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Introduction to Cryptography
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Public key cryptography
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Last lecture

• Basic number theory
– Lots of facts about groups

• In particular
– Zp

* Multiplication modulo a prime number p
• (G,° )  =  ({1,2,…,p-1}, ×),   e.g., Z7

* = ( {1,2,3,4,5,6} , ×).

– ZN
*  Multiplication modulo a composite number N

• (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)

• E.g., Z10
* = ( {1,3,7,9}, ×)

– A group G is cyclic if there exists a generator g, s.t.∀a∈G, 
∃ i s.t. gi=a.
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The Diffie-Hellman Key Exchange Protocol

• Alice:
– picks a random a∈[1,q].
– Sends ga mod p to Bob.

– Computes k=(gb)a mod p

• Bob:
– picks a random b∈[1,q].
– Sends gb mod p to Bob.

– Computes k=(ga)b mod p

• Public parameters: a group where the DDH assumption 
holds. For example, Zp* (where |p|= 768 or 1024, 
p=2q+1), and a generator g of H⊂ Zp* of order q.

• K = gab is used as a shared key between Alice and Bob.
• DDH assumption ⇒ K is indistinguishable from a random key
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Diffie-Hellman: security

• A (passive) adversary
– Knows Zp

*, g
– Sees ga, gb

– Wants to compute gab, or at least learn something about it
• Recall the Decisional Diffie-Hellman problem: 

– Given random x,y∈Zp
*, such that x=ga and y=gb; and a pair 

(gab,gc) (in random order, for a random c), it is hard to tell 
which is gab.

– An adversary that distinguishes the key gab generated in a 
DH key exchange from random, can also break the DDH.

– Note: it is insufficient to require that the adversary cannot 
compute gab.
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Diffie-Hellman key exchange: usage

• The DH key exchange can be used in any group in 
which the Decisional Diffie-Hellman (DDH) assumption 
is believed to hold.

• Currently, Zp* and elliptic curve groups.

• Common usage:
– Overhead: 1-2 exponentiations
– Usually,

• A DH key exchange for generating a master key

• Master key used to encrypt session keys

• Session key is used to encrypt traffic with a symmetric 
cryptosystem
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An active attack against the Diffie-Hellman Key 
Exchange Protocol

• An active adversary Eve.
• Can read and change the communication between 

Alice and Bob.
• …As if Alice and Bob communicate via Eve.

Alice BobEve
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Man–in-the-Middle: an active attack against the 
Diffie-Hellman Key Exchange protocol

• Alice:
– picks a random a∈[1,q].
– Sends ga mod p to Bob.

– Computes k=(gd)a mod p

– Solution: ?  (wireless usb)

• Bob:

Eve changes ga to gc

– picks a random b∈[1,q].
– Sends gb mod p to Alice.

– Computes k=(gc)b mod p

Eve changes gb to gd

Keys:
Alice                      Eve                   Bob

gad                         gad, gbc gbc
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Public key encryption

• Alice publishes a public key PKAlice.
• Alice has a secret key SKAlice.
• Anyone knowing PKAlice can encrypt messages using it.
• Message decryption is possible only if SKAlice is known.

• Compared to symmetric encryption:
– Easier key management: n users need n keys, rather than 

O(n2) keys, to communicate securely.
• Compared to Diffie-Hellman key agreement:

– No need for an interactive key agreement protocol. (Think 
about sending email…)

• Secure as long as we can trust the association of keys 
with users.
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Public key encryption

• Must have different keys for encryption and decryption.
• Public key encryption cannot provide perfect secrecy:

– Suppose Epk() is an algorithm that encrypts m=0/1, and 
uses r random bits in operation.

– An adversary is given Epk(m). It can compare it to all 
possible 2r encryptions of 0…

• Efficiency is the main drawback of public key 
encryption.
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Defining a public key encryption

• The definition must include the following algorithms;

• Key generation:  KeyGen(1k)→(PK,SK) (where k is a 
security parameter, e.g. k=1000).

• Encryption: C = EPK(m) (E might be a randomized 
algorithm)

• Decryption: M= DSK(C)
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The El Gamal public key encryption system

• Public information (can be common to different public keys): 
– A group in which the DDH assumption holds. Usually start with a 

prime p=2q+1, and use H⊂Zp
* of order q. Define a generator g of H.

