# Introduction to Cryptography Lecture 

RSA encryption, Rabin encryption, digital signatures

Benny Pinkas

Integer Multiplication \& Factoring as a One Way Function.


Can a public key system be based on this observation ?????

## The Multiplicative Group $Z_{p q}{ }^{*}$

- $p$ and $q$ denote two large primes (e.g. 512 bits long).
- Denote their product as $N=p q$.
- The multiplicative group $Z_{N}{ }^{*}=Z_{p q}{ }^{*}$ contains all integers in the range $[1, p q-1]$ that are relatively prime to both $p$ and $q$.
- The size of the group is
- $\phi(n)=\phi(p q)=(p-1)(q-1)=N-(p+q)+1$
- For every $x \in Z_{N}^{*}, \quad x^{\phi(N)}=x^{(p-1)(q-1)}=1 \bmod N$, and therefore $x^{1+c \cdot \phi(N)}=x \bmod N$


## The RSA Public Key Cryptosystem

- Public key:
- $N=p q$ the product of two primes (we assume that factoring $N$ is hard)
- $e$ such that $\operatorname{gcd}(e, \phi(N))=1$
- Private key:
$-d$ such that $d e \equiv 1 \bmod \phi(N)$
- Encryption of $M \in Z_{N}{ }^{*}$
- $C=E(M)=M^{e} \bmod N$
- Decryption of $C \in Z_{N}{ }^{*}$
- $M=D(C)=C^{d} \bmod N \quad$ (why does it work?)


## Efficiency

- The public exponent e may be small.
- It is common to choose its value to be either 3 or $2^{16}+1$. The private key $d$ must be long.
- Each encryption involves only a few modular multiplications. Decryption requires a full exponentiation.
- Usage of a small $e \Rightarrow$ Encryption is more efficient than a full blown exponentiation.
- Decryption requires a full exponentiation $\left(M=C^{d} \bmod N\right)$
- Can this be improved?


## The Chinese Remainder Theorem (CRT)

- Thm:
- Let $N=p q$ with $\operatorname{gcd}(p, q)=1$.
- Then for every pair $(y, z) \in Z_{p} \times Z_{q}$ there exists a unique $x \in Z_{n}$, s.t.
- $x=y \bmod p$
- $x=z \bmod q$
- Proof:
$-\operatorname{gcd}(p, q)=1 \Rightarrow$ The extended Euclidian alg finds $a, b$ s.t. $a p+b q=1$.
- Define $c=b q$. It holds that $c=1 \bmod p, \quad c=0 \bmod q$.
- Define $d=a p$. It holds that $d=0 \bmod p, d=1 \bmod q$.
- Given $y, z$, define $x=c y+d z \bmod N$.
- $c y+d z=1 y+0=y \bmod p$.
- $c y+d z=0+1 z=z \bmod q$.
- (How efficient is this?)
- (The inverse operation, finding $(y, z)$ from $x$, is easy.)


## More efficient RSA decryption

- CRT:
- Given $p, q$ compute $a, b$ s.t. $a p+b q=1$.
- c=bq; $d=a p$

- Decryption, given $C$ :
- Compute $y^{\prime}=C^{d} \bmod p$. (instead of $d$ can use $d^{\prime}=d \bmod p-1$ )
- Compute $z^{\prime}=C^{d} \bmod q$. (instead of $d$ can use $d^{\prime \prime}=d \bmod q-1$ )
- Compute $M=c y^{\prime}+d z^{\prime} \bmod N$.
- Overhead:
- Two exponentiations modulo $p, q$, instead of one exponentiation modulo $N$.
- Overhead of exponentiation is cubic in length of modulus.
- I.e., save a factor of $2^{3} / 2$.


## Security reductions

- Security by reduction
- Define what it means for the system to be "secure" (chosen plaintext/ciphertext attacks, etc.)
- State a "hardness assumption" (e.g., that it is hard to extract discrete logarithms in a certain group).
- Show that if the hardness assumption holds then the cryptosystem is secure.
- Benefits:
- To examine the security of the system it is sufficient to check whether the assumption holds
- Similarly, for setting parameters (e.g. group size).


