
1

page 1December 13, 2006 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 7

Public key cryptography

Benny Pinkas

2

page 2December 13, 2006 Introduction to Cryptography, Benny Pinkas

Last lecture

• Basic number theory
– Lots of facts about groups

• In particular
– Zp

* Multiplication modulo a prime number p
• (G,°) = ({1,2,…,p-1}, ×), e.g., Z7

* = ({1,2,3,4,5,6} , ×).

– ZN
* Multiplication modulo a composite number N

• (G,°) = ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)

• E.g., Z10
* = ({1,3,7,9}, ×)

– A group G is cyclic if there exists a generator g, s.t.∀a∈G,
∃ i s.t. gi=a.

3

page 3December 13, 2006 Introduction to Cryptography, Benny Pinkas

The Diffie-Hellman Key Exchange Protocol

• Alice:
– picks a random a∈[1,q].
– Sends ga mod p to Bob.

– Computes k=(gb)a mod p

• Bob:
– picks a random b∈[1,q].
– Sends gb mod p to Bob.

– Computes k=(ga)b mod p

• Public parameters: a group where the DDH assumption
holds. For example, Zp* (where |p|= 768 or 1024,
p=2q+1), and a generator g of H⊂ Zp* of order q.

• K = gab is used as a shared key between Alice and Bob.
• DDH assumption ⇒ K is indistinguishable from a random key

4

page 4December 13, 2006 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman: security

• A (passive) adversary
– Knows Zp

*, g
– Sees ga, gb

– Wants to compute gab, or at least learn something about it
• Recall the Decisional Diffie-Hellman problem:

– Given random x,y∈Zp
*, such that x=ga and y=gb; and a pair

(gab,gc) (in random order, for a random c), it is hard to tell
which is gab.

– An adversary that distinguishes the key gab generated in a
DH key exchange from random, can also break the DDH.

– Note: it is insufficient to require that the adversary cannot
compute gab.

5

page 5December 13, 2006 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman key exchange: usage

• The DH key exchange can be used in any group in
which the Decisional Diffie-Hellman (DDH) assumption
is believed to hold.

• Currently, Zp* and elliptic curve groups.

• Common usage:
– Overhead: 1-2 exponentiations
– Usually,

• A DH key exchange for generating a master key

• Master key used to encrypt session keys

• Session key is used to encrypt traffic with a symmetric
cryptosystem

6

page 6December 13, 2006 Introduction to Cryptography, Benny Pinkas

An active attack against the Diffie-Hellman Key
Exchange Protocol

• An active adversary Eve.
• Can read and change the communication between

Alice and Bob.
• …As if Alice and Bob communicate via Eve.

Alice BobEve

7

page 7December 13, 2006 Introduction to Cryptography, Benny Pinkas

Man–in-the-Middle: an active attack against the
Diffie-Hellman Key Exchange protocol

• Alice:
– picks a random a∈[1,q].
– Sends ga mod p to Bob.

– Computes k=(gd)a mod p

– Solution: ? (wireless usb)

• Bob:

Eve changes ga to gc

– picks a random b∈[1,q].
– Sends gb mod p to Alice.

– Computes k=(gc)b mod p

Eve changes gb to gd

Keys:
Alice Eve Bob

gad gad, gbc gbc

8

page 8December 13, 2006 Introduction to Cryptography, Benny Pinkas

Public key encryption

• Alice publishes a public key PKAlice.
• Alice has a secret key SKAlice.
• Anyone knowing PKAlice can encrypt messages using it.
• Message decryption is possible only if SKAlice is known.

• Compared to symmetric encryption:
– Easier key management: n users need n keys, rather than

O(n2) keys, to communicate securely.
• Compared to Diffie-Hellman key agreement:

– No need for an interactive key agreement protocol. (Think
about sending email…)

• Secure as long as we can trust the association of keys
with users.

9

page 9December 13, 2006 Introduction to Cryptography, Benny Pinkas

Public key encryption

• Must have different keys for encryption and decryption.
• Public key encryption cannot provide perfect secrecy:

– Suppose Epk() is an algorithm that encrypts m=0/1, and
uses r random bits in operation.

– An adversary is given Epk(m). It can compare it to all
possible 2r encryptions of 0…

• Efficiency is the main drawback of public key
encryption.

10

page 10December 13, 2006 Introduction to Cryptography, Benny Pinkas

Defining a public key encryption

• The definition must include the following algorithms;

• Key generation: KeyGen(1k)→(PK,SK) (where k is a
security parameter, e.g. k=1000).

• Encryption: C = EPK(m) (E might be a randomized
algorithm)

• Decryption: M= DSK(C)

11

page 11December 13, 2006 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Public information (can be common to different public keys):
– A group in which the DDH assumption holds. Usually start with a

prime p=2q+1, and use H⊂Zp
* of order q. Define a generator g of H.

