Introduction to Cryptography

Lecture 4

Benny Pinkas

November 22, 2006

Introduction to Cryptography, Benny Pinkas

DES (Data Encryption Standard)

DES (Data Encryption Standard)

- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).

November 22, 200

Introduction to Cryptography, Benny Pinkar

page 3

Feistel Networks

- Encryption:
- Input: $P = L_{i-1} | R_{i-1}$. $|L_{i-1}| = |R_{i-1}|$
- $L_{i} = R_{i-1}$ $- R_{i} = L_{i-1} \oplus F(K_{i}, R_{i-1})$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).

November 22, 2006

Introduction to Cryptography, Benny Pinkas

Security of DES

- Criticized for unpublished design *decisions* (designers did not want to disclose differential cryptanalysis).
- Very secure the best attack in practice is brute force
- 2006: \$1 million search machine: 30 seconds
- · cost per key: less than \$1
- •2006: 1000 PCs at night: 1 month
- Cost per key: essentially 0 (+ some patience)
- Some theoretical attacks were discovered in the 90s:
- Differential cryptanalysis
- Linear cryptanalysis: requires about 2⁴⁰ known plaintexts
- The use of DES is not recommend since 2004, but 3-DES is still recommended for use.

November 22, 2006

troduction to Cryptography, Benny Pinkas

The S-boxes

- Very careful design (it is now clear that random choices for the S-boxes result in weak encryption).
- Each s-box maps 6 bits to 4 bits:
- A 4×16 table of 4-bit entries.
- Bits 1 and 6 choose the row, and bits 2-5 choose column.
- Each row is a *permutation* of the values 0,1,...,15.
- Therefore, given an output there are exactly 4 options for the input
- Changing one input bit changes at least two output bits \Rightarrow avalanche effect.

Number of coop

Differential Cryptanalysis [Biham-Shamir 1990]

- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
- -a=b⊕c
- -a = the bits of b in (known) permuted order
- Linear relations can be exposed by solving a system of linear equations

November 22 2006

Introduction to Cryptography, Benny Pinkas

nage 9

A Linear F in a Feistel Network?

- Suppose $F(R_{i-1}, K_i) = R_{i-1} \oplus K_i$
 - Namely, that F is linear
- Then $R_i = L_{i-1} \oplus R_{i-1} \oplus K_i$ $L_i = R_{i-1}$
- Write L₁₆, R₁₆ as linear functions of L₀, R₀ and K.
- Given L_0R_0 and $L_{16}R_{16}$ Solve and find K.
- F must therefore be non-linear.
- F is the only source of nonlinearity in DES.

November 22 2006

Introduction to Cryptography, Benny Pinkas

DES F functions

Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
- The plaintexts are P and P*
- Their difference is dP = P ⊕ P*
- Let X and X* be two intermediate values, for P and P*, respectively, in the encryption process.
- Their difference is $dX = X \oplus X^*$
- Namely, dX is always the result of two inputs

November 22, 2006

Introduction to Cryptography, Benny Pinkas

The advantage of looking at XORs

- It's easy to predict the difference of the results of linear operations
- Unary operations, (e.g. P is a permutation of the order of the bits of X)
- $-dP(x) = P(x) \oplus P(x^*) = P(x \oplus x^*) = P(dx)$
- XOR
- $\begin{array}{l} d(x \oplus y) = (x \oplus y) \oplus (x^* \oplus y^*) = (x \oplus x^*) \oplus (y \oplus y^*) \\ dx \oplus dy \end{array}$
- Mixing the key
- $-d(x \oplus k) = (x \oplus k) \oplus (x^* \oplus k) = x \oplus x^* = dx$
- The result here is key independent (the key disappears)

November 22, 2006

Introduction to Cryptography, Benny Pinkas

---- 40

Distribution of Y' for S1

- dX=110100
- 2⁶=64 input pairs, { (000000,110100), (000001,110101),...}
- For each pair compute xor of outputs of S1
- E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.
- Table of frequencies of each dY:

6000	0001	0010	0011	0100	0101	0110	0111
	8	16	6	2	\bigcirc	\bigcirc	12
1000	1001	1010	1011	1100	1101	(1110)	1111
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc	8	\bigcirc	6

November 22, 200

Introduction to Cryptography, Benny Pinkas

page 15

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X* are inputs to the same S-box, and we know their difference dX = X ⊕ X*.
- Y = S(X)
- When dX=0, X=X*, and therefore Y=S(X)=S(X*)=Y*, and dY=0.
- When dX≠0, X≠X* and we don't know dY for sure, but we can investigate its distribution.
- For example,

November 22, 2006

Introduction to Cryptography, Benny Pinkas

.....

Differential Probabilities

- The probability of dX ⇒ dY is the probability that a pair of difference dX results in a pair of difference dY (for a given S-box).
- Namely, for dX=110100 these are the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values
- $dX=0 \Rightarrow dY=0$
- Entries with value 16/64
- (Recall that the values in the S-box are uniformly distributed, so the attacker gains a lot by looking at diffs.)

November 22, 2006

Introduction to Cryptography, Benny Pinkas

0.10

DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if dL_0 =40080000_x, dR_0 =04000000_x Then, with probability ¼, dL_3 =04000000_x, dR_3 =4008000_x
- 8 round DES is broken given 2¹⁴ chosen plaintexts.
- 16 round DES is broken given 2⁴⁷ chosen plaintexts...

November 22, 2006

Introduction to Cryptography, Benny Pinkas

---- 04

Meet-in-the-middle attack

- Meet-in-the-middle attack
- $-c = E_{k2}(E_{k1}(m))$
- $D_{k2} (c) = E_{k1}(m)$
- The attack:
- Input: (m,c) for which $c = E_{k2}(E_{k1}(m))$
- For every possible value of k_1 , generate and store $E_{k_1}(m)$.
- For every possible value of k_2 , generate and store $D_{k2}(c)$.
- Match k_1 and k_2 for which $E_{k1}(m) = D_{k2}(c)$.
- Might obtain several options for (k₁,k₂). Check them or repeat the process again with a new (m,c) pair (see next slide)
- The attack is applicable to any iterated cipher. Running time and memory are O(2|k|), where |k| is the key size.

November 22, 2006

ntroduction to Cryptography, Benny Pinkas

age 23

Double DES

• DES is out of date due to brute force attacks on its short key (56 bits)

· Why not apply DES twice with two keys?

- Double DES: DES $_{k1\ k2} = E_{k2}(E_{k1}(m))$

Key length: 112 bits

• But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.

 Compared to brute a force attack, requiring 2¹¹² operations and O(1) storage.

November 22, 2006

Introduction to Cryptography, Benny Pinkas

Meet-in-the-middle attack: how many pairs to check?

- The plaintext and the ciphertext are 64 bits long
- The kev is 56 bits long
- Suppose that we are given one plaintext-ciphertext pair (m,c)
- The attack looks for k1,k2, such that D_{k2} (c) = E_{k1} (m)
- The correct values of k1,k2 satisfies this equality
- There are 2^{112} (actually 2^{112} -1) other values for k_1, k_2 .
- Each one of these satisfies the equalities with probability 2⁻⁶⁴
- We therefore expect to have $2^{112-64}=2^{48}$ candidates for k_1, k_2 .
- Suppose that we are given one pairs (m,c), (m',c')
- The correct values of k1,k2 satisfies both equalities
- There are 2112 (actually 2112-1) other values for k₁,k₂.
- Each one of these satisfies the equalities with probability 2-128
- We therefore expect to have 2¹¹²⁻¹²⁸<1 false candidates for k₁,k₂.

November 22, 2006

ntroduction to Cryptography, Benny Pinkas

page 24

Triple DES

- 3DES $_{k1,k2} = E_{k1}(D_{k2}(E_{k1}(m)))$
- Why use Enc(Dec(Enc()))?
- Backward compatibility: setting k₁=k₂ is compatible with single key DES
- Only two keys
- Effective key length is 112 bits
- Why not use three keys? There is a meet-in-the-middle attack with 2¹¹² operations
- 3DES provides good security. Widely used. Less efficient.

