

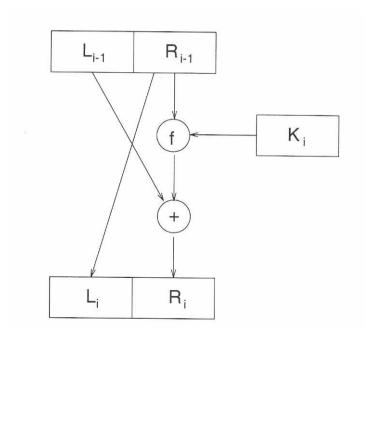
November 22, 2006

Introduction to Cryptography, Benny Pinkas

1

Feistel Networks

- Encryption:
- Input: $P = L_{i-1} | R_{i-1} . |L_{i-1}| = |R_{i-1}|$ - $L_i = R_{i-1}$
 - $R_i = L_{i-1} \oplus F(K_i, R_{i-1})$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).



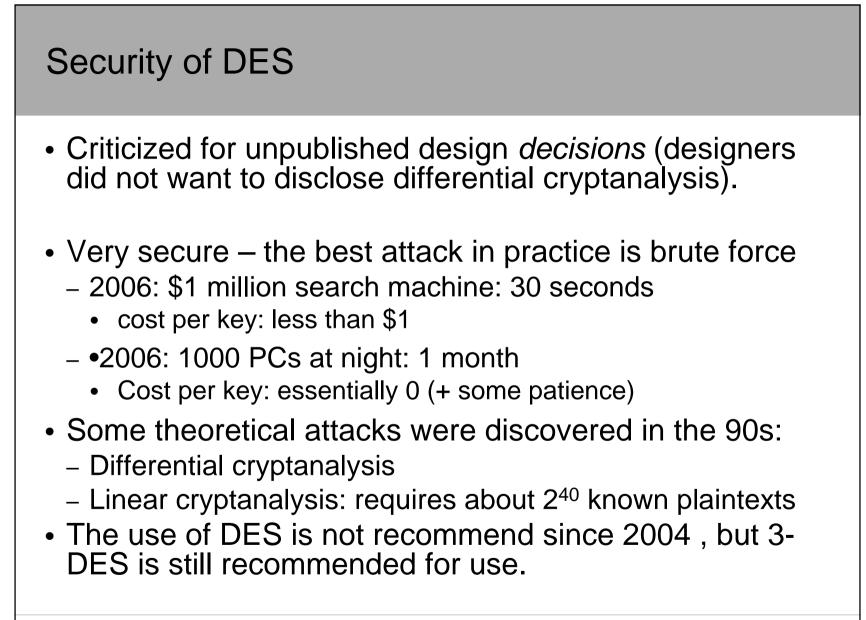
November 22, 2006

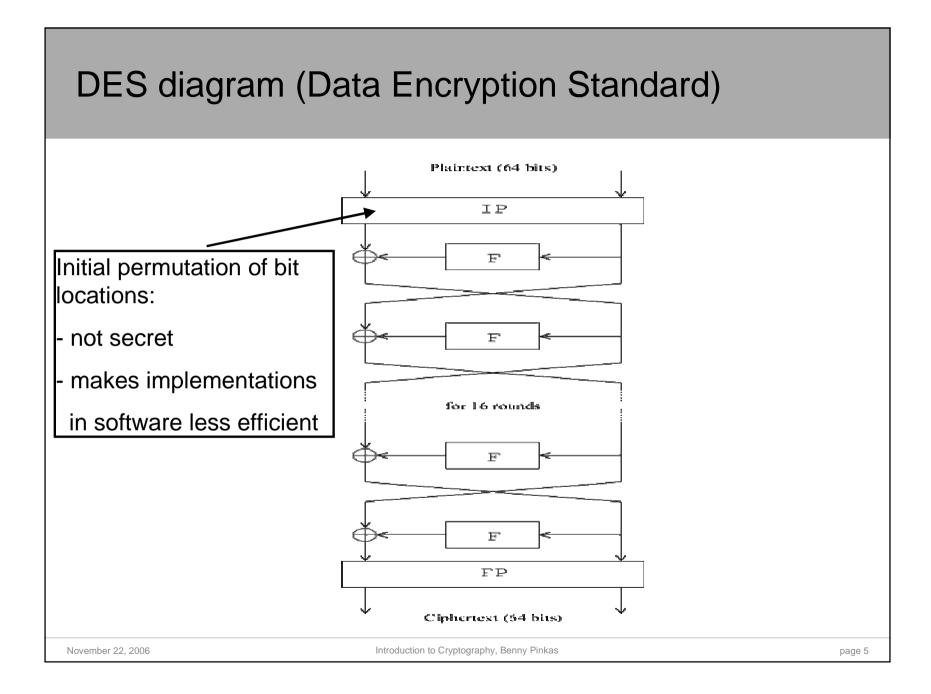
Introduction to Cryptography, Benny Pinkas

DES (Data Encryption Standard)

