
1

page 1November 22, 2006 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography

Lecture 4

Benny Pinkas

2

page 2November 22, 2006 Introduction to Cryptography, Benny Pinkas

Feistel Networks

• Encryption:
• Input: P = L i-1 | R i-1. |L i-1|=|R i-1|

– L i = R i-1
– R i = L i-1 ⊕ F(K i, R i-1)

• Decryption?

• No matter which function is used
as F, we obtain a permutation
(i.e., F is reversible even if f is not).

3

page 3November 22, 2006 Introduction to Cryptography, Benny Pinkas

DES (Data Encryption Standard)

DES (Data Encryption Standard)
– Designed by IBM and the NSA, 1977.
– 64 bit input and output
– 56 bit key
– 16 round Feistel network
– Each round key is a 48 bit subset of the key

• Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec
(in 1991!).

4

page 4November 22, 2006 Introduction to Cryptography, Benny Pinkas

Security of DES

• Criticized for unpublished design decisions (designers
did not want to disclose differential cryptanalysis).

• Very secure – the best attack in practice is brute force
– 2006: $1 million search machine: 30 seconds

• cost per key: less than $1

– •2006: 1000 PCs at night: 1 month
• Cost per key: essentially 0 (+ some patience)

• Some theoretical attacks were discovered in the 90s:
– Differential cryptanalysis
– Linear cryptanalysis: requires about 240 known plaintexts

• The use of DES is not recommend since 2004 , but 3-
DES is still recommended for use.

5

page 5November 22, 2006 Introduction to Cryptography, Benny Pinkas

DES diagram (Data Encryption Standard)

Initial permutation of bit
locations:

- not secret

- makes implementations

in software less efficient

6

page 6November 22, 2006 Introduction to Cryptography, Benny Pinkas

DES F functions

Expansion

to 48 bits

7

page 7November 22, 2006 Introduction to Cryptography, Benny Pinkas

The S-boxes

• Very careful design (it is now clear that random choices
for the S-boxes result in weak encryption).

• Each s-box maps 6 bits to 4 bits:
– A 4×16 table of 4-bit entries.
– Bits 1 and 6 choose the row, and bits 2-5 choose column.
– Each row is a permutation of the values 0,1,…,15.

• Therefore, given an output there are exactly 4 options for the
input

– Changing one input bit changes at least two output bits ⇒
avalanche effect.

8

page 8November 22, 2006 Introduction to Cryptography, Benny Pinkas

Differential Cryptanalysis of DES

S-boxes

DES diagram:

9

page 9November 22, 2006 Introduction to Cryptography, Benny Pinkas

Differential Cryptanalysis [Biham-Shamir 1990]

• The first attack to reduce the overhead of breaking DES
to below exhaustive search

• Very powerful when applied to other encryption
algorithms

• Depends on the structure of the encryption algorithm
• Observation: all operations except for the s-boxes are

linear
• Linear operations:

– a = b ⊕ c
– a = the bits of b in (known) permuted order

• Linear relations can be exposed by solving a system of
linear equations

10

page 10November 22, 2006 Introduction to Cryptography, Benny Pinkas

A Linear F in a Feistel Network?

• Suppose F(Ri-1,Ki) = Ri-1 ⊕ Ki

– Namely, that F is linear

• Then Ri = Li-1 ⊕ Ri-1 ⊕ Ki

Li = Ri-1

• Write L16, R16 as linear functions
of L0, R0 and K.

– Given L0R0 and L16R16 Solve
and find K.

• F must therefore be non-linear.

• F is the only source of non-
linearity in DES.

