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Using a PRG for Encryption

• Key: a (short) random seed s∈{0,1}|k|.
• Message m= m1,…,m|m|.

• Encryption:
– Use the output of the PRG as a one-time pad. Namely,
– Generate G(s) = g1,…,g|m|

– Ciphertext C = g1⊕m1,…, g|m|⊕m|m|
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Using a PRG for Encryption: Security

• One time pad: 
– ∀ m1,m2∈M, ∀c, the probability that c is an encryption of 

m1 is equal to the probability that c is an encryption of m2.
– I.e., ∀ m1,m2∈M ∀c, it is impossible to tell whether c is an 

encryption of m1 or of m2.

• Security of pseudo-random encryption: 
– ∀ m1,m2∈M, no polynomial time adversary can distinguish 

between the encryptions of m1 and of m2.

• Proof by reduction: if one can break the security of the encryption 
(distinguish between encryptions of m1 and of m2), it can also 
break the security of the PRG (distinguish it from random).
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Proof of Security

Enc(m1) with

PRG

Enc(m1) with

one-time pad

Enc(m2) with

one-time pad

Enc(m2) with

PRG

Polynomially indistinguishable? Same distribution

• Suppose that there is a D() which distinguishes between (1) and (2) 

• No D() can distinguish between (3) and (4)

• We are given a string S and need to decide whether it is drawn from a 
pseudorandom distribution or from a uniformly random distribution

• Choose a random b∈{1,2} and compute mb⊕S. Give the result to D().

• If D() outputs b then declare “pseudorandom”, otherwise declare “random”!

(1) (2) (3) (4)
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Block Ciphers

• Plaintexts, ciphertexts of fixed length, |m|. 
Usually, |m|=64 or |m|=128 bits.

• The encryption algorithm Ek is a permutation
over {0,1}|m|, and the decryption Dk is its 
inverse. (They are not permutations of the 
bit order, but rather of the entire string.)

• Ideally, use a random permutation.
– Can only be implemented using a table 

with 2|m| entries �
• Instead, use a pseudo-random permutation, 

keyed by a key k.
– Implemented by a computer program 

whose input is m,k.

• How can we encrypt longer inputs? different 
modes of operation were designed for this 
task.

m1,…,m|m|

Block cipher

c1,…,c|m|
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ECB Encryption Mode (Electronic Code Book)

P1

Ek

C1

P2

Ek

C2

P3

Ek

C3

Namely, encrypt each plaintext block separately.
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CBC Encryption Mode (Cipher Block Chaining)

P1

Ek

C1

P2

Ek

C2

P3

Ek

C3

IV

Previous ciphertext is XORed with current plaintext before
encrypting current block.
An initialization vector IV is used as a “seed” for the process.
IV can be transmitted in the clear (unencrypted).
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OFB Mode (Output FeedBack)

• An initialization vector IV is used as a “seed” for 
generating a sequence of “pad” blocks

• Ek(IV), Ek(Ek(IV)), Ek(Ek(Ek(IV))),…
•Essentially a one time pad

IV Ek Ek Ek

P1 P2 P3

C1 C2 C3
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Properties of OFB

• Synchronous stream cipher. I.e., the two parties must 
know s0 and the current bit position. �

• The parties must synchronize the location they are 
encrypting/decrypting. �

• Errors in ciphertext do not propagate ☺
• Implementation:

– Pre-processing is possible ☺
– No parallel implementation known �
– No random access �

• Conceals plaintext patterns ☺
• Active attacks (by manipulating the plaintext) are 

possible �
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CTR (counter) Encryption Mode

IV

Ek

R1

IV+1

Ek

R2

IV+2

Ek

R3

P1 P2 P3

C1 C2 C3

IV is selected 
as a random 
value

• easy parallel 
implementation 

• random access 

• preprocessing
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Design of Block Ciphers

• More an art/engineering challenge than science. Based 
on experience and public scrutiny.
– “Diffusion”: each intermediate/output bit affected by many 

input bits
– “Confusion”: avoid structural relationships between bits

• Cascaded (round) design: the encryption algorithm is 
composed of iterative applications of a simple round
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Confusion-Diffusion and Substitution-Permutation 
Networks

• Divide the input to small parts, and apply rounds:
– Feed the parts through random functions (“confusion”)
– Mix the parts (“diffusion”)
– Repeat

• Why both confusion and diffusion are necessary?
• Design choices: Avalanche effect. Using reversible s-boxes.
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AES (Advanced Encryption Standard)

• Design initiated in 1997 by NIST
– Goals: improve security and software efficiency of DES 
– 15 submissions, several rounds of public analysis
– The winning algorithm: Rijndael

• Input block length: 128 bits
• Key length: 128, 192 or 256 bits
• Multiple rounds (10, 12 or 14), but does not use a 

Feistel network
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Rijndael animation
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Reversible s-boxes

• Using reversible s-boxes
– Allows for easy decryption

• However, we want the block cipher to be “as random as 
possible”
– s-boxes need to have some structure to be invertible

• Enter Feistel networks
– A round-based block-cipher which uses s-boxes which are 

not necessarily invertible 
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Feistel Networks

• Encryption:
• Input: P = L i-1 | R i-1. |L i-1|=|R i-1|

– L i = R i-1
– R i = L i-1 ⊕ F(K i, R i-1)

• Decryption?