## RSA Security

- (For ElGamal encryption, we showed that if the DDH assumption holds then El Gamal encryption has semantic security.)
- If factoring $N$ is easy then RSA is insecure
- (factor $N \Rightarrow$ find $p, q \Rightarrow$ find $(p-1)(q-1) \Rightarrow$ find $d$ from $e$ )
- Factoring assumption:
- For a randomly chosen $p, q$ of appropriate length, it is infeasible to factor $N=p q$.
- This assumption might be too weak (might not ensure secure RSA encryption)
- Maybe it is possible to break RSA without factoring $N$ ?
- We don't know how to reduce RSA security to the hardness of factoring.
- Fact: finding $d$ is equivalent to factoring.
- I.e., if it is possible to find $d$ given $(N, e)$, then it is easy to factor $N$.
- Therefore, "hardness of finding $d$ assumption" no stronger than hardness of factoring.


## The RSA assumption: Trap-Door One-Way Function (OWF)

- (what is the minimal assumption required to show that RSA encryption is secure?)
- (Informal) definition: $f: D \rightarrow R$ is a trapdoor one way function if there is a trap-door $s$ such that:
- Without knowledge of $s$, the function $f$ is a one way. I.e., for a randomly chosen $x$, it is hard to invert $f(x)$.
- Given $s$, inverting $f$ is easy
- Example: $f_{\mathrm{g}, \mathrm{p}}(\mathrm{x})=g^{x} \bmod p$ is not a trapdoor one way function.
- Example: the assumption that RSA is a trapdoor OWF - $f_{N, e}(x)=x^{e} \bmod N . \quad$ (assumption: for a random $N, e, x$, inverting is hard.)
- The trapdoor is $d$ s.t. $e d=1 \bmod \phi(N)$
- $\left[F_{N, e}(x)\right]^{d}=x \bmod N$


## RSA as a One Way Trapdoor Permutation



Easy with trapdoor info ( d )

## RSA assumption: cautions

- The RSA assumption is quite well established:
- RSA is actually a Trapdoor One-Way Permutation
- Hard to invert on random input (if you don't know the secret key)
- But is it a secure cryptosystem?
- Given the assumption it is hard to reconstruct the input, but is it hard to learn anything about the input?
- Theorem [G]: RSA hides the $\log (\log (N)$ least and most significant bits of a uniformly-distributed random input
- But some (other) information about pre-image may leak
- And... adversary can detect a repeating message
- And, of course, as a deterministic cipher RSA does not provide semantic security.


## Is it safe to use a common modulus?

- Consider the following environment:
- There is a global modulus $N$. No one knows its factoring.
- Each party has a pair ( $e_{i}, d_{j}$ ), such that $e_{i}, d_{i}=1 \bmod \phi(N)$. - Used as a public/private key pair.
- The system is insecure.
- Party 1 , knowing ( $e_{1}, d_{1}$ )
- can factor N
- Find $d_{i}$ for any other party $i$.


## RSA with a small exponent

- Setting $e=3$ enables efficient encryption
- Might be insecure if not used properly
- Assume three users with public keys $N_{1}, N_{2}, N_{3}$.
- Alice encrypts the same message to all of them
- $C_{1}=m^{3} \bmod N_{1}$
- $C_{2}=m^{3} \bmod N_{2}$
- $C_{3}=m^{3} \bmod N_{3}$
- Can an adversary which sees $C_{1}, C_{2}, C_{3}$ find $m$ ?
- $m^{3}<N_{1} N_{2} N_{3}$
- $N_{1}, N_{2}$ and $N_{3}$ are most likely relatively prime (otherwise we can factor them).
- Chinese remainder theorem -> can find $m^{3} \bmod N$ (and therefore $m^{3}$ over the integers)
- Easy to extract $3^{\text {rd }}$ root over the integers.


