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Last lecture

• Basic number theory
– Integer numbers, divisors, primes
– Modular operations
– gcd algorithm
– Extended gcd algorithm

• Given a,b finds s,t such that gcd(a,b) = a⋅s + b⋅t

• There is no common divisor smaller than gcd(a,b) which can 
be represented as a linear combination of a,b

– For example, a=12, b=8.

– 4= 1⋅12 - 1⋅8

– There are no s,t for which 2=s⋅12 + t⋅8
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Groups

• Definition: a set G with a binary operation °:G×G→G is 
called a group if:
– (closure) ∀ a,b ∈ G, it holds that a° b ∈ G. 
– (associativity) ∀a,b,c ∈ G, (a° b)° c = a° (b° c).
– (identity element) ∃ e ∈ G, s.t.∀ a ∈ G it holds that a° e =a.
– (inverse element) ∀ a ∈ G ∃ a-1∈ G, s.t. a ° a-1 = e.

• A group is Abelian (commutative) if ∀ a,b ∈ G, it holds 
that a° b = b° a.

• Examples:
– Integers under addition 

• (Z,+) = {…,-3,-2,-1,0,1,2,3,…}
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More examples of groups

• Addition modulo N
– (G,° )  =  ({0,1,2,…,N-1}, +)

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,…,p-1}, ×)
– E.g., Z7

* = ( {1,2,3,4,5,6} , ×)

• Trivial: closure  (the result of the multiplication is never divisible 
by p), associativity, existence of identity element.

• The extended GCD algorithm shows that an inverse always 
exists:

– s·a+t·p = 1    ⇒ s·a = 1-t·p ⇒ s·a ≡1 mod p
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More examples of groups

• ZN
*  Multiplication modulo a composite number N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)
– E.g., Z10

* = ( {1,3,7,9}, ×)

– Closure: 
• s·a+t·N = 1

• s’·b+t’·N = 1

• ss’·(ab)+(sat’+s’bt+ tt’N)·N = 1

• Therefore 1=gcd(ab,N).

– Associativity: trivial
– Existence of identity element: 1. 
– Inverse element: as in Zp

*
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Subgroups

• Let (G,° ) be a group. 
– (H,° ) is a subgroup of G if

• (H,° ) is a group

• H ⊆ G 

– For example, H = ( {1,2,4}, ×) is a subgroup of Z7
*.

• Lagrange’s theorem:
If (G,° ) is finite and (H,° ) is a subgroup of (G,° ), then 
|H| divides |G|

For example: 3|6.
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Cyclic Groups

• Exponentiation is repeated application of °
– a3 = a° a° a.
– a0 = 1.
– a-x = (a-1)x

• A group G is cyclic if there exists a generator g, s.t.          
∀ a∈G, ∃ i s.t. gi=a. 
– I.e., G= <g> = {1, g, g2, g3, …} 
– For example Z7

* = <3> = {1,3,2,6,4,5}
• Not all a∈G are generators of G, but they all generate a 

subgroup of G.
– E.g. 2 is not a generator of Z7

* 

• The order of a group element a is the smallest j>0 s.t. a j=1
• Lagrange’s theorem ⇒ for x∈Zp

*,   ord(x) | p-1.
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Fermat’s theorem

• Corollary of Lagrange’s theorem: if (G,° ) is a finite 
group, then ∀a∈G, a|G|=1. 

• Corollary (Fermat’s theorem): ∀ a∈ Zp
*,  ap-1 =1 mod p. 

E.g., for all ∀a∈Z7
*, a6=1, a7=a.

• Computing inverses:
• Given a∈G, how to compute a-1?

– Fermat’s theorem: a-1 = a|G|-1 (= ap-2 in Zp
* )

– Or, using the extended gcd algorithm (for Zp* or ZN*):
• gcd(a,p) = 1

• s·a + t·p = 1  ⇒ s·a = -t·p + 1 ⇒ s is a-1 !!