• No matter which function is used 
as F, we obtain a permutation 
(i.e., F is reversible even if f is not).

• The same code/circuit, with keys 
in reverse order, can be used for 
decryption.

• Theoretical result [LubRac]: If f is 
a pseudo-random function then 4 
rounds give a pseudo-random 
permutation
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DES  (Data Encryption Standard)

• A Feistel network encryption algorithm:
– How many rounds?
– How are the round keys generated?
– What is F?

• DES (Data Encryption Standard)
– Designed by IBM and the NSA, 1977.
– 64 bit input and output
– 56 bit key
– 16 round Feistel network
– Each round key is a 48 bit subset of the key

• Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec 
(in 1991!).
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Security of DES

• Criticized for unpublished design decisions (designers 
did not want to disclose differential cryptanalysis).

• Very secure – the best attack in practice is brute force
– 2006: $1 million search machine: 30 seconds

• cost per key: less than $1

– •2006: 1000 PCs at night: 1 month
• Cost per key: essentially 0 (+ some patience)

• Some theoretical attacks were discovered in the 90s:
– Differential cryptanalysis
– Linear cryptanalysis: requires about 240 known plaintexts

• The use of DES is not recommend since 2004 , but 3-
DES is still recommended for use.
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DES diagram (Data Encryption Standard)

Initial permutation of bit 
locations:

- not secret

- makes implementations

in software less efficient
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DES F functions

Expansion

to 48 bits
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The S-boxes

• Very careful design (it is now clear that random choices 
for the S-boxes result in weak encryption).

• Each s-box maps 6 bits to 4 bits:
– A 4×16 table of 4-bit entries.
– Bits 1 and 6 choose the row, and bits 2-5 choose column.
– Each row is a permutation of the values 0,1,…,15.

• Therefore, given an output there are exactly 4 options for the 
input

– Changing one input bit changes at least two output bits ⇒
avalanche effect.
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Differential Cryptanalysis of DES

S-boxes

DES diagram:
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Differential Cryptanalysis [Biham-Shamir 1990]

• The first attack to reduce the overhead of breaking DES 
to below exhaustive search

• Very powerful when applied to other encryption 
algorithms

• Depends on the structure of the encryption algorithm
• Observation: all operations except for the s-boxes are 

linear
• Linear operations:

– a = b ⊕ c
– a = the bits of b in (known) permuted order

• Linear relations can be exposed by solving a system of 
linear equations
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A Linear F in a Feistel Network?

• Suppose F(Ri-1,Ki) = Ri-1 ⊕ Ki

– Namely, that F is linear

• Then Ri = Li-1 ⊕ Ri-1 ⊕ Ki

Li = Ri-1

• Write L16, R16 as linear functions 
of L0, R0 and K. 

– Given L0R0 and L16R16 Solve 
and find K.

• F must therefore be non-linear.

• F is the only source of non-
linearity in DES.
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DES F functions

Source of
non-linearity
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Differential Cryptanalysis

• The S-boxes are non-linear
• We study the differences between two encryptions of 

two different plaintexts

• Notation:
– The plaintexts are P and P*
– Their difference is dP = P ⊕ P*
– Let X and X* be two intermediate values, for P and P*, 

respectively, in the encryption process.
– Their difference is  dX = X ⊕ X*

• Namely, dX is always the result of two inputs
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The advantage of looking at XORs

• It’s easy to predict the difference of the results of linear 
operations

• Unary operations, (e.g. P is a permutation of the order of the 
bits of X)
– dP(x) = P(x) ⊕ P(x*) = P(x ⊕ x*) = P(dx)

• XOR
– d(x ⊕ y) = (x ⊕ y) ⊕ (x* ⊕ y*) = (x ⊕ x*) ⊕ (y ⊕ y*)            = 

dx ⊕ dy
• Mixing the key

– d(x ⊕ k) = (x ⊕ k) ⊕ (x* ⊕ k) = x ⊕ x* = dx
– The result here is key independent (the key disappears)
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Differences and S-boxes

• S-box: a function (table) from 6 bit inputs to 4 bit output

• X and X* are inputs to the same S-box, and we know 
their difference dX = X ⊕ X*.

