
1

page 1November 29, 2006 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography

Lecture 5

Benny Pinkas

2

page 2November 29, 2006 Introduction to Cryptography, Benny Pinkas

Data Integrity, Message Authentication

• Risk: an active adversary might change messages
exchanged between Alice and Bob

Alice

Eve

Bob

• Authentication is orthogonal to secrecy. A relevant
challenge regardless of whether encryption is applied.

• A one-time pad alone cannot prevent an adversary from
changing the message.

M
M M’

M’

3

page 3November 29, 2006 Introduction to Cryptography, Benny Pinkas

Common Usage of MACs for message authentication

Alice Bob
k

m, MACk(m)
Is α = MACk(m) ?

α

k

Eve

Alice Bob
k

m, MACk(m)

Got you !
α’ ≠ MACk(m’) !

m’,α’

k

does not know k

4

page 4November 29, 2006 Introduction to Cryptography, Benny Pinkas

Requirements

• Security: The adversary,
– Knows the MAC algorithm (but not K).
– Is given many pairs (mi , MACK(mi)), where the mi values

might also be chosen by the adversary (chosen plaintext).
– Cannot compute (m, MACK(m)) for any new m (∀i m≠mi).
– The adversary must not be able to compute MACK(m)

even for a message m which is “meaningless” (since we
don’t know the context of the attack).

• Efficiency: output must be of fixed length, and as short
as possible.
– ⇒ The MAC function is not 1-to-1.
– ⇒ An n bit MAC can be broken with prob. of at least 2-n.

5

page 5November 29, 2006 Introduction to Cryptography, Benny Pinkas

Constructing MACs

• Based on block ciphers (CBC-MAC)
or,

• Based on hash functions
– More efficient
– At the time, encryption technology was controlled (export

restricted) and it was preferable to use other means when
possible.

6

page 6November 29, 2006 Introduction to Cryptography, Benny Pinkas

Hash functions

• MACs can be constructed based on hash functions.

• A hash function h:X → Y maps long inputs to fixed size
outputs. (|X|>|Y|)

• No secret key. The hash function algorithm is public. (We
will use it to construct MACs which use keys.)

• If |X| > |Y| there are collisions (x≠x’ for which h(x)=h(x’)).

7

page 7November 29, 2006 Introduction to Cryptography, Benny Pinkas

Security definitions for hash functions

1. Weak collision resistance: for any x∈X, it is hard to find
x’≠x such that h(x)=h(x’). (Also known as “universal
one-way hash”, or “second preimage resistance”).

2. Strong collision resistance: it is hard to find any x,x’ for
which h(x)=h(x’).

• It’s easier to find collisions. (Namely, under reasonable
assumptions it holds that if it is possible to achieve (2)
then it is also possible to achieve (1).) Therefore
strong collision resistance is a stronger assumption.

• Real world hash functions: MD5, SHA-1, SHA-256.

Hmm..

8

page 8November 29, 2006 Introduction to Cryptography, Benny Pinkas

The Birthday Phenomenon (Paradox)

• For 23 people chosen at random, the probability that two of
them have the same birthday is ½.

• Compare to: the prob. that one or more of them have the
same birthday as Alan Turing is 23/365 (actually, 1-(1-
1/365)23.)
– More generally, for a random h:X → Z, if we choose about |Z|½

elements of X at random (1.17 |Z|½ to be exact), the probability
that two of them are mapped to the same image is > ½.

• Implication: it is harder to achieve strong collision resistance
– A random function with an n bit output

• Given y, can find x≠y s.t. h(x)=h(y) after about 2n tries.

• Can find x,x’ with h(x)=h(x’) after about 2n/2 tries.

9

page 9November 29, 2006 Introduction to Cryptography, Benny Pinkas

From collision-resistance for fixed length inputs,
to collision-resistance for arbitrary input lengths

• Hash function:
– Input block length is usually 512 bits (|X|=512)
– Output length is at least 160 bits (birthday attacks)

• Extending the domain to arbitrary inputs (Damgard-Merkle)
– Suppose h:{0,1}512 -> {0,1}160

– Input: M=m1…ms, |mi|=512-160=352. (what if |M|≠352·i bits?)