– Which is more efficient?
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Computing in Zp
*

• P is a huge prime (1024 bits)
• Easy tasks (measured in bit operations):

– Adding in O(log p)  (linear n the length of p)
– Multiplying in O(log2 p)   (and even in O(log1.7 p) )
– Inverting (a to a-1) in O(log2 p) 
– Exponentiations:

• xr mod p in O(log r · log2 p), using repeated squaring
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Groups we will use

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,…,p-1}, ×)
– E.g., Z7

* = ( {1,2,3,4,5,6} , ×)

• ZN
*  Multiplication modulo a composite number N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)
– E.g., Z10

* = ( {1,3,7,9}, ×)

• A group G is cyclic if there exists a generator g, s.t.      
∀ a∈G, ∃ i s.t. gi=a. 
– I.e., G= <g> = {1, g, g2, g3, …} 
– For example Z7

* = <3> = {1,3,2,6,4,5}
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Euler’s phi function

• Lagrange’s Theorem: ∀a in a finite group G, a|G|=1.
• Euler’s phi function (aka, Euiler’s totient function), 

– φ(n) = number of elements in Z*
n    (i.e. | {x | gcd(x,n)=1, 1≤x≤n} |

– φ(p) = p-1 for a prime p.
– n=∏i=1..k pi

e(i) ⇒ φ(n) = n·∏i=1..k (1-1/pi)
– φ(p2) = p(p-1) for a prime p. 
– n=p·q ⇒ φ(n) =(p-1)(q-1) 

• Corollary: ∀a∈ Zn
* it holds that aφ(n) =1 mod n

– For Zp
* (prime p),   ap-1 =1 mod p    (Fermat’s theorem).

– For Zn
* (n=p·q),   a(p-1)(q-1) =1 mod n
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Finding prime numbers

• Prime number theorem: #{primes ≤ x} ≈ x / lnx as x→∞
• How can we find a random k-bit prime?

– Choose x at random in {2k,…,2k+1-1}
– Test if x is prime

• (more on this later in the course)

• The probability of success is ≈ 1/ln(2k) = O(1/k).
• The expected number of trials is O(k).
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Finding generators

• How can we find a generator of Zp
*?

• Can check whether ∀ 1≤i≤p-2 ai ≠ 1   �
• We know that if ai=1 mod p then i | p-1.
• Therefore need to check only i for which i | p-1.

• Easy if we know the factorization of (p-1)
– For all a∈Zp

*, the order of a divides (p-1)
– For every integer divisor b of (p-1), check if ab=1 mod p.
– If none of these checks succeeds, then a is a generator.
– a is a generator iff ord(a)=p-1.
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Finding prime numbers of the right form

• How can we know the factorization of p-1
• Easy, for example, if p=2q+1, and q is prime.
• How can we find a k-bit prime of this form?

1. Search for a prime number q of length k-1 bits. (Will be 
successful after about O(k) attempts.)

2. Check if 2q+1 is prime.

3. If not, go to step 1.
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Quadratic Residues

• The square root of x∈Zp
* is y∈Zp

* s.t. y2=x mod p.
• Examples: sqrt(2) mod 7 = 3, sqrt(3) mod 7 doesn’t exist.

• How many square roots does x∈Zp
* have?

– If a and b are square roots of x, then x=a2=b2 mod p.
Therefore (a-b)(a+b)=0 mod p. Therefore either a=b or a=-b modulo p.

– Therefore x has either 2 or 0 square roots, and is denoted as a 
Quadratic Residue (QR) or Non Quadratic Residue (NQR), respectively. 
How many QRs there are?

• x(p-1)/2 is either 1 or -1 in Zp
* .  (indeed, (x(p-1)/2)2  is always 1) 

• Euler’s theorem: x∈Zp
* is a QR iff x(p-1)/2 = 1 mod p.

• Legendre’s symbol:

• Can be efficiently computed as x(p-1)/2 mod p.
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Hard problems in cyclic groups

• The following problems are believed to be hard in Zp
* or 

in some subgroups of Zp
*

– Discrete logarithm: let g be a generator of G. The input is 
a random x∈G. The task is to find an r s.t. x=gr mod p.

– The Diffie-Hellman problem: The input contains g and 
random x,y∈G, such that x=ga and y=gb. The task is to find 
z=ga·b.

– The Decisional Diffie-Hellman problem: The input contains 
random x,y∈G, such that x=ga and y=gb; and a pair (z,z’) 
where one of (z,z’) is ga·b and the other is gc (for a random 
c). The task is to tell which of (z,z’) is ga·b. 

• Solving DDH ≤ solving DH ≤ solving DL
– All believed to be hard if |p|>1024     (check the next slide)
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Does the DDH assumption hold in Zp
*?