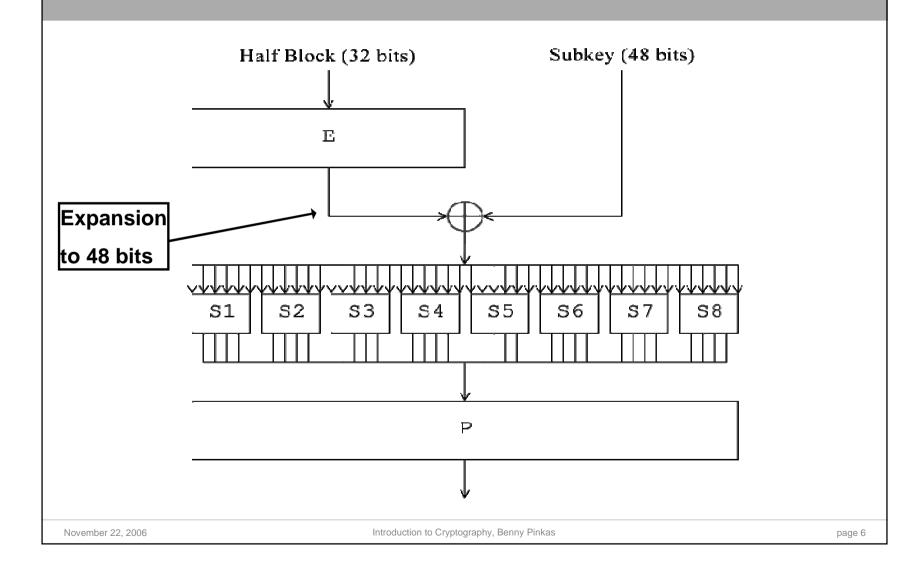
DES (Data Encryption Standard)

- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).





DES F functions



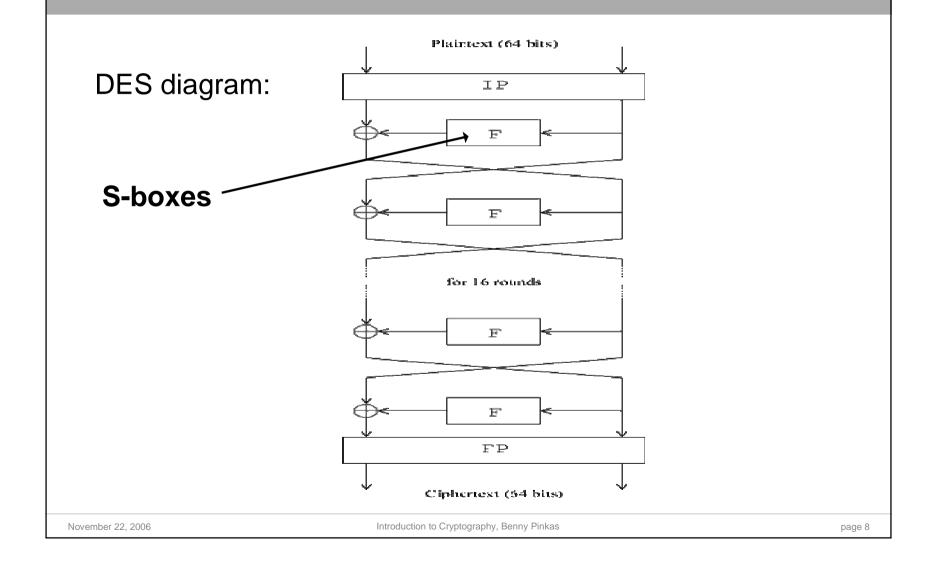


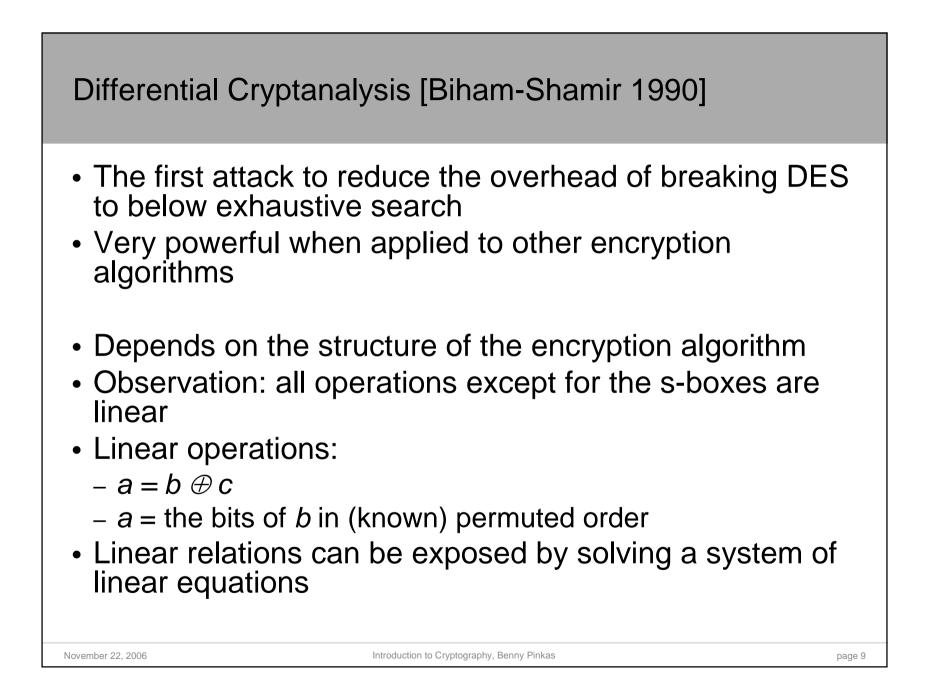
- Very careful design (it is now clear that random choices for the S-boxes result in weak encryption).
- Each s-box maps 6 bits to 4 bits:
 - A 4×16 table of 4-bit entries.
 - Bits 1 and 6 choose the row, and bits 2-5 choose column.
 - Each row is a *permutation* of the values 0,1,...,15.
 - Therefore, given an output there are exactly 4 options for the input
 - Changing one input bit changes at least two output bits \Rightarrow avalanche effect.