• Key generation: pick a random private key a in [1,|H|] (e.g. 
0<a<q). Define the public key h=ga (h=ga mod  p).

• Encryption of a message m∈ H⊂ Zp
*

– Pick a random 0 < r < q.
– The ciphertext is (gr, hr·m).

• Decryption of (s,t)
– Compute t /sa (m= hr·m / (gr)a)

Using public key alone

Using private key
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El Gamal and Diffie-Hellman

• ElGamal encryption is similar to DH key exchange
– DH key exchange: Adversary sees ga, gb. Cannot 

distinguish the key gab from random.
– El Gamal: 

• A fixed public key ga. 

• Sender picks a random gr.

• Sender encrypts message using gar.

• El Gamal is like DH where
– The same ga is used for all communication
– There is no need to explicitly send this ga (it is already 

known as the public key of Alice)

Known to the adversary

Used as a key
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Semantic security

• Semantic Security: knowing that an encryption is either 
E(m0) or E(m1), (where m0,m1 are known) an adversary 
cannot decide with probability better than ½ which is 
the case.

• Suppose that a public key encryption system is 
deterministic., then it cannot have semantic security.
– Namely, E(m) is a deterministic function of m and P.
– Then if Eve suspects that Bob might encrypt either m0 or 

m1, she can compute (by herself)  E(m0) and E(m1) and 
compare them to the encryption that Bob sends.
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El Gamal encryption: breaking semantic security 
implies breaking DDH

• Proof by reduction:
– We are given (g,ga,gb, (D1,D2) ) where one of D1,D2 is gab, and 

the other is gr. We need to identify gab.
– We give the adversary g and a public key: h=ga. 
– The adversary chooses m0,m1.
– We give the adversary (gb,De·mc), where c,e are random.
– If the adversary guesses c correctly, we decide that De=gab. 

Otherwise we decide that De=gr.
• Analysis:

– Suppose that the adversary can guess c with prob ¾.
– If De=gab then the adversary finds c with probability ¾, 

otherwise it finds c with probability ½.
– Our success probability   ½ ⋅ ¾ + ½ ⋅ ½ = 5/8.
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The El Gamal public key encryption system

• Setting the public information
• A large prime p, and a generator g of H⊂Zp

* of order q.
– |p| = 756 or 1024 bits.
– p-1 must have a large prime factor (e.g. p=2q+1) 

• Otherwise it is easy to solve discrete logs in Zp
*  (relevant also 

to DH key agreement)
• Needed for the DDH assumption to hold (Legendre’s symbol)

– g must be a generator of a large subgroup of Zp
*.

• Encoding the message:
– m must be in the subgroup generated by g.
– Alternatively, encrypt m using (gr, H(hr)⊕ m). Decryption is 

done by computing H( (gr)a ).   (H is a hash function that 
preserves the pseudo-randomness of hr.)
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The El Gamal public key encryption system

• Overhead:
– Encryption: two exponentiations; preprocessing possible.
– Decryption: one exponentiation.
– message expansion:    m ⇒ (gr, hr·m).

• Randomized encryption
– Must use fresh randomness r for every message.
– Two different encryptions of the same message are 

different! (provides semantic security)
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Homomorphic property

• Insecurity against chosen ciphertext attacks:
– Attacker wants to decrypt (s,t) = (gr, hr·m).
– Chooses random r’, computes (s’,t’)=(s, t·r’) =   

(gr, hr·(m·r’)).
– Asks for a decryption of (s’,t’). Receives m·r’.

• Homomorphic property:
– Given encryptions of x,y, it’s easy to generate an 

encryption of x·y.
• (gr, hr·x) × (gr’, hr’·y) → (gr’’, hr’’ ·x·y)
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Homomorphic encryption

• Homomorphic encryption is useful for performing 
operations over encrypted data.

• Given E(m1) and E(m2) it is easy to compute E(m1m2).