– Define: y0=0160. yi=h(yi-1,mi). ys+1=h(ys,s). h(M)=ys+1.
– Why is it secure? What about different length inputs?

m1

0160

h
m2

h
ms

h(M)… h
s

10

page 10November 29, 2006 Introduction to Cryptography, Benny Pinkas

Proof

• Show that if we can find M≠M’ for which H(M)=H(M’),
we can find blocks m ≠ m’ for which h(m)=h(m’).

• Case 1: suppose |M|=s, |M’|=s’, and s ≠ s’
– Then, collision: H(M)=h(ys,s) = h(ys’,s’)=H(M’)

• Case 2: |M|=|M’|=s
– Suppose that H(M)=h(ys,s)=h(y’s,s)=H(M’)
– If ys ≠ y’s then we found a collision in h.
– Otherwise, go from i=s-1 to i=1:

• yi+1 = y’i+1 implies h(yi,mi+1) = h(y’I,m’i+1).

• If mi+1 ≠ m’i+1, then we found a collision.

• M ≠ M’ and therefore there is an i for which mi+1 ≠ m’i+1

11

page 11November 29, 2006 Introduction to Cryptography, Benny Pinkas

The implication of collisions

• Given a hash function with 2n possible outputs.
Collisions can be found
– after a search of 2n/2 values
– even faster if the function is weak (MD5, SHA-1)

• We find x, x’ such that h(x)=h(x’), but we cannot control
the value of x, x’.

• Can we find “meaningful” colliding values x, x’ ?
– The case of pdf files…

12

page 12November 29, 2006 Introduction to Cryptography, Benny Pinkas

Basing MACs on Hash Functions

• Hash functions are not keyed. MACK uses a key.
• Best attack should not succeed with prob > max(2-|k|,2-|MAC()|).
• Idea: MAC combines message and a secret key, and hashes

them with a collision resistant hash function.
– E.g. MACK(m) = h(k,m). (insecure.., given MACK(m) can compute

MACK(m,|m|,m’), if using the Damgard-Merkle construction)
– MACK(m) = h(m,k). (insecure.., regardless of key length, use a

birthday attack to find m,m’ such that h(m)=h(m’).)

• How should security be proved?:
– Show that if MAC is insecure than so is hash function h.
– Insecurity of MAC: adversary can generate MACK(m) without knowing

k.
– Insecurity of h: adversary finds collisions (x≠x’, h(x)=h(x’).)

13

page 13November 29, 2006 Introduction to Cryptography, Benny Pinkas

HMAC

• Input: message m, a key K, and a hash function h.
• HMACK(m) = h(K ⊕ opad, h(K ⊕ ipad, m))

– where ipad, opad are 64 byte long fixed strings
– K is 64 byte long (if shorter, append 0s to get 64 bytes).

• Overhead: the same as that of applying h to m, plus an
additional invocation to a short string.

• It was proven [BCK] that if HMAC is broken then either
– h is not collision resistant (even when the initial block is

random and secret), or
– The output of h is not “unpredcitable” (when the initial

block is random and secret)
• HMAC is used everywhere (SSL, IPSec).

14

page 14November 29, 2006 Introduction to Cryptography, Benny Pinkas

Basic Number Theory

15

page 15November 29, 2006 Introduction to Cryptography, Benny Pinkas

Plan

• Basic number theory
– Divisors, modular arithmetic
– The GCD algorithm
– Groups

• References:
– Many books on number theory
– Almost all books on cryptography
– Cormen, Leiserson, Rivest, (Stein), “Introduction to

Algorithms”, chapter on Number-Theoretic Algorithms.