## Reminder: RSA Public Key Cryptosystem

- The multiplicative group $Z_{N}{ }^{*}=Z_{p q}{ }^{*}$. The size of the group is $\varphi(n)=\varphi(p q)=(p-1)(q-1)$
- Public key:
- $N=p q$ the product of two primes
- $e$ such that $\operatorname{gcd}(e, \varphi(N))=1 \quad$ (are these hard to find?)
- Private key:
$-d$ such that $d e=1 \bmod \phi(N)$
- Encryption of $M \in Z_{N}{ }^{*}$
- $C=E(M)=M^{e} \bmod N$
- Decryption of $C \in Z_{N}{ }^{*}$
- $M=D(C)=C^{d} \bmod N \quad$ (why does it work?)


## Reminders

- The Chinese Remainder Theorem (CRT):
- Let $N=p q$ with $\operatorname{gcd}(p, q)=1$.
- Then for every pair $(y, z) \in Z_{p} \times Z_{q}$ there exists a unique $x \in Z_{n}$, s.t.
- $x=y \bmod p$
- $x=z \bmod q$
- Quadratic Residues:
- The square root of $x \in Z_{p}{ }^{*}$ is $y \in Z_{p}^{*}$ s.t. $y^{2}=x \bmod p$.
$-x \in Z_{p}{ }^{*}$ has either 2 or 0 square roots, and is denoted as a Quadratic Residue (QR) or Non Quadratic Residue (NQR), respectively.
- Euler's theorem: $x \in Z_{p}{ }^{*}$ is a QR iff $x^{(p-1) / 2}=1 \bmod p$.


## Rabin's encryption systems

- Key generation:
- Private key: random primes $p, q$ (e.g. 512 bits long).
- Public key: $N=p q$.
- Encryption:
- Plaintext $m \in Z_{N}$.
- Ciphertext: $c=m^{2} \bmod N$. (very efficient)
- Decryption: Compute $c^{1 / 2} \bmod N$.


## Square roots modulo $N$

- $\Rightarrow$ Let $x$ be a quadratic residue (QR) modulo $N=p q$, then
$-x \bmod p$ is a QR $\bmod p . \quad x \bmod q$ is a QR $\bmod q$
$-x \bmod p$ has two roots $\bmod p: y$ and $p-y$
$-x$ mod $q$ has two roots mod $q: z$ and $q-z$
- $\Leftarrow$ If $x$ is a QR $\bmod p$ and $\bmod q$, it is also a QR $\bmod N$. (Follows from the Chinese remainder theorem.)


## Square roots modulo $N$

- If $x$ has a square root modulo $N$ then it has 4 different square roots modulo $N$.
- Let $A$ be s.t. $A^{2}=x \bmod N$.
- Let $c$ be s.t. $c=1 \bmod p, c=-1 \bmod q$.
- Then $A,-A, c A,-c A$ are all square roots of $x$ modulo $N$.
- Each combination of roots modulo $p$ and $q$ results in a root modulo $N$.
$-x$ therefore has four roots modulo $p q$ :
$-(y, z)->A, \quad(p-y, q-z)->p q-A$
$-(y, q-z)->B, \quad(p-y, z)->p q-B$

$$
=(1, z) \cdot(1,-1)
$$

## Square roots modulo $N$

- If $x$ has a square root modulo $N$ then it has 4 different square roots modulo $N$.
Exactly $1 / 4$ of the elements are QR mod $N$.
- $\mathrm{QR}_{\mathrm{N}}=\mathrm{QR}_{\mathrm{p}} \times \mathrm{QR}_{\mathrm{q}} . \quad\left|Q R_{\mathrm{N}}\right|=(\mathrm{p}-1)(\mathrm{q}-1) / 4$
- Assume that $p=q=3$ mod 4. (Blum integers.)
- Therefore -1 is an NQR $\bmod p$ and $\bmod q$ (Euler's thm).
- We know that the square roots of $x$ modulo $N$ are $A,-A$, $c A,-c A$, where $A^{2}=x \bmod N$, and $c=1 \bmod p, c=-1 \bmod q$.
- Therefore exactly one of the roots is a QR $\bmod p$ and a QR mod $q$.