• For example, an election procedure:
– A “Yes” is E(2). A “No” vote is E(1).
– Take all the votes and multiply them. Obtain E(2j), where j 

is the number of “Yes” votes.
– Decrypt the result and find out how many “Yes” votes 

there are, without identifying how each person voted. 
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Integer Multiplication & Factoring as a One Way 
Function.

p,q N=pq

hard

easy

Can a public key system be based
on this observation ?????
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Excerpts from RSA paper (CACM, 1978)

The era of  “electronic mail” may soon be upon us; we must
ensure that two important properties of the current “paper 
mail” system are preserved: (a) messages are private, and (b) 
messages can be signed. We demonstrate in this paper how
to build these capabilities into an electronic mail system.

At the heart of our proposal is a new encryption method. 
This method provides an implementation of a “public-key 
cryptosystem,” an elegant concept invented by Diffie and 
Hellman. Their article motivated our research, since they 
presented the concept but not any practical implementation
of such system.  
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The Multiplicative Group Zpq*

• p and q denote two large primes (e.g. 512 bits long).
• Denote their product as N = pq.
• The multiplicative group ZN

* =Zpq
* contains all integers 

in the range [1,pq-1] that are relatively prime to both p
and q.

• The size of the group is 
– φ(n) = φ(pq) = (p-1) (q-1) = N - (p+q) + 1

• For every x ∈∈ ZN
*, xφ(N)=x(p-1)(q-1) = 1 mod N.
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Exponentiation in ZN*

• Motivation: use exponentiation for encryption. 

• Let e be an integer, 1 < e < φ(N) = (p-1)(q-1). 
– Question: When is exponentiation to the eth power, 

(x → xe), a one-to-one operation in ZN* ?

• Claim: If e is relatively prime to (p-1)(q-1) then x → xe is  
a one-to-one operation in ZN*.

• Constructive proof:
– Since  gcd(e, (p-1)(q-1) )=1, e has a multiplicative inverse 

modulo (p-1)(q-1).
– Denote it by d, then ed=1+c(p-1)(q-1)=1+cφ(N).
– Let y=xe, then yd = (xe)d = x1+cφ(N) = x.
– I.e., y → yd is the inverse of x → xe.
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The RSA Public Key Cryptosystem

• Public key:
– N=pq the product of two primes (we assume that factoring 

N is hard)
– e such that gcd(e,φ(N))=1        (are these hard to find?)

• Private key:
– d such that de≡1 mod φ(N)

• Encryption of M∈ZN*
– C=E(M)=Me mod N

• Decryption of C∈ZN*
– M=D(C)=Cd mod N    (why does it work?)
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Constructing an instance of the RSA PKC

• Alice
– picks at random two large primes, p and q.
– picks (uniformly at random) a (large) d that is relatively 

prime to (p-1)(q-1)  (namely, gcd(d,φ(N))=1 ).
– Alice computes e such that de≡1 mod φ(N)

• Let N=pq be the product of p and q.
• Alice publishes the public key (N,e).
• Alice keeps the private key d, as well as the primes p, q

and the number φ(N), in a safe place.
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Properties of RSA

• Deterministic encryption. In textbook RSA:
– M is always encrypted as Me

– The ciphertext is as long as the domain of M

• Corolalry: RSA is does not have semantic security.

• Chosen ciphertext attack: (homomorphic property)
– RSA is susceptible to chosen ciphertext attacks:
– Given a ciphertext C=Me, choose a random R and 

generate C’=CRe (an encryption of M·R).  Decrypting C’
reveals M.



26

page 26December 13, 2006 Introduction to Cryptography, Benny Pinkas

Efficiency

• The public exponent e may be small.
– It is common to choose its value to be either 3 or 216+1. 

The private key d must be long. 
– Each encryption involves only a few modular 

multiplications. Decryption requires a full exponentiation.

• Usage of a small e ⇒ Encryption is more efficient than 
a full blown exponentiation. 

• Decryption requires a full exponentiation (M=Cd mod N)
• Can this be improved?
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The Chinese Remainder Theorem (CRT)

• Thm:
– Let N=pq with gcd(p,q)=1. 
– Then for every pair (y,z) ∈ Zp× Zq there exists a unique x∈Zn, s.t.

• x=y mod p

• x=z mod q

• Proof:
– The extended Euclidian algorithm finds a,b s.t. ap+bq=1.
– Define c=bq.   c=1 mod p.   c=0 mod q.  
– Define d=ap.   d=0 mod p.   d=1 mod q.
– Let x=cy+dz mod N.