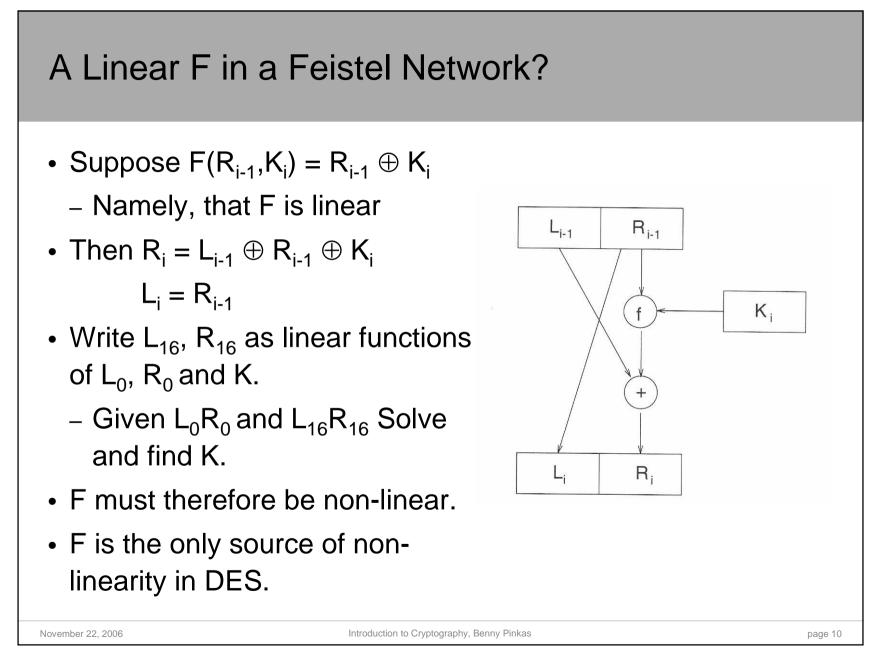
November 22, 2006

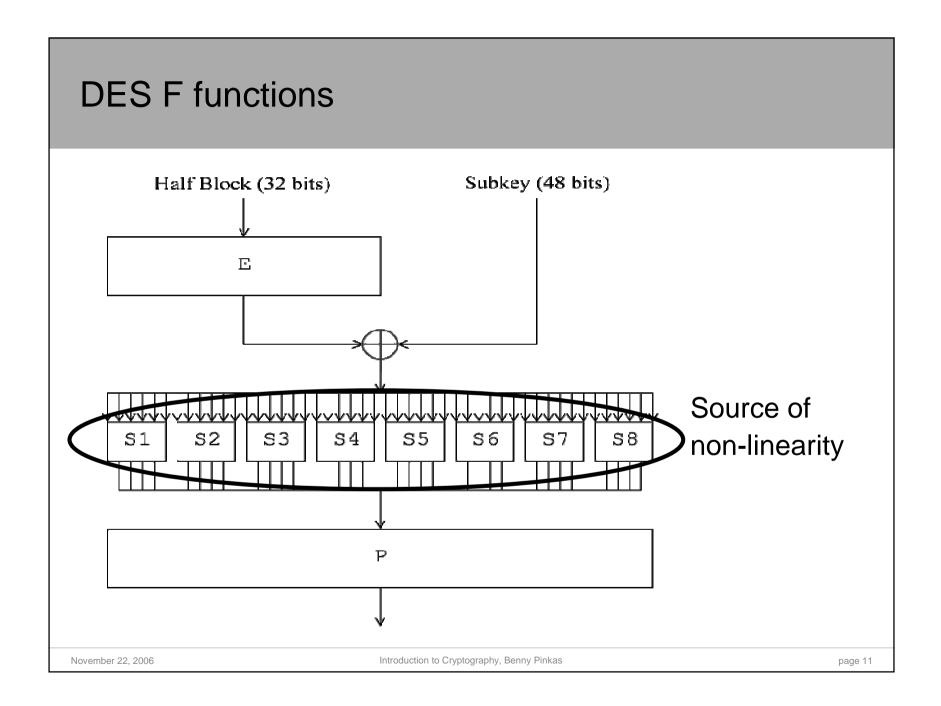
7

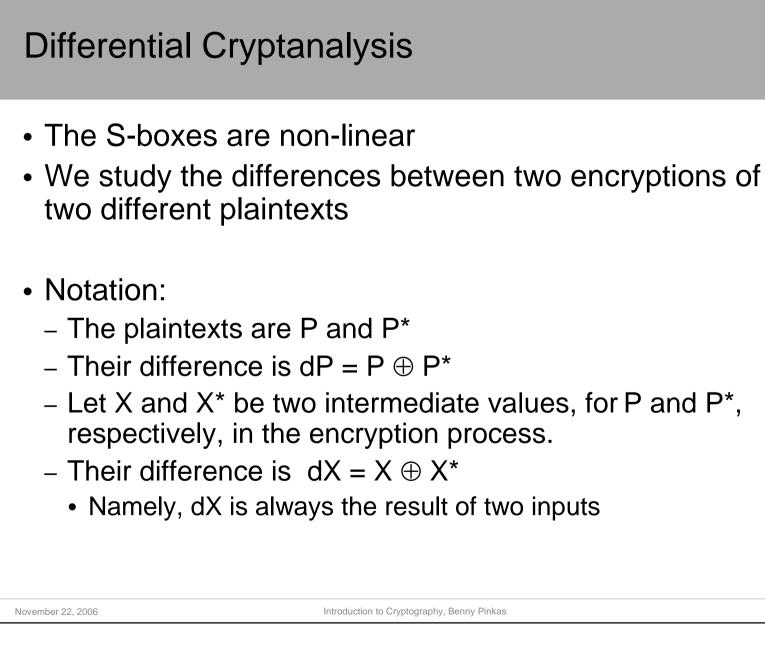
Differential Cryptanalysis of DES

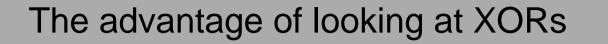








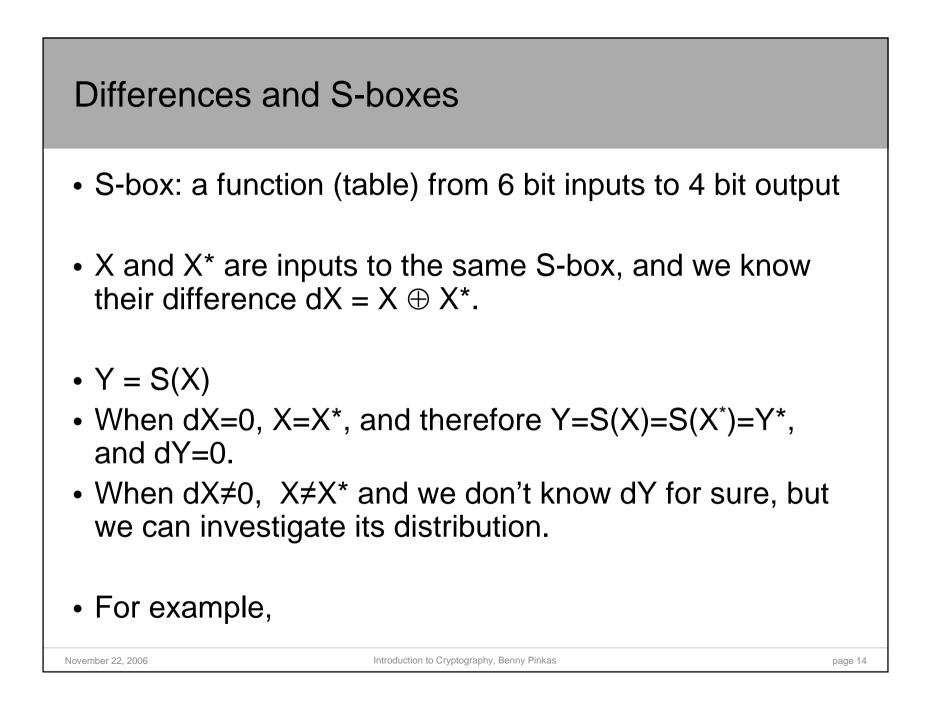


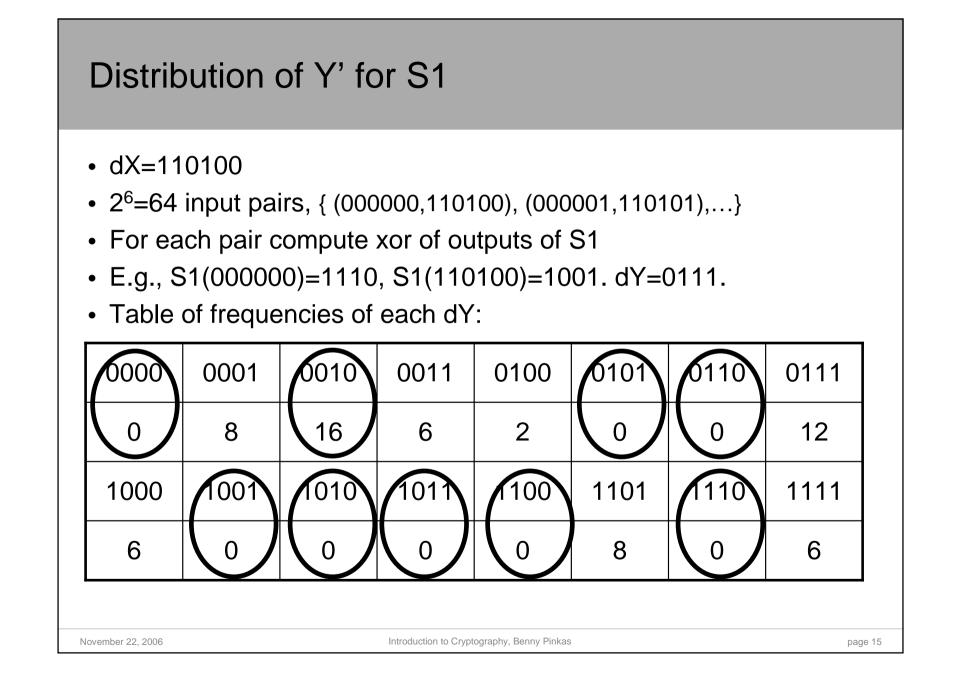


