabin cryptosystem

 Security against chosen plaintext attacks

- Suppose there is an adversary that completely breaks the system
— Adversary’s input: N,
— Adversary’s output: m s.t. m?=c mod N.

- We show a reduction showing that given this adversary we can
break the factoring assumption.

- l.e., we build an algorithm:
— Input: N
— Operation: can ask queries to the Rabin decryption oracle
— Output: the factoring of N.

- Therefore, if one can break Rabin’s cryptosystem it can also solve
factoring.

- Therefore, if factoring is hard the Rabin cryptosystem is “secure”
In the sense defined here.
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« Input: N
- Operation:
— Choose random x.

- Send N and c=x? mod N, to adversary.
— Adversary answers with y s.t. c=y2 mod N.
— If y=x or y=N-x, go back to step 1.

— Otherwise \ happens with

« x2-y2=0mod N. prob 1/2
« 0 # (x-y)(x+y) = cN = cpq.
« Compute gcd(x+y,N) , gcd(x-y,N) and obtain p or q.

« (The gcd is not N since 0<x,y<N, and therefore
—N < x+y,x-y < 2N, and it is known that x+y,x-y=0,N).
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Insecurity against chosen-ciphertext attacks

- A chosen-ciphertext attack reveals the factorization of N.
- The attacker’s challenge is to decrypt a ciphertext c.
- It can ask the receiver to decrypt any ciphertext except c.

- The attacker can use the receiver as the “adversary” in the
reduction, namely
- Chooses a random x and send c=x?2mod N to the receiver
— The receiver returns a square root y of c

— With probability %2, x #y and x # -y. In this case the attacker
can factor N by computing gcd(x-y,N).

— (The attack does not depend on homomorphic properties of
the ciphertext. Namely, it is not required that E(X)E(y)=E(xy).)
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Comparing RSA and Rabin encryption

- RSA encryption is infinitely more popular than Rabin
encryption (also more popular than El Gamal)

- Advantage of Rabin encryption: it seems more secure,
security of Rabin is equivalent to factoring and we don’t
know to show that for RSA.

- Advantages of RSA

— RSA is a permutation, whereas decryption in Rabin is
more complex

— Security of Rabin is only proven for encryption as C=M?
mod N, and this mode

« does not enable to identify the plaintext
- IS susceptible to chosen ciphertext attack.
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Digital Signatures
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- Associate a document with an signer (individual)

- Signature can be verified against a different signature
of the individual

- It is hard to forge the signature...
- It is hard to change the document after it was signed...
. Signatures are legally binding
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Desiderata for digital signatures

e Associate a document to a signer

A digital signature is attached to a document (rather
then be part of it)

- The signature Is easy to verify but hard to forge
— Signing is done using knowledge of a private key

— Verification is done using a public key associated with the
signer (rather than comparing to an original signature)

— It is impossible to change even one bit in the signed
document

. A copy of a digitally signed document is as good as the
original signed document.

- Digital signatures could be legally binding...
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Non Repudiation

- Prevent signer from denying that it sighed the message

. |.e., the receiver can prove to third parties that the
message was signed by the signer

. This is different than message authentication (MACSs)

— There the receiver is assured that the message was sent
by the receiver and was not changed in transit

— But the receiver cannot prove this to other parties
« MACs: sender and receiver share a secret key K

- If R sees a message MACed with K, it knows that it could
have only been generated by S

 But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R
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Document M

Signature of M

Signature
depends on M
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Diffie-Hellman
“New directions in cryptography” (1976)

- In public key encryption

— The encryption function is a trapdoor permutation f
- Everyone can encrypt = compute f(). (using the public key)

« Only Alice can decrypt = compute f -1(). (using her private key)
- Alice can use f for signing
— Alice signs m by computing s=f-1(m).
— Verification is done by computing m=f(s).

- Intuition: since only Alice can compute f (), forgery is
iInfeasible.

- Caveat: none of the established practical signature
schemes following this paradigm is provably secure
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- Key generation: (as in RSA)
— Alice picks random p,q. Finds e-d=1 mod (p-1)(g-1).
— Public verification key: (N,e)
— Private signature key: d

- Signing: Given m, Alice computes s=m“ mod N.

- Verification: given m,s and public key (N,e).
— Compute m’ = s® mod N.
— Output “valid” iff m’=m.
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Message lengths

- A technical problem:
— |m| might be longer than |N|
— m might not be in the domain of ()

Solution:

. Signing: First compute H(m), then compute the
signature f -1(H(M)). Where,

— H() is collision intractable. l.e. it is hard to find m, m’ s.t.
H(m)=H(m").
— The range of H() is contained in the domain of f1().
« Verification:

— Compute f(s). Compare to H(m).

- Use of H() is also good for security reasons. See below.
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Security of using hash function

Intuitively

Adversary can compute H(), f(), but not f -1().

Can only compute (m,H(m)) by choosing m and computing H().
Adversary wants to compute (m ,f -1(H(m))).

To break signature needs to show s s.t. f(s)=H(m). (E.g. s®=H(m).)

Failed attack strategy 1.
 Pick s, compute f(s), and look for m s.t. H(m)=f(s).

Failed attack strategy 2:

« Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’ (which
Is also a signature of m).

« (If H() is not collision resistant, adversary could find m,m’ s.t.
H(m) = H(m’).)

This doesn’t mean that the scheme is secure, only that these attacks
fail.
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