

Feistel Networks

- Encryption:
- Input: $\mathrm{P}=\mathrm{L}_{\mathrm{i}-1}\left|\mathrm{R}_{\mathrm{i}-1} .\left|\mathrm{L}_{\mathrm{i}-1}\right|=\left|\mathrm{R}_{\mathrm{i}-1}\right|\right.$
$-L_{i}=R_{i-1}$
$-R_{i}=L_{i-1} \oplus F\left(K_{i}, R_{i-1}\right)$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).

DES (Data Encryption Standard)

DES (Data Encryption Standard)

- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput \approx software: $10 \mathrm{Mb} / \mathrm{sec}$, hardware: $1 \mathrm{~Gb} / \mathrm{sec}$ (in 1991!).

Security of DES

- Criticized for unpublished design decisions (designers did not want to disclose differential cryptanalysis).
- Very secure - the best attack in practice is brute force - 2006: \$1 million search machine: 30 seconds
- cost per key: less than \$1
- 2006 : 1000 PCs at night: 1 month
- Cost per key: essentially 0 (+ some patience)
- Some theoretical attacks were discovered in the 90s:
- Differential cryptanalysis
- Linear cryptanalysis: requires about 2^{40} known plaintexts
- The use of DES is not recommend since 2004 , but 3DES is still recommended for use.

DES diagram (Data Encryption Standard)

The S-boxes

- Very careful design (it is now clear that random choices for the S-boxes result in weak encryption).
- Each s-box maps 6 bits to 4 bits:
- A 4×16 table of 4 -bit entries.
- Bits 1 and 6 choose the row, and bits 2-5 choose column.
- Each row is a permutation of the values $0,1, \ldots, 15$.

Therefore, given an output there are exactly 4 options for the input

- Changing one input bit changes at least two output bits \Rightarrow avalanche effect.

DES F functions

Differential Cryptanalysis of DES

Differential Cryptanalysis [Biham-Shamir 1990]

- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
$-a=b \oplus c$
- $a=$ the bits of b in (known) permuted order
- Linear relations can be exposed by solving a system of linear equations

A Linear F in a Feistel Network?

- Suppose $\mathrm{F}\left(\mathrm{R}_{\mathrm{i}-1}, \mathrm{~K}_{\mathrm{i}}\right)=\mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$
- Namely, that F is linear
- Then $\mathrm{R}_{\mathrm{i}}=\mathrm{L}_{\mathrm{i}-1} \oplus \mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$

$$
L_{i}=R_{i-1}
$$

- Write L_{16}, R_{16} as linear functions of L_{0}, R_{0} and K.
- Given $L_{0} R_{0}$ and $L_{16} R_{16}$ Solve and find K .
- F must therefore be non-linear.

- F is the only source of non-
linearity in DES.

Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
- The plaintexts are P and P^{*}
- Their difference is $\mathrm{dP}=\mathrm{P} \oplus \mathrm{P}^{*}$
- Let X and X^{*} be two intermediate values, for P and P^{*}, respectively, in the encryption process.
- Their difference is $d X=X \oplus X^{*}$
- Namely, dX is always the result of two inputs

The advantage of looking at XORs

- It's easy to predict the difference of the results of linear operations
- Unary operations, (e.g. P is a permutation of the order of the bits of X)
$-d P(x)=P(x) \oplus P\left(x^{*}\right)=P\left(x \oplus x^{*}\right)=P(d x)$
- XOR
$-\mathrm{d}(\mathrm{x} \oplus \mathrm{y})=(\mathrm{x} \oplus \mathrm{y}) \oplus\left(\mathrm{x}^{\star} \oplus \mathrm{y}^{\star}\right)=\left(\mathrm{x} \oplus \mathrm{x}^{\star}\right) \oplus\left(\mathrm{y} \oplus \mathrm{y}^{\star}\right) \quad=$ $d x \oplus d y$
- Mixing the key
$-\mathrm{d}(\mathrm{x} \oplus \mathrm{k})=(\mathrm{x} \oplus \mathrm{k}) \oplus\left(\mathrm{x}^{*} \oplus \mathrm{k}\right)=\mathrm{x} \oplus \mathrm{x}^{*}=\mathrm{dx}$
- The result here is key independent (the key disappears)

Distribution of Y^{\prime} for S1

- $d X=110100$
- $2^{6}=64$ input pairs, $\{(000000,110100),(000001,110101), \ldots\}$
- For each pair compute xor of outputs of S1
- E.g., $S 1(000000)=1110, S 1(110100)=1001 . d Y=0111$.
- Table of frequencies of each dY :

0000	0001	0010	0011	0100	0101	0110	0111
0	8	16	6	2	0	0	12
1000	001	010					
6	0	0	1017	100	1101	1110	1111
0	8	0	6				