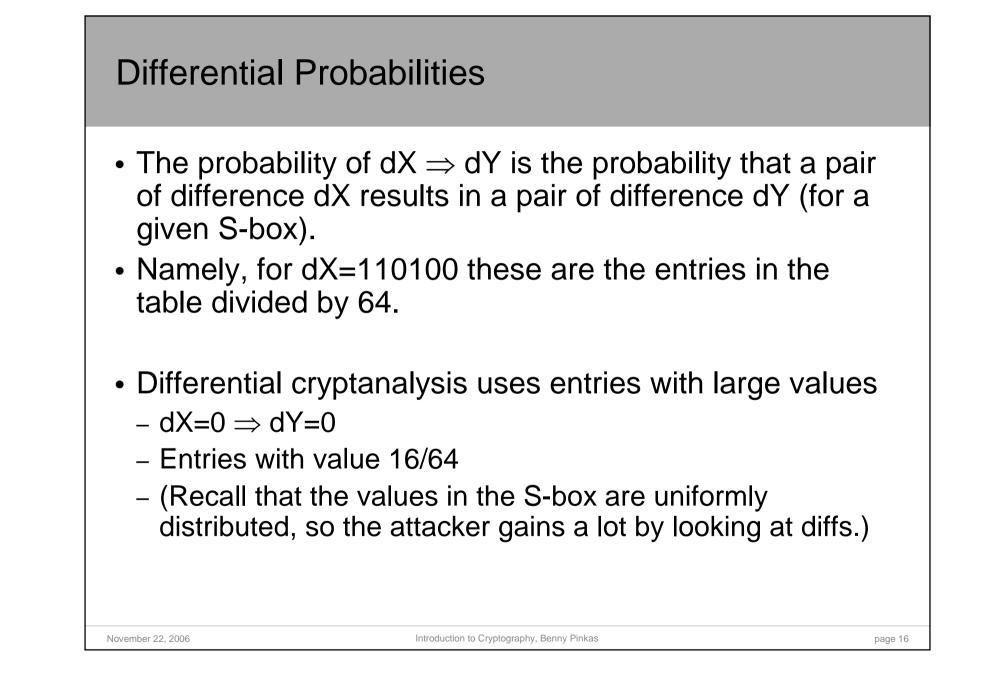
- It's easy to predict the difference of the results of linear operations
- Unary operations, (e.g. P is a permutation of the order of the bits of X)

$$- dP(x) = P(x) \oplus P(x^*) = P(x \oplus x^*) = P(dx)$$

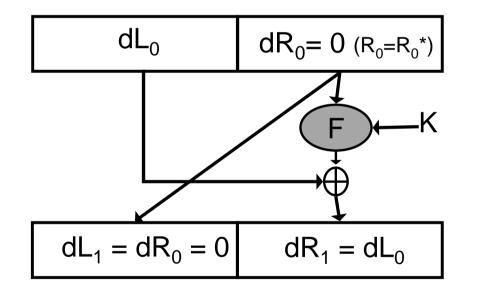
- XOR
 - $\begin{array}{ll} -d(x\oplus y)=(x\oplus y)\oplus (x^{*}\oplus y^{*})=(x\oplus x^{*})\oplus (y\oplus y^{*}) & = \\ dx\oplus dy & \end{array}$
- Mixing the key
 - $d(x \oplus k) = (x \oplus k) \oplus (x^* \oplus k) = x \oplus x^* = dx$
 - The result here is key independent (the key disappears)







Inputs: L_0R_0 , $L_0^*R_0^*$, s.t. $R_0=R_0^*$. Namely, inputs whose xor is $dL_0 0$