11

page 11November 22, 2006 Introduction to Cryptography, Benny Pinkas

DES F functions

Source of
non-linearity

12

page 12November 22, 2006 Introduction to Cryptography, Benny Pinkas

Differential Cryptanalysis

• The S-boxes are non-linear
• We study the differences between two encryptions of

two different plaintexts

• Notation:
– The plaintexts are P and P*
– Their difference is dP = P ⊕ P*
– Let X and X* be two intermediate values, for P and P*,

respectively, in the encryption process.
– Their difference is dX = X ⊕ X*

• Namely, dX is always the result of two inputs

13

page 13November 22, 2006 Introduction to Cryptography, Benny Pinkas

The advantage of looking at XORs

• It’s easy to predict the difference of the results of linear
operations

• Unary operations, (e.g. P is a permutation of the order of the
bits of X)
– dP(x) = P(x) ⊕ P(x*) = P(x ⊕ x*) = P(dx)

• XOR
– d(x ⊕ y) = (x ⊕ y) ⊕ (x* ⊕ y*) = (x ⊕ x*) ⊕ (y ⊕ y*) =

dx ⊕ dy
• Mixing the key

– d(x ⊕ k) = (x ⊕ k) ⊕ (x* ⊕ k) = x ⊕ x* = dx
– The result here is key independent (the key disappears)

14

page 14November 22, 2006 Introduction to Cryptography, Benny Pinkas

Differences and S-boxes

• S-box: a function (table) from 6 bit inputs to 4 bit output

• X and X* are inputs to the same S-box, and we know
their difference dX = X ⊕ X*.

• Y = S(X)
• When dX=0, X=X*, and therefore Y=S(X)=S(X*)=Y*,

and dY=0.
• When dX≠0, X≠X* and we don’t know dY for sure, but

we can investigate its distribution.

• For example,

15

page 15November 22, 2006 Introduction to Cryptography, Benny Pinkas

Distribution of Y’ for S1

• dX=110100
• 26=64 input pairs, { (000000,110100), (000001,110101),…}

• For each pair compute xor of outputs of S1
• E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.
• Table of frequencies of each dY:

60800006

11111110110111001011101010011000

1200261680

01110110010101000011001000010000

16

page 16November 22, 2006 Introduction to Cryptography, Benny Pinkas

Differential Probabilities

• The probability of dX ⇒ dY is the probability that a pair
of difference dX results in a pair of difference dY (for a
given S-box).

• Namely, for dX=110100 these are the entries in the
table divided by 64.

• Differential cryptanalysis uses entries with large values
– dX=0 ⇒ dY=0
– Entries with value 16/64
– (Recall that the values in the S-box are uniformly

distributed, so the attacker gains a lot by looking at diffs.)

17

page 17November 22, 2006 Introduction to Cryptography, Benny Pinkas

Warmup

dL0 dR0= 0 (R0=R0*)

F K

dL1 = dR0 = 0 dR1 = dL0

Inputs: L0R0, L0*R0*, s.t. R0=R0*.
Namely, inputs whose xor is dL0 0

18

page 18November 22, 2006 Introduction to Cryptography, Benny Pinkas

3 Round DES

dL0 = 01960018 dR0 = 0

F K

F K

dL3 =48000000 dR3=4196401A

F K

The attacker knows the two
plaintext/ciphertext pairs,
and therefore also their
differences

19

page 19November 22, 2006 Introduction to Cryptography, Benny Pinkas

Intermediate differences equal to
plaintext/ciphertext differences

dL0 = 01960018 dR0 = 0

F K

F K

dL3=48000000 dR3=4196401A

F K

dL1 = 0 dR1 =01960018

dR2 =48000000dL2 =01960018

dF = 4196401A
⊕ 01960018
= 40004002

Note that here the
adversary also
knows the actual
two values

20

page 20November 22, 2006 Introduction to Cryptography, Benny Pinkas

Finding K

L3’ =48000000 R3’ =4196401A

K3

R2’ =48000000L2’ =01960018

S boxes

Output xor of F (i.e.,

S boxes) is 40004002

⇒Table enumerates

options for the pairs of

inputs to S box

The actual two inputs

to F are known

Find which K3 maps the inputs to an

s-box input pair that results in the output pair!

21

page 21November 22, 2006 Introduction to Cryptography, Benny Pinkas

DES with more than 3 rounds

• Carefully choose pairs of plaintexts with specific xor, and
determine xor of pairs of intermediate values at various
rounds.