• The DDH assumption does not hold in Zp
*

– Assume that both x=ga and y=gb are QRs in Zp
*. 

– Namely, their Legendre symbol is 1, both a and b are 
even, and it holds that x(p-1)/2= y(p-1)/2=1.

– Then the Legendre symbol of gab is always 1, whereas the 
symbol of a random gc is 1 with probability ½. 

• Solution:  (work in a subgroup of prime order)
– Set p=2q+1, where q is prime.
– φ(Zp

*) = p-1 = 2q. Therefore Zp
* has a subgroup H of prime 

order q.
– Let g be a generator of H  (i.e., g is a QR in Zp

*).
– The DDH assumption is believed to hold in H. (The 

Legendre symbol is always 1.)
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Classical symmetric ciphers

• Alice and Bob share a private key k.
• System is secure as long as k is secret.
• Major problem: generating and distributing k.

Alice Bob

k k
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Diffie and Hellman: “New Directions in 
Cryptography”, 1976.

• “We stand today on the brink of a revolution in 
cryptography. The development of cheap digital 
hardware has freed it from the design limitations of 
mechanical computing…
…such applications create a need for new types of 
cryptographic systems which minimize the necessity of 
secure key distribution…
…theoretical developments in information theory and 
computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science.”
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Diffie-Hellman

• Came up with the idea of public key cryptography

• Diffie and Hellman did not have an implementation for a 
public key encryption system

• Suggested a method for key exchange over insecure 
communication lines, that is still in use today.

Alice Bob

public keyBob secret keyBob

Everyone can learn Bob’s public key and encrypt messages to Bob. 
Only Bob knows the decryption key and can decrypt. 

Key distribution is greatly simplified. 
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Public Key-Exchange

• Goal: Two parties who do not share any secret 
information, perform a protocol and derive the same 
shared key.

• No eavesdropper can obtain the new shared key (if it 
has limited computational resources).

• The parties can  therefore safely use the key as an 
encryption key.
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The Diffie-Hellman Key Exchange Protocol

• Alice:
– picks a random a∈[1,q].
– Sends ga mod p to Bob.

– Computes k=(gb)a mod p

• Bob:
– picks a random b∈[1,q].
– Sends gb mod p to Bob.

– Computes k=(ga)b mod p

• Public parameters: a group Zp* (where |p|= 768 or 1024, 
p=2q+1), and a generator g of H⊂ Zp* of order q.

• K = gab is used as a shared key between Alice and Bob.
• DDH assumption ⇒ K is indistinguishable from a random key



23

page 23December 6, 2006 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman: security

• A (passive) adversary
– Knows Zp

*, g
– Sees ga, gb

– Wants to compute gab, or at least learn something about it
• Recall the Decisional Diffie-Hellman problem: 

– Given random x,y∈Zp
*, such that x=ga and y=gb; and a 

value z which is either gab or gc (for a random c), it is hard 
tell which is the case. 

– I.e., gab is indistinguishable from a random element in H.

– Note: it is insufficient to require that the adversary cannot 
compute gab.
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Diffie-Hellman key exchange: usage

• The DH key exchange can be used in any group in 
which the Decisional Diffie-Hellman (DDH) assumption 
is believed to hold.

• Currently, Zp* and elliptic curve groups.

• Common usage:
– Overhead: 1-2 exponentiations
– Usually,

• A DH key exchange for generating a master key

• Master key used to encrypt session keys

• Session key is used to encrypt traffic with a symmetric 
cryptosystem



25

page 25December 6, 2006 Introduction to Cryptography, Benny Pinkas

An active attack against the Diffie-Hellman Key 
Exchange Protocol

• An active adversary Eve.
• Can read and change the communication between 

Alice and Bob.
• …As if Alice and Bob communicate via Eve.

Alice BobEve
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Man –in-the-Middle: an active attack against the 
Diffie-Hellman Key Exchange protocol

• Alice:
– picks a random a∈[1,q].
– Sends ga mod p to Bob.

– Computes k=(gd)a mod p

– Solution: ?

• Bob:

Eve changes ga to gc

– picks a random b∈[1,q].
– Sends gb mod p to Alice.

– Computes k=(gc)b mod p

Eve changes gb to gd

Keys:
Alice                      Eve                   Bob
gad                                    gad, gbc gbc