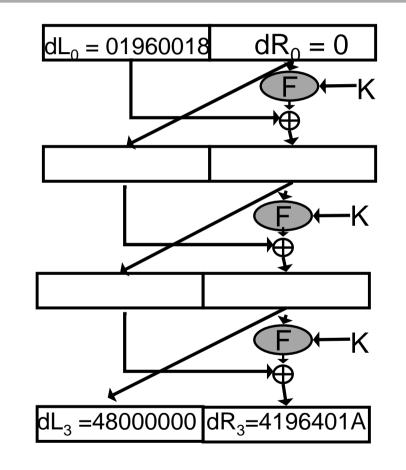


November 22, 2006

Introduction to Cryptography, Benny Pinkas

page 17

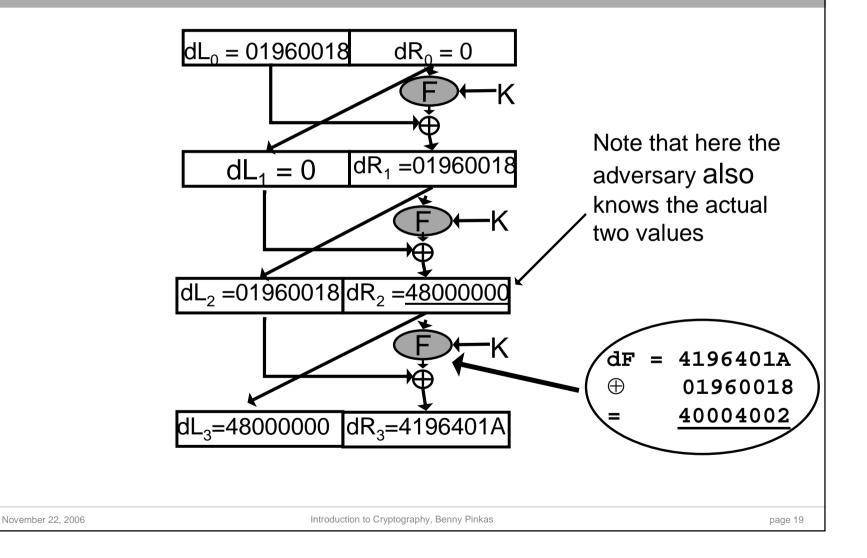
3 Round DES

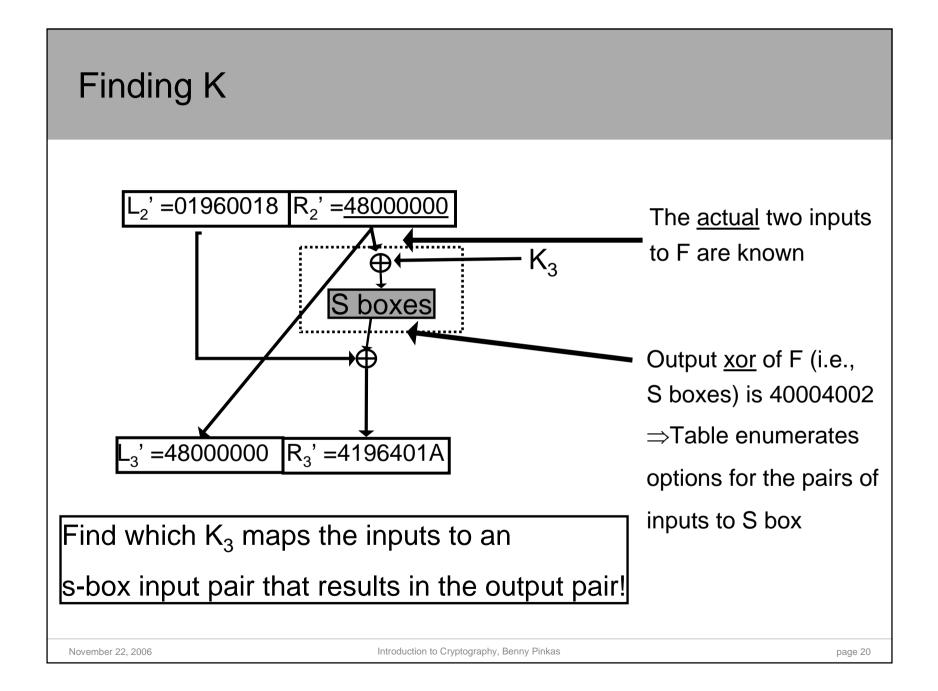


The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

Introduction to Cryptography, Benny Pinkas

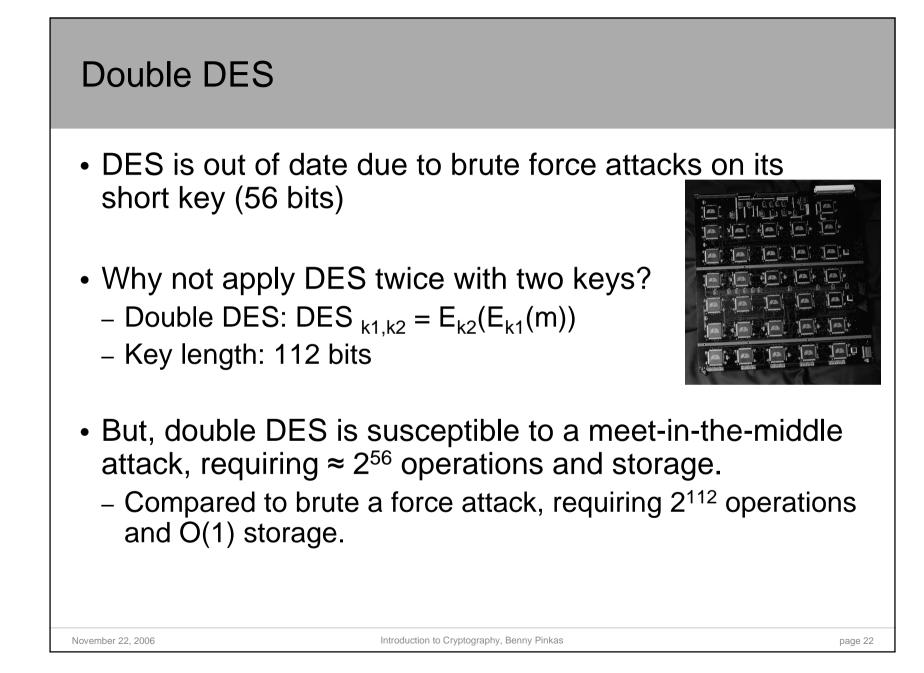
Intermediate differences equal to plaintext/ciphertext differences







- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if dL₀=40080000_x, dR₀=04000000_x
 Then, with probability ¼, dL₃=04000000_x, dR₃=4008000_x
- 8 round DES is broken given 2¹⁴ chosen plaintexts.
- 16 round DES is broken given 2⁴⁷ chosen plaintexts...