• Key generation: pick a random private key a in [1,|H|] (e.g.
0<a<q). Define the public key h=ga (h=ga mod p).

• Encryption of a message m∈ H⊂ Zp
*

– Pick a random 0 < r < q.
– The ciphertext is (gr, hr·m).

• Decryption of (s,t)
– Compute t /sa (m= hr·m / (gr)a)

Using public key alone

Using private key

12

page 12December 13, 2006 Introduction to Cryptography, Benny Pinkas

El Gamal and Diffie-Hellman

• ElGamal encryption is similar to DH key exchange
– DH key exchange: Adversary sees ga, gb. Cannot

distinguish the key gab from random.
– El Gamal:

• A fixed public key ga.

• Sender picks a random gr.

• Sender encrypts message using gar.

• El Gamal is like DH where
– The same ga is used for all communication
– There is no need to explicitly send this ga (it is already

known as the public key of Alice)

Known to the adversary

Used as a key

13

page 13December 13, 2006 Introduction to Cryptography, Benny Pinkas

Semantic security

• Semantic Security: knowing that an encryption is either
E(m0) or E(m1), (where m0,m1 are known) an adversary
cannot decide with probability better than ½ which is
the case.

• Suppose that a public key encryption system is
deterministic., then it cannot have semantic security.
– Namely, E(m) is a deterministic function of m and P.
– Then if Eve suspects that Bob might encrypt either m0 or

m1, she can compute (by herself) E(m0) and E(m1) and
compare them to the encryption that Bob sends.

14

page 14December 13, 2006 Introduction to Cryptography, Benny Pinkas

El Gamal encryption: breaking semantic security
implies breaking DDH

• Proof by reduction:
– We are given (g,ga,gb, (D1,D2)) where one of D1,D2 is gab, and

the other is gr. We need to identify gab.
– We give the adversary g and a public key: h=ga.
– The adversary chooses m0,m1.
– We give the adversary (gb,De·mc), where c,e are random.
– If the adversary guesses c correctly, we decide that De=gab.

Otherwise we decide that De=gr.
• Analysis:

– Suppose that the adversary can guess c with prob ¾.
– If De=gab then the adversary finds c with probability ¾,

otherwise it finds c with probability ½.
– Our success probability ½ ⋅ ¾ + ½ ⋅ ½ = 5/8.

15

page 15December 13, 2006 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Setting the public information
• A large prime p, and a generator g of H⊂Zp

* of order q.
– |p| = 756 or 1024 bits.
– p-1 must have a large prime factor (e.g. p=2q+1)

• Otherwise it is easy to solve discrete logs in Zp
* (relevant also

to DH key agreement)
• Needed for the DDH assumption to hold (Legendre’s symbol)

– g must be a generator of a large subgroup of Zp
*.

• Encoding the message:
– m must be in the subgroup generated by g.
– Alternatively, encrypt m using (gr, H(hr)⊕ m). Decryption is

done by computing H((gr)a). (H is a hash function that
preserves the pseudo-randomness of hr.)

16

page 16December 13, 2006 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Overhead:
– Encryption: two exponentiations; preprocessing possible.
– Decryption: one exponentiation.
– message expansion: m ⇒ (gr, hr·m).

• Randomized encryption
– Must use fresh randomness r for every message.
– Two different encryptions of the same message are

different! (provides semantic security)

17

page 17December 13, 2006 Introduction to Cryptography, Benny Pinkas

Homomorphic property

• Insecurity against chosen ciphertext attacks:
– Attacker wants to decrypt (s,t) = (gr, hr·m).
– Chooses random r’, computes (s’,t’)=(s, t·r’) =

(gr, hr·(m·r’)).
– Asks for a decryption of (s’,t’). Receives m·r’.

• Homomorphic property:
– Given encryptions of x,y, it’s easy to generate an

encryption of x·y.
• (gr, hr·x) × (gr’, hr’·y) → (gr’’, hr’’ ·x·y)

18

page 18December 13, 2006 Introduction to Cryptography, Benny Pinkas

Homomorphic encryption

• Homomorphic encryption is useful for performing
operations over encrypted data.

• Given E(m1) and E(m2) it is easy to compute E(m1m2).

• For example, an election procedure:
– A “Yes” is E(2). A “No” vote is E(1).
– Take all the votes and multiply them. Obtain E(2j), where j

is the number of “Yes” votes.
– Decrypt the result and find out how many “Yes” votes

there are, without identifying how each person voted.

19

page 19December 13, 2006 Introduction to Cryptography, Benny Pinkas

Integer Multiplication & Factoring as a One Way
Function.

p,q N=pq

hard

easy

Can a public key system be based
on this observation ?????