November 22 2006

Introduction to Cryptography, Benny Pinkas

---- 05

One Time Pad

- OTP is a perfect cipher, yet provides no authentication
- Plaintext x₁x₂...x_n
- Key $k_{1k2}...k_n$
- Ciphertext $c_1 = x_1 \oplus k_1$, $c_2 = x_2 \oplus k_2$,..., $c_n = x_n \oplus k_n$
- Adversary changes, e.g., c₂ to 1⊕c₂
- User decrypts 1⊕x₂
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)
- They were not designed to withstand adversarial behavior.

November 22, 20

Introduction to Cryptography, Benny Pinkas

page 27

Data Integrity, Message Authentication

• Risk: an *active* adversary might change messages exchanged between Alice and Bob

• Authentication is orthogonal to secrecy. A relevant challenge regardless of whether encryption is applied.

November 22, 2006

Introduction to Cryptography, Benny Pinkas

Definitions

- Scenario: Alice and Bob share a secret key K.
- Authentication algorithm:
- Compute a Message Authentication Code: $\alpha = MAC_{\kappa}(m)$.
- Send m and α
- Verification algorithm: $V_{\kappa}(m, \alpha)$.
- $-V_{\kappa}(m, MAC_{\kappa}(m)) = accept.$
- For $\alpha \neq MAC_K(m)$, $V_K(m, \alpha) = reject$.
- How does $V_k(m)$ work?
- Receiver knows k. Receives m and α .
- Receiver uses k to compute $MAC_{K}(m)$.
- $V_K(m, \alpha) = 1$ iff $MAC_K(m) = \alpha$.

November 22, 2006

Introduction to Cryptography, Benny Pinkas

190 Z0

Constructing MACs

- Based on block ciphers (CBC-MAC) or,
- Based on hash functions
- More efficient
- At the time, encryption technology was controlled (export restricted) and it was preferable to use other means when possible.

November 22, 2

ntroduction to Cryptography, Benny Pinkas

Requirements

- · Security: The adversary,
- Knows the MAC algorithm (but not K).
- Is given many pairs $(m_i, MAC_K(m_i))$, where the m_i values might also be chosen by the adversary (chosen plaintext).
- Cannot compute $(m, MAC_K(m))$ for any new m ($\forall i \ m \neq m_i$).
- The adversary must not be able to compute $MAC_K(m)$ even for a message m which is "meaningless" (since we don't know the context of the attack).
- Efficiency: output must be of fixed length, and as short as possible.
- \Rightarrow The MAC function is not 1-to-1.
- \Rightarrow An n bit MAC can be broken with prob. of at least 2⁻ⁿ.

November 22 2006

Introduction to Cryptography, Benny Pinkas

CBC

- Reminder: CBC encryption
- Plaintext block is xored with previous ciphertext block

Security of CBC-MAC

- Claim: if E_K is pseudo-random then CBC-MAC, applied to fixed length messages, is a pseudo-random function, and is therefore resilient to forgery.
- But, insecure if variable lengths messages are allowed

November 22, 2006

Introduction to Cryptography, Benny Pinkas

CBC-MAC for variable length messages

- Solution 1: The first block of the message is set to be its length. I.e., to authenticate M₁,...,M_n, apply CBC-MAC to (n,M₁,...,M_n).
- Works since now message space is prefix-free.
- Drawback: The message length (n) must be known in advance.
- "Solution 2": apply CBC-MAC to (M₁,...,Mn,n)
- Message length does not have to be known is advance
- But, this scheme is broken (see, M. Bellare, J. Kilian, P. Rogaway, The Security of Cipher Block Chaining, 1984)
- Solution 3: (preferable)
- Use a second key K'.
- Compute $MAC_{K,K'}(M_1,...,M_n) = E_{K'}(MAC_K(M_1,...,M_n))$
- Essentially the same overhead as CBC-MAC

November 22, 2006

uction to Cryptography, Benny Pinkas

age 30