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X^{*} are inputs to the same S-box, and we know their difference $d X=X \oplus X^{*}$.
- $Y=S(X)$
- When $d X=0, X=X^{*}$, and therefore $Y=S(X)=S\left(X^{*}\right)=Y^{*}$, and $\mathrm{dY}=0$.
- When $d X \neq 0, X \neq X^{*}$ and we don't know $d Y$ for sure, but we can investigate its distribution.
- For example,

Differential Probabilities

- The probability of $d X \Rightarrow d Y$ is the probability that a pair of difference dX results in a pair of difference $d Y$ (for a given S-box).
- Namely, for $d X=110100$ these are the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values

$$
-d X=0 \Rightarrow d Y=0
$$

- Entries with value 16/64
- (Recall that the values in the S-box are uniformly distributed, so the attacker gains a lot by looking at diffs.)

Warmup

Inputs: $\mathrm{L}_{0} \mathrm{R}_{0}, \quad \mathrm{~L}_{0}{ }^{*} \mathrm{R}_{0}{ }^{*}$, s.t. $\mathrm{R}_{0}=\mathrm{R}_{0}{ }^{*}$.
Namely, inputs whose xor is $\mathrm{dL}_{0} 0$

3 Round DES

The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

Finding K

DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if $\mathrm{dL}_{0}=40080000_{x}, \mathrm{dR}_{0}=04000000_{x}$

Then, with probability $1 / 4, \mathrm{dL}_{3}=04000000_{x}, \mathrm{dR}_{3}=4008000_{x}$

- 8 round DES is broken given 2^{14} chosen plaintexts.
- 16 round DES is broken given 2^{47} chosen plaintexts...

Meet-in-the-middle attack

- Meet-in-the-middle attack
$-c=E_{k 2}\left(E_{k 1}(m)\right)$
$-D_{k 2}(c)=E_{k 1}(m)$
- The attack:
- Input: (m, c) for which $\mathrm{c}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right.$)
- For every possible value of k_{1}, generate and store $E_{k 1}(m)$.
- For every possible value of k_{2}, generate and store $D_{k 2}(c)$.
- Match k_{1} and k_{2} for which $E_{k 1}(m)=D_{k 2}(c)$.
- Might obtain several options for (k_{1}, k_{2}). Check them or repeat the process again with a new (m, c) pair (see next slide)
- The attack is applicable to any iterated cipher. Running time and memory are $\mathrm{O}\left(2^{|k|}\right)$, where $|\mathrm{k}|$ is the key size.

Double DES

- DES is out of date due to brute force attacks on its short key (56 bits)
- Why not apply DES twice with two keys? - Double DES: DES ${ }_{k 1, k 2}=E_{k 2}\left(E_{k 1}(m)\right)$
- Key length: 112 bits

- But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.
- Compared to brute a force attack, requiring 2^{112} operations and $\mathrm{O}(1)$ storage.

Meet-in-the-middle attack: how many pairs to check?

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given one plaintext-ciphertext pair (m,c) - The attack looks for $\mathrm{k} 1, \mathrm{k} 2$, such that $\mathrm{D}_{\mathrm{k} 2}(\mathrm{c})=\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})$
- The correct values of $\mathrm{k} 1, \mathrm{k} 2$ satisfies this equality
- There are 2^{112} (actually $2^{112}-1$) other values for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Each one of these satisfies the equalities with probability 2.64
- We therefore expect to have $2^{112-64}=2^{48}$ candidates for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Suppose that we are given one pairs (m, c), (m^{\prime}, c^{\prime})
- The correct values of $\mathrm{k} 1, \mathrm{k} 2$ satisfies both equalities
- There are 2^{112} (actually $2^{112}-1$) other values for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Each one of these satisfies the equalities with probability 2^{-128}
- We therefore expect to have $2^{112-128}<1$ false candidates for $\mathrm{k}_{1}, \mathrm{k}_{2}$.

Triple DES

- 3 DES $_{k 1, \mathrm{k} 2}=\mathrm{E}_{\mathrm{k} 1}\left(\mathrm{D}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right)\right.$
- Why use $\operatorname{Enc}(\operatorname{Dec}(\operatorname{Enc}()))$?
- Backward compatibility: setting $\mathrm{k}_{1}=\mathrm{k}_{2}$ is compatible with single key DES
- Only two keys
- Effective key length is 112 bits
- Why not use three keys? There is a meet-in-the-middle attack with 2^{112} operations
- 3DES provides good security. Widely used. Less efficient.