• E.g., if dL0=40080000x, dR0=04000000x

Then, with probability ¼, dL3=04000000x, dR3=4008000x

• 8 round DES is broken given 214 chosen plaintexts.
• 16 round DES is broken given 247 chosen plaintexts...

22

page 22November 22, 2006 Introduction to Cryptography, Benny Pinkas

Double DES

• DES is out of date due to brute force attacks on its
short key (56 bits)

• Why not apply DES twice with two keys?
– Double DES: DES k1,k2 = Ek2(Ek1(m))
– Key length: 112 bits

• But, double DES is susceptible to a meet-in-the-middle
attack, requiring ≈ 256 operations and storage.
– Compared to brute a force attack, requiring 2112 operations

and O(1) storage.

23

page 23November 22, 2006 Introduction to Cryptography, Benny Pinkas

Meet-in-the-middle attack

• Meet-in-the-middle attack
– c = Ek2(Ek1(m))
– Dk2 (c) = Ek1(m)

• The attack:
– Input: (m,c) for which c = Ek2(Ek1(m))
– For every possible value of k1, generate and store Ek1(m).
– For every possible value of k2, generate and store Dk2(c).
– Match k1 and k2 for which Ek1(m) = Dk2(c).
– Might obtain several options for (k1,k2). Check them or

repeat the process again with a new (m,c) pair (see next slide)

• The attack is applicable to any iterated cipher. Running
time and memory are O(2|k|), where |k| is the key size.

24

page 24November 22, 2006 Introduction to Cryptography, Benny Pinkas

Meet-in-the-middle attack: how many pairs to check?

• The plaintext and the ciphertext are 64 bits long
• The key is 56 bits long

• Suppose that we are given one plaintext-ciphertext pair (m,c)
– The attack looks for k1,k2, such that Dk2 (c) = Ek1(m)
– The correct values of k1,k2 satisfies this equality
– There are 2112 (actually 2112-1) other values for k1,k2.
– Each one of these satisfies the equalities with probability 2-64

– We therefore expect to have 2112-64=248 candidates for k1,k2.

• Suppose that we are given one pairs (m,c), (m’,c’)
– The correct values of k1,k2 satisfies both equalities
– There are 2112 (actually 2112-1) other values for k1,k2.
– Each one of these satisfies the equalities with probability 2-128

– We therefore expect to have 2112-128<1 false candidates for k1,k2.

25

page 25November 22, 2006 Introduction to Cryptography, Benny Pinkas

Triple DES

• 3DES k1,k2 = Ek1(Dk2(Ek1(m))

• Why use Enc(Dec(Enc())) ?
– Backward compatibility: setting k1=k2 is compatible with

single key DES

• Only two keys
– Effective key length is 112 bits
– Why not use three keys? There is a meet-in-the-middle

attack with 2112 operations

• 3DES provides good security. Widely used. Less
efficient.

26

page 26November 22, 2006 Introduction to Cryptography, Benny Pinkas

Data Integrity, Message Authentication

• Risk: an active adversary might change messages
exchanged between Alice and Bob

Alice

Eve

Bob

• Authentication is orthogonal to secrecy. A relevant
challenge regardless of whether encryption is applied.

M
M M’

M’

27

page 27November 22, 2006 Introduction to Cryptography, Benny Pinkas

One Time Pad

• OTP is a perfect cipher, yet provides no authentication
– Plaintext x1x2…xn

– Key k1k2…kn

– Ciphertext c1=x1⊕k1, c2=x2⊕k2,…,cn=xn⊕kn

• Adversary changes, e.g., c2 to 1⊕c2

• User decrypts 1⊕x2

• Error-detection codes are insufficient. (For example,
linear codes can be changed by the adversary, even if
encrypted.)
– They were not designed to withstand adversarial behavior.

28

page 28November 22, 2006 Introduction to Cryptography, Benny Pinkas

Definitions

• Scenario: Alice and Bob share a secret key K.
• Authentication algorithm:

– Compute a Message Authentication Code: α = MACK(m).
– Send m and α

• Verification algorithm: VK(m, α).
– VK(m, MACK(m)) = accept.
– For α ≠ MACK(m), VK(m, α) = reject.