## Finding square roots modulo $N$

- Need to compute $y=x^{1 / 2} \bmod N$.
- Suppose we know (the private key) $p, q$.
- Compute the roots of $x$ modulo $p, q$. Use Chinese remainder theorem to find $x$.
- Computing square roots in $Z_{p}{ }^{*}$,
- Recall, $x \in Q R_{p}$ iff $x^{(p-1) / 2}=1 \bmod p$.
- Assume $p=3 \bmod 4$. ( $p$ is a Blum integer).
- Compute the root as $y=x^{(p+1) / 4} \bmod p$.
- $(p+1) / 4$ is an integer
- $y^{2}=\left(x^{(p+1) / 4}\right)^{2}=x^{(p+1) / 2}=x^{(p-1) / 2} x=x$
- If $p=1$ mod 4 the computation is more complicated (no deterministic algorithm is known)


## Decryption of Rabin cryptosystem

- Input: $c, p, q .(p=q=3 \bmod 4)$
- Decryption:
- Compute $m_{p}=c^{(p+1) / 4} \bmod p$.
- Compute $m_{q}=c^{(q+1) / 4} \bmod q$.
- Use CRT to compute the four roots mod $N$, i.e. four values $\bmod N$ corresponding to $\left[m_{p}, p-m_{p}\right] \times\left[m_{q}, q-m_{q}\right]$
- There are four possible options for the plaintext!
- The receiver must select the correct plaintext
- This can be solved by requiring the sender to embed some redundancy in $m$
- E.g., a string of bits of specific form
- Make sure that $m$ is always a QR


## Security of the Rabin cryptosystem

- The Rabin cryptosystem is secure against passive attacks iff factoring is hard. ©
- The Rabin cryptosystem is completely insecure against chosen-ciphertext attacks $*$


## Security of the Rabin cryptosystem

- Security against chosen plaintext attacks
- Suppose there is an adversary that completely breaks the system
- Adversary's input: N, c
- Adversary's output: $m$ s.t. $m^{2}=c \bmod N$.
- We show a reduction showing that given this adversary we can break the factoring assumption.
- I.e., we build an algorithm:
- Input: $N$
- Operation: can ask queries to the Rabin decryption oracle
- Output: the factoring of $N$.
- Therefore, if one can break Rabin's cryptosystem it can also solve factoring.
- Therefore, if factoring is hard the Rabin cryptosystem is "secure" in the sense defined here.


## The reduction

- Input: $N$
- Operation:
- Choose random x.
- Send $N$ and $c=x^{2} \bmod N$, to adversary.
- Adversary answers with $y$ s.t. $c=y^{2}$ mod $N$.
- If $y=x$ or $y=N-x$, go back to step 1 .
- Otherwise
- $x^{2}-y^{2}=0 \bmod N$.
happens with prob 1/2
- $0 \neq(x-y)(x+y)=c N=c p q$.
- Compute $\operatorname{gcd}(x+y, N), \operatorname{gcd}(x-y, N)$ and obtain $p$ or $q$.
- (The gcd is not $N$ since $0<x, y<N$, and therefore $-N<x+y, x-y<2 N$, and it is known that $x+y, x-y \neq 0, N$.


## Insecurity against chosen-ciphertext attacks

- A chosen-ciphertext attack reveals the factorization of $N$.
- The attacker's challenge is to decrypt a ciphertext $c$.
- It can ask the receiver to decrypt any ciphertext except $c$.
- The attacker can use the receiver as the "adversary" in the reduction, namely
- Chooses a random $x$ and send $c=x^{2} \bmod N$ to the receiver
- The receiver returns a square root $y$ of $c$
- With probability $1 / 2, x \neq y$ and $x \neq-y$. In this case the attacker can factor N by computing $\operatorname{gcd}(x-y, N)$.
- (The attack does not depend on homomorphic properties of the ciphertext. Namely, it is not required that $E(x) E(y)=E(x y)$.)


## Comparing RSA and Rabin encryption

- RSA encryption is infinitely more popular than Rabin encryption (also more popular than El Gamal)
- Advantage of Rabin encryption: it seems more secure, security of Rabin is equivalent to factoring and we don't know to show that for RSA.
- Advantages of RSA
- RSA is a permutation, whereas decryption in Rabin is more complex
- Security of Rabin is only proven for encryption as $\mathrm{C}=\mathrm{M}^{2}$ $\bmod N$, and this mode
- does not enable to identify the plaintext
- is susceptible to chosen ciphertext attack.