One Time Pad

- OTP is a perfect cipher, yet provides no authentication
- Plaintext $x_{1} x_{2} \ldots x_{n}$
- Key $\mathrm{k}_{1 \mathrm{k} 2} \ldots \mathrm{k}_{\mathrm{n}}$
- Ciphertext $\mathrm{c}_{1}=\mathrm{x}_{1} \oplus \mathrm{k}_{1}, \mathrm{c}_{2}=\mathrm{x}_{2} \oplus \mathrm{k}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}} \oplus \mathrm{k}_{\mathrm{n}}$
- Adversary changes, e.g., c_{2} to $1 \oplus \mathrm{c}_{2}$
- User decrypts $1 \oplus \mathrm{x}_{2}$
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)
- They were not designed to withstand adversarial behavior.

Data Integrity, Message Authentication

- Risk: an active adversary might change messages exchanged between Alice and Bob

- Authentication is orthogonal to secrecy. A relevant challenge regardless of whether encryption is applied.

Definitions

- Scenario: Alice and Bob share a secret key K.
- Authentication algorithm:
- Compute a Message Authentication Code: $\alpha=M A C_{K}(m)$.
- Send m and α
- Verification algorithm: $V_{K}(m, \alpha)$.
- $V_{K}\left(m, M A C_{K}(m)\right)=$ accept.
- For $\alpha \neq M A C_{K}(m), V_{K}(m, \alpha)=$ reject.
- How does $V_{k}(m)$ work?
- Receiver knows k. Receives m and α.
- Receiver uses k to compute $M A C_{K}(m)$.
- $V_{K}(m, \alpha)=1$ iff $M A C_{K}(m)=\alpha$.

Common Usage of MACs for message authentication

Constructing MACs

- Based on block ciphers (CBC-MAC)
or,
- Based on hash functions
- More efficient
- At the time, encryption technology was controlled (export restricted) and it was preferable to use other means when possible.

Requirements

- Security: The adversary,
- Knows the MAC algorithm (but not K).
- Is given many pairs ($m_{i}, M A C_{K}\left(m_{j}\right)$), where the m_{i} values might also be chosen by the adversary (chosen plaintext).
- Cannot compute ($m, M A C_{K}(m)$) for any new m ($\left.\forall i m \neq m_{i}\right)$.
- The adversary must not be able to compute $M A C_{K}(m)$ even for a message m which is "meaningless" (since we don't know the context of the attack).
- Efficiency: output must be of fixed length, and as short as possible.
$-\Rightarrow$ The MAC function is not 1-to-1.
$-\Rightarrow A n n$ bit MAC can be broken with prob. of at least 2^{-n}.

CBC

- Reminder: CBC encryption
- Plaintext block is xored with previous ciphertext block

CBC MAC

- Encrypt M in CBC mode, using the MAC key. Discard C_{1}, \ldots, C_{n-1} and define $M A C_{K}\left(M_{1}, \ldots, M_{n}\right)=C_{n}$.

Security of CBC-MAC

- Insecurity of CBC-MAC when applied to messages of variable length:
- Get $\mathrm{C}_{1}=\operatorname{CBC}-\mathrm{MAC}_{K}\left(\mathrm{M}_{1}\right)=\mathrm{E}_{\mathrm{K}}\left(0 \oplus \mathrm{M}_{1}\right)$
- Ask for MAC of C_{1}, i.e., $\mathrm{C}_{2}=\mathrm{CBC}-\mathrm{MAC}_{K}\left(\mathrm{C}_{1}\right)=\mathrm{E}_{\mathrm{K}}\left(0 \oplus \mathrm{C}_{1}\right)$
- But, $E_{K}\left(C_{1} \oplus 0\right)=E_{K}\left(E_{K}\left(0 \oplus M_{1}\right) \oplus 0\right)=C B C-M A C_{K}\left(M_{1} \mid 0\right)$
- It's known that CBC-MAC is secure if message space is prefix-free.
- Can you show, for every n , a collision between two messages of

Security of CBC-MAC

- Claim: if E_{K} is pseudo-random then CBC-MAC, applied to fixed length messages, is a pseudo-random function, and is therefore resilient to forgery.
- But, insecure if variable lengths messages are allowed

CBC-MAC for variable length messages

- Solution 1: The first block of the message is set to be its length. I.e., to authenticate M_{1}, \ldots, M_{n}, apply CBCMAC to (n, M_{1}, \ldots, M_{n}).
- Works since now message space is prefix-free.
- Drawback: The message length (n) must be known in advance.
- "Solution 2": apply CBC-MAC to ($\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}, \mathrm{n}$)
- Message length does not have to be known is advance
- But, this scheme is broken (see, M. Bellare, J. Kilian, P. Rogaway, The Security of Cipher Block Chaining, 1984)
- Solution 3: (preferable)
- Use a second key K'.
- Compute $\mathrm{MAC}_{K, \mathrm{~K}^{\prime}}\left(\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}\right)=\mathrm{E}_{\mathrm{K}^{\prime}}\left(\mathrm{MAC}_{K}\left(\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}\right)\right)$
- Essentially the same overhead as CBC-MAC