20

page 20December 13, 2006 Introduction to Cryptography, Benny Pinkas

Excerpts from RSA paper (CACM, 1978)

The era of “electronic mail” may soon be upon us; we must
ensure that two important properties of the current “paper
mail” system are preserved: (a) messages are private, and (b)
messages can be signed. We demonstrate in this paper how
to build these capabilities into an electronic mail system.

At the heart of our proposal is a new encryption method.
This method provides an implementation of a “public-key
cryptosystem,” an elegant concept invented by Diffie and
Hellman. Their article motivated our research, since they
presented the concept but not any practical implementation
of such system.

21

page 21December 13, 2006 Introduction to Cryptography, Benny Pinkas

The Multiplicative Group Zpq*

• p and q denote two large primes (e.g. 512 bits long).
• Denote their product as N = pq.
• The multiplicative group ZN

* =Zpq
* contains all integers

in the range [1,pq-1] that are relatively prime to both p
and q.

• The size of the group is
– φ(n) = φ(pq) = (p-1) (q-1) = N - (p+q) + 1

• For every x ∈∈ ZN
*, xφ(N)=x(p-1)(q-1) = 1 mod N.

22

page 22December 13, 2006 Introduction to Cryptography, Benny Pinkas

Exponentiation in ZN*

• Motivation: use exponentiation for encryption.

• Let e be an integer, 1 < e < φ(N) = (p-1)(q-1).
– Question: When is exponentiation to the eth power,

(x → xe), a one-to-one operation in ZN* ?

• Claim: If e is relatively prime to (p-1)(q-1) then x → xe is
a one-to-one operation in ZN*.

• Constructive proof:
– Since gcd(e, (p-1)(q-1))=1, e has a multiplicative inverse

modulo (p-1)(q-1).
– Denote it by d, then ed=1+c(p-1)(q-1)=1+cφ(N).
– Let y=xe, then yd = (xe)d = x1+cφ(N) = x.
– I.e., y → yd is the inverse of x → xe.

23

page 23December 13, 2006 Introduction to Cryptography, Benny Pinkas

The RSA Public Key Cryptosystem

• Public key:
– N=pq the product of two primes (we assume that factoring

N is hard)
– e such that gcd(e,φ(N))=1 (are these hard to find?)

• Private key:
– d such that de≡1 mod φ(N)

• Encryption of M∈ZN*
– C=E(M)=Me mod N

• Decryption of C∈ZN*
– M=D(C)=Cd mod N (why does it work?)

24

page 24December 13, 2006 Introduction to Cryptography, Benny Pinkas

Constructing an instance of the RSA PKC

• Alice
– picks at random two large primes, p and q.
– picks (uniformly at random) a (large) d that is relatively

prime to (p-1)(q-1) (namely, gcd(d,φ(N))=1).
– Alice computes e such that de≡1 mod φ(N)

• Let N=pq be the product of p and q.
• Alice publishes the public key (N,e).
• Alice keeps the private key d, as well as the primes p, q

and the number φ(N), in a safe place.

25

page 25December 13, 2006 Introduction to Cryptography, Benny Pinkas

Properties of RSA

• Deterministic encryption. In textbook RSA:
– M is always encrypted as Me

– The ciphertext is as long as the domain of M

• Corolalry: RSA is does not have semantic security.

• Chosen ciphertext attack: (homomorphic property)
– RSA is susceptible to chosen ciphertext attacks:
– Given a ciphertext C=Me, choose a random R and

generate C’=CRe (an encryption of M·R). Decrypting C’
reveals M.

26

page 26December 13, 2006 Introduction to Cryptography, Benny Pinkas

Efficiency

• The public exponent e may be small.
– It is common to choose its value to be either 3 or 216+1.

The private key d must be long.
– Each encryption involves only a few modular

multiplications. Decryption requires a full exponentiation.

• Usage of a small e ⇒ Encryption is more efficient than
a full blown exponentiation.

• Decryption requires a full exponentiation (M=Cd mod N)
• Can this be improved?

27

page 27December 13, 2006 Introduction to Cryptography, Benny Pinkas

The Chinese Remainder Theorem (CRT)

• Thm:
– Let N=pq with gcd(p,q)=1.
– Then for every pair (y,z) ∈ Zp× Zq there exists a unique x∈Zn, s.t.

• x=y mod p

• x=z mod q

• Proof:
– The extended Euclidian algorithm finds a,b s.t. ap+bq=1.
– Define c=bq. c=1 mod p. c=0 mod q.
– Define d=ap. d=0 mod p. d=1 mod q.
– Let x=cy+dz mod N.

• cy+dz = 1y + 0 = y mod p.