## Digital Signatures

## Handwritten signatures

- Associate a document with an signer (individual)
- Signature can be verified against a different signature of the individual
- It is hard to forge the signature...
- It is hard to change the document after it was signed...
- Signatures are legally binding


## Desiderata for digital signatures

- Associate a document to a signer
- A digital signature is attached to a document (rather then be part of it)
- The signature is easy to verify but hard to forge
- Signing is done using knowledge of a private key
- Verification is done using a public key associated with the signer (rather than comparing to an original signature)
- It is impossible to change even one bit in the signed document
- A copy of a digitally signed document is as good as the original signed document.
- Digital signatures could be legally binding...


## Non Repudiation

- Prevent signer from denying that it signed the message
- I.e., the receiver can prove to third parties that the message was signed by the signer
- This is different than message authentication (MACs)
- There the receiver is assured that the message was sent by the receiver and was not changed in transit
- But the receiver cannot prove this to other parties
- MACs: sender and receiver share a secret key $K$
- If R sees a message MACed with $K$, it knows that it could have only been generated by $S$
- But if R shows the MAC to a third party, it cannot prove that the MAC was generated by $S$ and not by $R$


## Signing/verification process



## Diffie-Hellman <br> "New directions in cryptography" (1976)

- In public key encryption
- The encryption function is a trapdoor permutation $f$
- Everyone can encrypt = compute $f($ ). (using the public key)
- Only Alice can decrypt = compute $f^{-1}()$. (using her private key)
- Alice can use $f$ for signing
- Alice signs $m$ by computing $s=f^{-1}(m)$.
- Verification is done by computing $m=f(s)$.
- Intuition: since only Alice can compute $f^{-1}()$, forgery is infeasible.
- Caveat: none of the established practical signature schemes following this paradigm is provably secure


## Example: simple RSA based signatures

- Key generation: (as in RSA)
- Alice picks random $p, q$. Finds $e \cdot d=1 \bmod (p-1)(q-1)$.
- Public verification key: ( $N, e$ )
- Private signature key: $d$
- Signing: Given $m$, Alice computes $s=m^{d} \bmod N$.
- Verification: given $m, s$ and public key ( $N, e$ ).
- Compute $m^{\prime}=s^{e} \bmod N$.
- Output "valid" iff m'=m.


## Message lengths

- A technical problem:
- |m| might be longer than $|\mathrm{N}|$
$-m$ might not be in the domain of $f^{1}()$
Solution:
- Signing: First compute $H(m)$, then compute the signature $f^{-1}(H(M))$. Where,
- $H()$ is collision intractable. I.e. it is hard to find $m, m$ 's.t. $H(m)=H\left(m^{\prime}\right)$.
- The range of $\left.H_{( }\right)$is contained in the domain of $f^{1}()$.
- Verification:
- Compute $f(s)$. Compare to $H(m)$.
- Use of $H()$ is also good for security reasons. See below.


## Security of using hash function

- Intuitively
- Adversary can compute $H(), f()$, but not $f^{-1}()$.
- Can only compute $(m, H(m))$ by choosing $m$ and computing $H()$.
- Adversary wants to compute ( $m, f{ }^{-1}(H(m))$ ).
- To break signature needs to show $s$ s.t. $f(s)=H(m)$. (E.g. $s^{e}=H(m)$.)
- Failed attack strategy 1 :
- Pick $s$, compute $f(s)$, and look for $m$ s.t. $H(m)=f(s)$.
- Failed attack strategy 2 :
- Pick $m, m^{\prime} s . t . H(m)=H\left(m^{\prime}\right)$. Ask for a signature $s$ of $m^{\prime}$ (which is also a signature of $m$ ).
- (If $H()$ is not collision resistant, adversary could find $m, m$ 's.t. $H(m)=H\left(m^{\prime}\right)$.)
- This doesn't mean that the scheme is secure, only that these attacks fail.