Meet-in-the-middle attack

• Meet-in-the-middle attack

$$- c = E_{k2}(E_{k1}(m)) - D_{k2}(c) = E_{k1}(m)$$

- The attack:
 - Input: (*m*,*c*) for which $c = E_{k2}(E_{k1}(m))$
 - For every possible value of k_1 , generate and store $E_{k1}(m)$.
 - For every possible value of k_2 , generate and store $D_{k2}(c)$.
 - Match k_1 and k_2 for which $E_{k1}(m) = D_{k2}(c)$.
 - Might obtain several options for (k_1,k_2) . Check them or repeat the process again with a new (m,c) pair (see next slide)
- The attack is applicable to any iterated cipher. Running time and memory are O(2^{|k|}), where |k| is the key size.

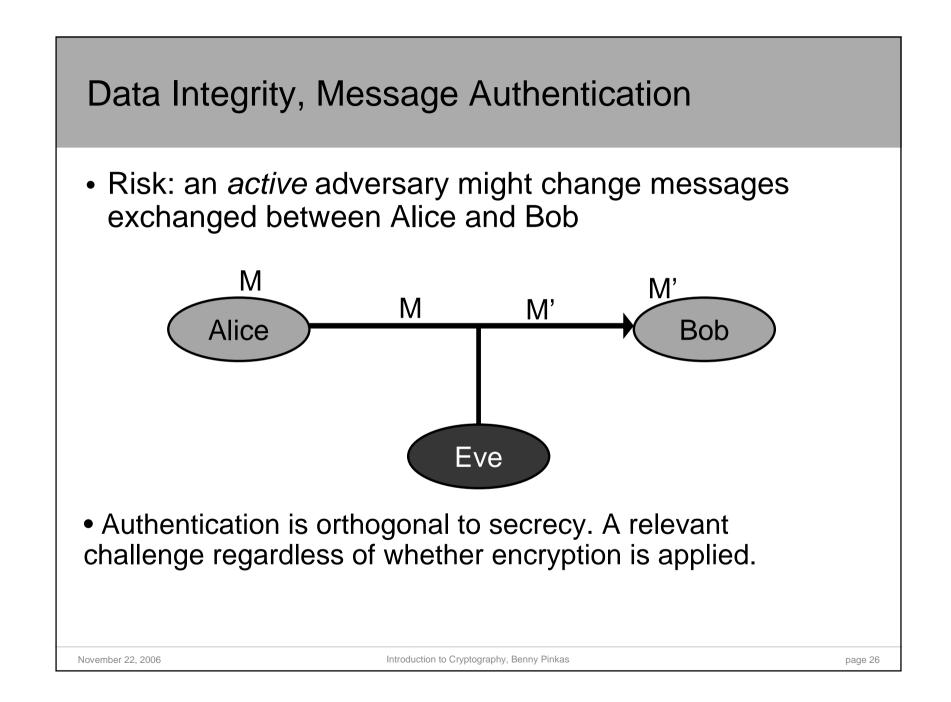
Meet-in-the-middle attack: how many pairs to check?

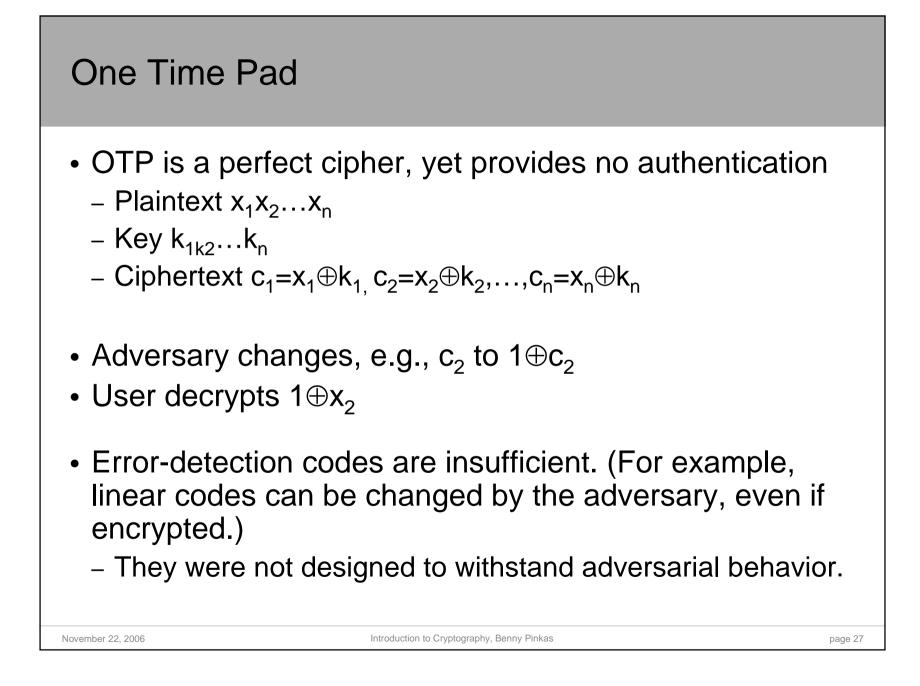
- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given one plaintext-ciphertext pair (m,c)
 - The attack looks for k1,k2, such that $D_{k2}(c) = E_{k1}(m)$
 - The correct values of k1,k2 satisfies this equality
 - There are 2^{112} (actually 2^{112} -1) other values for k_1, k_2 .
 - Each one of these satisfies the equalities with probability 2-64
 - We therefore expect to have $2^{112-64}=2^{48}$ candidates for k_1, k_2 .
- Suppose that we are given one pairs (m,c), (m',c')
 - The correct values of k1,k2 satisfies both equalities
 - There are 2^{112} (actually 2^{112} -1) other values for k_1, k_2 .
 - Each one of these satisfies the equalities with probability 2⁻¹²⁸
 - We therefore expect to have $2^{112-128} < 1$ false candidates for k_1, k_2 .