• cy+dz = 1y + 0 = y   mod p.

• cy+dz =  0 + 1z = z mod q.

– (How efficient is this?)
– (The inverse operation, finding (y,z) from x, is easy.)
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More efficient RSA decryption

• CRT: 
– Given p,q compute a,b s.t. ap+bq=1.
– c=bq;  d=ap

• Decryption, given C:
– Compute y’=Cd mod p. (instead of d can use d’=d mod p-1)
– Compute z’=Cd mod q. (instead of d can use d’’=d mod q-1)
– Compute M=cy’+dz’ mod N.

• Overhead: 
– Two exponentiations modulo p,q, instead of one 

exponentiation modulo N.
– Overhead of exponentiation is cubic in length of modulus.
– I.e., save a factor of 23/2.

Once for all 
messages
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Security reductions

• Security by reduction
– Define what it means for the system to be “secure”

(chosen plaintext/ciphertext attacks, etc.)
– State a “hardness assumption” (e.g., that it is hard to 

extract discrete logarithms in a certain group).
– Show that if the hardness assumption holds then the 

cryptosystem is secure. 

• Benefits:
– To examine the security of the system it is sufficient to 

check whether the assumption holds
– Similarly, for setting parameters (e.g. group size).
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RSA Security

• If factoring N is easy then RSA is insecure 
– (factor N ⇒ find p,q ⇒ find (p-1)(q-1) ⇒ find d from e)

• Factoring assumption: 
– For a randomly chosen p,q of appropriate length, it is infeasible to 

factor N=pq.
• This assumption might be too weak (might not ensure secure 

encryption)
– Maybe it’s possible to break RSA without factoring N?
– We don’t know how to reduce RSA security to the hardness of 

factoring. 

• Fact: finding d is equivalent to factoring.
– I.e., if it is possible to find d given (N,e) , then it is easy to factor N.  

• “hardness of finding d assumption” no stronger than hardness of 
factoring. 
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The RSA assumption: Trap-Door One-Way 
Function (OWF)

• (what is the minimal assumption required to show that 
RSA encryption is secure?)

• (Informal) definition: f : D→R is a trapdoor one way 
function if there is a trap-door s such that:
– Without knowledge of s, the function f is a one way. I.e., 

for a randomly chosen x, it is hard to invert f(x).
– Given s, inverting f is easy

• Example: fg,p(x) = gx mod p is not a trapdoor one way 
function.

• Example: assuming that RSA is a trapdoor OWF
– fN,e(x) = xe mod N.    (assumption: for a random N,e,x, 

inverting is hard.)
– The trapdoor is d s.t. ed = 1 mod φ(N)
– [fN,e(x)]d = x mod N
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RSA as a One Way Trapdoor Permutation

x xe mod N

hard

easy

Easy with trapdoor info ( d )
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RSA assumption: cautions

• The RSA assumption is quite well established:
– RSA is a Trapdoor One-Way Permutation
– Hard to invert on random input – without secret key

• But is it a secure cryptosystem?
– Given the assumption it is hard to reconstruct the input, 

but is it hard to learn anything about the input?

• Theorem [G]: RSA hides the log(log(n)) least and most 
significant bits of a uniformly-distributed random input
– But some (other) information about pre-image may leak
– And… adversary can detect a repeating message
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Is it safe to use a common modulus ?

• Consider the following environment:
– There is a global modulus N. No one knows its factoring.
– Each party has a pair (ei,di), such that ei,di = 1 mod N.

• Used as a public/private key pair.

• The system is insecure.

• Party 1, knowing (e1,d1)
– can factor N
– Find di for any other party i.
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RSA with a small exponent

• Setting e=3 enables efficient encryption
• Might be insecure if not used properly

– Assume three users with public keys N1, N2, N3.
– Alice encrypts the same message to all of them

• C1 = m3 mod N1

• C2 = m3 mod N2

• C3 = m3 mod N3

• Can an adversary which sees C1,C2,C3 find m?
– m3 < N1N2N3
– N1, N2 and N3 are most likely relatively prime (otherwise 

can factor).
– Chinese remainder theorem -> can find m3 mod N (and 

therefore m3 over the integers)
– Easy to extract 3rd root over the integers.