• Y = S(X)
• When dX=0, X=X*, and therefore Y=S(X)=S(X*)=Y*, 

and dY=0.
• When dX≠0,  X≠X* and we don’t know dY for sure, but 

we can investigate its distribution.

• For example,
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Distribution of Y’ for S1

• dX=110100
• 26=64 input pairs, { (000000,110100), (000001,110101),…}

• For each pair compute xor of outputs of S1
• E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.
• Table of frequencies of each dY:

60800006

11111110110111001011101010011000

1200261680

01110110010101000011001000010000
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Differential Probabilities

• The probability of dX ⇒ dY is the probability that a pair 
of difference dX results in a pair of difference dY (for a 
given S-box).

• Namely, for dX=110100 these are the entries in the 
table divided by 64.

• Differential cryptanalysis uses entries with large values
– dX=0 ⇒ dY=0
– Entries with value 16/64
– (Recall that the values in the S-box are uniformly 

distributed, so the attacker gains a lot by looking at diffs.)
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Warmup

dL0 dR0= 0 (R0=R0*)

F K

dL1 = dR0 = 0 dR1 = dL0

Inputs: L0R0,   L0*R0*, s.t. R0=R0*.  
Namely, inputs whose xor is dL0 0
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3 Round DES

dL0 = 01960018 dR0 = 0

F K

F K

dL3 =48000000 dR3=4196401A

F K

The attacker knows the two 
plaintext/ciphertext pairs, 
and therefore also their 
differences
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Intermediate differences equal to 
plaintext/ciphertext differences

dL0 = 01960018 dR0 = 0

F K

F K

dL3=48000000 dR3=4196401A

F K

dL1 = 0 dR1 =01960018

dR2 =48000000dL2 =01960018

dF = 4196401A 
⊕ 01960018
=    40004002

Note that here the 
adversary also
knows the actual 
two values 
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Finding K

L3’ =48000000 R3’ =4196401A

K3

R2’ =48000000L2’ =01960018

S boxes

Output xor of F (i.e., 

S boxes) is 40004002

⇒Table enumerates

options for the pairs of

inputs to S box

The actual two inputs

to F are known

Find which K3 maps the inputs to an 

s-box input pair that results in the output pair!
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DES with more than 3 rounds

• Carefully choose pairs of plaintexts with specific xor, and 
determine xor of pairs of intermediate values at various 
rounds. 

• E.g., if dL0=40080000x, dR0=04000000x

Then, with probability ¼, dL3=04000000x, dR3=4008000x

• 8 round DES is broken given 214 chosen plaintexts.
• 16 round DES is broken given 247 chosen plaintexts...
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Double DES

• DES is out of date due to brute force attacks on its 
short key (56 bits)

• Why not apply DES twice with two keys?
– Double DES: DES k1,k2 = Ek2(Ek1(m))
– Key length: 112 bits

• But, double DES is susceptible to a meet-in-the-middle
attack, requiring ≈ 256 operations and storage.
– Compared to brute a force attack, requiring 2112 operations 

and O(1) storage.
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Meet-in-the-middle attack

• Meet-in-the-middle attack
– c = Ek2(Ek1(m))
– Dk2 (c) =  Ek1(m)

• The attack:
– Input: (m,c) for which c = Ek2(Ek1(m))
– For every possible value of k1, generate and store Ek1(m)
– For every possible value of k2, check if Dk2(c) is in the table
– Might obtain several options for (k1,k2). Check them or 

repeat the process again with a new (m,c) pair.

• The attack is applicable to any iterated cipher
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Meet-in-the-middle attack 

• The plaintext and the ciphertext are 64 bits long
• The key is 56 bits long

• Suppose that we are given two plaintext-ciphertext pairs (m,c) 
(m’,c’)

• The attack looks for k1,k2, such that Dk2 (c) =  Ek1(m) and Dk2 (c’) 
=  Ek1(m’)

• The correct value of k1,k2 satisfies both equalities
• There are 2112 (actually 2112-1) other values for k1,k2.
• Each one of these satisfies the equalities with probability 2-128

• The probability that there exists one or more of these other pairs 
of keys, which satisfy both equalities, is bounded from above by
2112-128 = 2-16.

page 39November 15, 2006 Introduction to Cryptography, Benny Pinkas

Triple DES

• 3DES k1,k2 = Ek1(Dk2(Ek1(m))

• Why use Enc(Dec(Enc( ))) ?
– Backward compatibility: setting k1=k2 is compatible with 

single key DES

• Only two keys
– Effective key length is 112 bits
– Why not use three keys? There is a meet-in-the-middle 

attack with 2112 operations

• 3DES provides good security. Widely used. Less 
efficient.