Triple DES

- 3DES $_{k1,k2} = E_{k1}(D_{k2}(E_{k1}(m)))$
- Why use Enc(Dec(Enc())) ?
 - Backward compatibility: setting $k_1 {=} k_2$ is compatible with single key DES
- Only two keys
 - Effective key length is 112 bits
 - Why not use three keys? There is a meet-in-the-middle attack with 2¹¹² operations
- 3DES provides good security. Widely used. Less efficient.

November 22, 2006

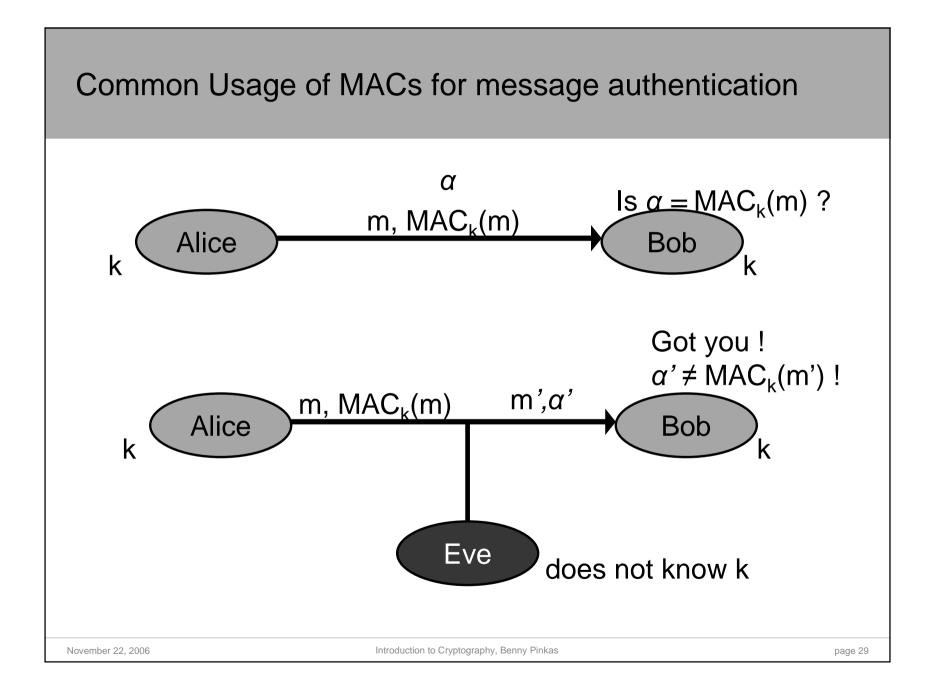




Definitions

- Scenario: Alice and Bob share a secret key K.
- Authentication algorithm:
 - Compute a Message Authentication Code: $\alpha = MAC_{\kappa}(m)$.
 - Send m and α
- Verification algorithm: $V_{\kappa}(m, \alpha)$.
 - $V_{\kappa}(m, MAC_{\kappa}(m)) = accept.$
 - For $\alpha \neq MAC_{\kappa}(m)$, $V_{\kappa}(m, \alpha) = reject$.
- How does $V_k(m)$ work?
 - Receiver knows k. Receives m and α .
 - Receiver uses k to compute $MAC_{\kappa}(m)$.

-
$$V_{\kappa}(m, \alpha) = 1$$
 iff $MAC_{\kappa}(m) = \alpha$.



Requirements

- Security: The adversary,
 - Knows the MAC algorithm (but not *K*).
 - Is given many pairs $(m_i, MAC_{\kappa}(m_i))$, where the m_i values might also be chosen by the adversary (chosen plaintext).
 - Cannot compute (*m*, $MAC_{\kappa}(m)$) for any new *m* ($\forall i \ m \neq m_i$).
 - The adversary must not be able to compute $MAC_{K}(m)$ even for a message m which is "meaningless" (since we don't know the context of the attack).
- Efficiency: output must be of fixed length, and as short as possible.
 - \Rightarrow The MAC function is not 1-to-1.
 - \Rightarrow An n bit MAC can be broken with prob. of at least 2⁻ⁿ.