• cy+dz = 0 + 1z = z mod q.

– (How efficient is this?)
– (The inverse operation, finding (y,z) from x, is easy.)

28

page 28December 13, 2006 Introduction to Cryptography, Benny Pinkas

More efficient RSA decryption

• CRT:
– Given p,q compute a,b s.t. ap+bq=1.
– c=bq; d=ap

• Decryption, given C:
– Compute y’=Cd mod p. (instead of d can use d’=d mod p-1)
– Compute z’=Cd mod q. (instead of d can use d’’=d mod q-1)
– Compute M=cy’+dz’ mod N.

• Overhead:
– Two exponentiations modulo p,q, instead of one

exponentiation modulo N.
– Overhead of exponentiation is cubic in length of modulus.
– I.e., save a factor of 23/2.

Once for all
messages

29

page 29December 13, 2006 Introduction to Cryptography, Benny Pinkas

Security reductions

• Security by reduction
– Define what it means for the system to be “secure”

(chosen plaintext/ciphertext attacks, etc.)
– State a “hardness assumption” (e.g., that it is hard to

extract discrete logarithms in a certain group).
– Show that if the hardness assumption holds then the

cryptosystem is secure.

• Benefits:
– To examine the security of the system it is sufficient to

check whether the assumption holds
– Similarly, for setting parameters (e.g. group size).

30

page 30December 13, 2006 Introduction to Cryptography, Benny Pinkas

RSA Security

• If factoring N is easy then RSA is insecure
– (factor N ⇒ find p,q ⇒ find (p-1)(q-1) ⇒ find d from e)

• Factoring assumption:
– For a randomly chosen p,q of appropriate length, it is infeasible to

factor N=pq.
• This assumption might be too weak (might not ensure secure

encryption)
– Maybe it’s possible to break RSA without factoring N?
– We don’t know how to reduce RSA security to the hardness of

factoring.

• Fact: finding d is equivalent to factoring.
– I.e., if it is possible to find d given (N,e) , then it is easy to factor N.

• “hardness of finding d assumption” no stronger than hardness of
factoring.

31

page 31December 13, 2006 Introduction to Cryptography, Benny Pinkas

The RSA assumption: Trap-Door One-Way
Function (OWF)

• (what is the minimal assumption required to show that
RSA encryption is secure?)

• (Informal) definition: f : D→R is a trapdoor one way
function if there is a trap-door s such that:
– Without knowledge of s, the function f is a one way. I.e.,

for a randomly chosen x, it is hard to invert f(x).
– Given s, inverting f is easy

• Example: fg,p(x) = gx mod p is not a trapdoor one way
function.

• Example: assuming that RSA is a trapdoor OWF
– fN,e(x) = xe mod N. (assumption: for a random N,e,x,

inverting is hard.)
– The trapdoor is d s.t. ed = 1 mod φ(N)
– [fN,e(x)]d = x mod N

32

page 32December 13, 2006 Introduction to Cryptography, Benny Pinkas

RSA as a One Way Trapdoor Permutation

x xe mod N

hard

easy

Easy with trapdoor info (d)

33

page 33December 13, 2006 Introduction to Cryptography, Benny Pinkas

RSA assumption: cautions

• The RSA assumption is quite well established:
– RSA is a Trapdoor One-Way Permutation
– Hard to invert on random input – without secret key

• But is it a secure cryptosystem?
– Given the assumption it is hard to reconstruct the input,

but is it hard to learn anything about the input?

• Theorem [G]: RSA hides the log(log(n)) least and most
significant bits of a uniformly-distributed random input
– But some (other) information about pre-image may leak
– And… adversary can detect a repeating message

34

page 34December 13, 2006 Introduction to Cryptography, Benny Pinkas

Is it safe to use a common modulus ?

• Consider the following environment:
– There is a global modulus N. No one knows its factoring.
– Each party has a pair (ei,di), such that ei,di = 1 mod N.

• Used as a public/private key pair.

• The system is insecure.

• Party 1, knowing (e1,d1)
– can factor N
– Find di for any other party i.

35

page 35December 13, 2006 Introduction to Cryptography, Benny Pinkas

RSA with a small exponent

• Setting e=3 enables efficient encryption
• Might be insecure if not used properly

– Assume three users with public keys N1, N2, N3.
– Alice encrypts the same message to all of them

• C1 = m3 mod N1

• C2 = m3 mod N2

• C3 = m3 mod N3

• Can an adversary which sees C1,C2,C3 find m?
– m3 < N1N2N3
– N1, N2 and N3 are most likely relatively prime (otherwise

can factor).
– Chinese remainder theorem -> can find m3 mod N (and

therefore m3 over the integers)
– Easy to extract 3rd root over the integers.