16

page 16November 29, 2006 Introduction to Cryptography, Benny Pinkas

Divisors, prime numbers

• We work over the integers
• A non-zero integer b divides an integer a if there exists

an integer c s.t. a=c·b.
– Denoted as b|a
– I.e. b divides a with no remainder

• Examples
– Trivial divisors: 1|a, a|a
– Each of {1,2,3,4,6,8,12,24} divides 24
– 5 does not divide 24

• Prime numbers
– An integer a is prime if it is only divisible by 1 and by itself.
– 23 is prime, 24 is not.

17

page 17November 29, 2006 Introduction to Cryptography, Benny Pinkas

Modular Arithmetic

• Modular operator:
– a mod b, (or a%b) is the remainder of a when divided by b
– I.e., the smallest r ≥ 0 s.t. ∃ integer q for which a = qb+r.
– (Thm: there is a single choice for such q,r)

– Examples
• 12 mod 5 = 2

• 10 mod 5 = 0

• -5 mod 5 = 0

• -1 mod 5 = 4

18

page 18November 29, 2006 Introduction to Cryptography, Benny Pinkas

Modular congruency

• a is congruent to b modulo n (a ≡ b mod n) if
– (a-b) = 0 mod n
– Namely, n divides a-b
– In other words, (a mod n) = (b mod n)

• E.g.,
– 23 ≡ 12 mod 11
– 4 ≡ -1 mod 5

• There are n equivalence classes modulo n
– [3]7 = {…,-11,-4,3,10,17,…}

19

page 19November 29, 2006 Introduction to Cryptography, Benny Pinkas

Greatest Common Divisor (GCD)

• d is a common divisor of a and b, if d|a and d|b.
• gcd(a,b) (Greatest Common Divisor), is the largest

integer that divides both a and b. (a,b >= 0)
– gcd(a,b) = max k s.t. k|a and k|b.

• Examples:
– gcd(30,24) = 6
– gcd(30,23) = 1

• If gcd(a,b)=1 then a and b are denoted relatively prime.

20

page 20November 29, 2006 Introduction to Cryptography, Benny Pinkas

Facts about the GCD

• gcd(a,b) = gcd(b, a mod b) (interesting when a>b)
• Since

– If c|a and c|b then c|(a mod b)
– If c|b and c|(a mod b) then c|a

• If a mod b = 0, then gcd(a,b)=b.

• Therefore,
gcd(19,8) =

gcd(8, 3) =

gcd(3,2) =

gcd(2,1) = 1

gcd(20,8) =

gcd(8, 4) = 4

(e.g., a=33, b=15)

21

page 21November 29, 2006 Introduction to Cryptography, Benny Pinkas

Euclid’s algorithm

Input: a>b>0
Output: gcd(a,b)
Algorithm:

1. if (a mod b) = 0 return (b)
2. else return(gcd(b, a mod b))

Complexity:
– O(log a) rounds
– Each round requires O(log2 a) bit operations
– Actually, the total overhead can be shown to be O(log2 a)

22

page 22November 29, 2006 Introduction to Cryptography, Benny Pinkas

The extended gcd algorithm

Finding s, t such that gcd(a,b) = a⋅ s + b ⋅ t

Extended-gcd(a,b) /* output is (gcd(a,b), s, t)

1. If (a mod b=0) then return(b,0,1)

2. (d’,s’,t’) = Extended-gcd(b, a mod b)

3. (d,s,t) = (d’, t’, s’- a/b·t’)

4. return(d,s,t)

Note that the overhead is as in the basic GCD algorithm

23

page 23November 29, 2006 Introduction to Cryptography, Benny Pinkas

Groups

• Definition: a set G with a binary operation °:G×G→G is
called a group if:
– (closure) ∀ a,b ∈ G, it holds that a° b ∈ G.
– (associativity) ∀a,b,c ∈ G, (a° b)° c = a° (b° c).
– (identity element) ∃ e ∈ G, s.t.∀ a ∈ G it holds that a° e =a.
– (inverse element) ∀ a ∈ G ∃ a-1∈ G, s.t. a ° a-1 = e.