• How does Vk(m) work?
– Receiver knows k. Receives m and α.
– Receiver uses k to compute MACK(m).
– VK(m, α) = 1 iff MACK(m)= α.

29

page 29November 22, 2006 Introduction to Cryptography, Benny Pinkas

Common Usage of MACs for message authentication

Alice

Eve

Bob
k

m, MACk(m)
Is α = MACk(m) ?

α

k

Alice Bob
k

m, MACk(m)

Got you !
α’ ≠ MACk(m’) !

m’,α’

k

does not know k

30

page 30November 22, 2006 Introduction to Cryptography, Benny Pinkas

Requirements

• Security: The adversary,
– Knows the MAC algorithm (but not K).
– Is given many pairs (mi , MACK(mi)), where the mi values

might also be chosen by the adversary (chosen plaintext).
– Cannot compute (m, MACK(m)) for any new m (∀i m≠mi).
– The adversary must not be able to compute MACK(m)

even for a message m which is “meaningless” (since we
don’t know the context of the attack).

• Efficiency: output must be of fixed length, and as short
as possible.
– ⇒ The MAC function is not 1-to-1.
– ⇒ An n bit MAC can be broken with prob. of at least 2-n.

31

page 31November 22, 2006 Introduction to Cryptography, Benny Pinkas

Constructing MACs

• Based on block ciphers (CBC-MAC)
or,

• Based on hash functions
– More efficient
– At the time, encryption technology was controlled (export

restricted) and it was preferable to use other means when
possible.

32

page 32November 22, 2006 Introduction to Cryptography, Benny Pinkas

CBC

• Reminder: CBC encryption
• Plaintext block is xored with previous ciphertext block

P1

Ek

C1

P2

Ek

C2

Pn

Ek

Cn

IV …

…

33

page 33November 22, 2006 Introduction to Cryptography, Benny Pinkas

CBC MAC

• Use IV=0. Adversary does not know k.
• Encrypt M in CBC mode, using the MAC key. Discard

C1,…,Cn-1 and define MACK(M1,…,Mn)=Cn.

M1

Ek

C1

M2

Ek

C2

Mn

Ek

Cn

0...0 …

…

output

34

page 34November 22, 2006 Introduction to Cryptography, Benny Pinkas

Security of CBC-MAC

• Claim: if EK is pseudo-random then CBC-MAC, applied to
fixed length messages, is a pseudo-random function,
and is therefore resilient to forgery.

• But, insecure if variable lengths messages are allowed

35

page 35November 22, 2006 Introduction to Cryptography, Benny Pinkas

Security of CBC-MAC

• Insecurity of CBC-MAC when applied to messages of
variable length:
– Get C1 = CBC-MACK(M1) = EK(0 ⊕ M1)
– Ask for MAC of C1, i.e., C2 = CBC-MACK(C1) = EK(0 ⊕ C1)
– But, EK(C1 ⊕ 0) = EK(EK(0 ⊕ M1) ⊕ 0) = CBC-MACK(M1 | 0)

• It’s known that CBC-MAC is secure if message space is prefix-free.

• Can you show, for every n, a collision between two messages of
lengths 1 and n+1?

M1

Ek

C1

0..0

Ek

C2

0...0M1

Ek

C1

0...0 C1

Ek

C2

0...0

36

page 36November 22, 2006 Introduction to Cryptography, Benny Pinkas

CBC-MAC for variable length messages

• Solution 1: The first block of the message is set to be
its length. I.e., to authenticate M1,…,Mn, apply CBC-
MAC to (n,M1,…,Mn).
– Works since now message space is prefix-free.
– Drawback: The message length (n) must be known in

advance.
• “Solution 2”: apply CBC-MAC to (M1,…,Mn,n)

– Message length does not have to be known is advance
– But, this scheme is broken (see, M. Bellare, J. Kilian, P.

Rogaway, The Security of Cipher Block Chaining, 1984)

• Solution 3: (preferable)
– Use a second key K’.
– Compute MACK,K’(M1,…,Mn) = EK’(MACK(M1,…,Mn))
– Essentially the same overhead as CBC-MAC