• A group is Abelian (commutative) if ∀ a,b ∈ G, it holds
that a° b = b° a.

• Examples:
– Integers under addition

• (Z,+) = {…,-3,-2,-1,0,1,2,3,…}

24

page 24November 29, 2006 Introduction to Cryptography, Benny Pinkas

More examples of groups

• Addition modulo N
– (G,°) = ({0,1,2,…,N-1}, +)

• Zp
* Multiplication modulo a prime number p

– (G,°) = ({1,2,…,p-1}, ×)
– E.g., Z7

* = ({1,2,3,4,5,6} , ×)

• Trivial: closure (the result of the multiplication is never divisible
by p), associativity, existence of identity element.

• The extended GCD algorithm shows that an inverse always
exists:

– s·a+t·p = 1 ⇒ s·a = 1-t·p ⇒ s·a ≡1 mod p

25

page 25November 29, 2006 Introduction to Cryptography, Benny Pinkas

More examples of groups

• ZN
* Multiplication modulo a composite number N

– (G,°) = ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)
– E.g., Z10

* = ({1,3,7,9}, ×)

– Closure:
• s·a+t·N = 1

• s’·b+t’·N = 1

• ss’·(ab)+(sat’+s’bt+ tt’N)·N = 1

– Associativity: trivial
– Existence of identity element: 1.
– Inverse element: as in Zp

*

26

page 26November 29, 2006 Introduction to Cryptography, Benny Pinkas

Subgroups

• Let (G,°) be a group.
– (H,°) is a subgroup of G if

• (H,°) is a group

• H ⊆ G

– For example, H = ({1,2,4}, ×) is a subgroup of Z7
*.

• Lagrange’s theorem:
If (G,°) is finite and (H,°) is a subgroup of (G,°), then
|H| divides |G|

For example: 3|6.

27

page 27November 29, 2006 Introduction to Cryptography, Benny Pinkas

Cyclic Groups

• Exponentiation is repeated application of °
– a3 = a° a° a.
– a0 = 1.
– a-x = (a-1)x

• A group G is cyclic if there exists a generator g, s.t.
∀ a∈G, ∃ i s.t. gi=a.
– I.e., G= <g> = {1, g, g2, g3, …}
– For example Z7

* = <3> = {1,3,2,6,4,5}
• Not all a∈G are generators of G, but they all generate a

subgroup of G.
– E.g. 2 is not a generator of Z7

*

• The order of a is the smallest j>0 s.t. a j=1.
• Lagrange’s theorem ⇒ for x∈Zp

*, ord(x) | p-1.

28

page 28November 29, 2006 Introduction to Cryptography, Benny Pinkas

Fermat’s theorem

• Corollary of Lagrange’s theorem: if (G,°) is a finite
group, then ∀a∈G, a|G|=1.

• Corollary (Fermat’s theorem): ∀ a∈ Zp
*, ap-1 =1 mod p.

E.g., for all ∀a∈Z7
*, a6=1, a7=a.

• Computing inverses:
• Given a∈G, how to compute a-1?

– Fermat’s theorem: a-1 = a|G|-1 (= ap-2 in Zp
*)

– Or, using the extended gcd algorithm (for Zp* or ZN*):
• gcd(a,p) = 1

• s·a + t·p = 1 ⇒ s·a = -t·p + 1 ⇒ s is a-1 !!

– Which is more efficient?

29

page 29November 29, 2006 Introduction to Cryptography, Benny Pinkas

Computing in Zp
*

• P is a huge prime (1024 bits)
• Easy tasks (measured in bit operations):

– Adding in O(log p) (linear n the length of p)
– Multiplying in O(log2 p) (and even in O(log1.7 p))
– Inverting (a to a-1) in O(log2 p)
– Exponentiations:

• xr mod p in O(log r · log2 p), using repeated squaring

