Introduction to Cryptography

Lecture 3

Benny Pinkas

Using a PRG for Encryption: Security

- One time pad:
$-\forall m_{1}, m_{2} \in \mathrm{M}, \forall \mathrm{c}$, the probability that c is an encryption of m_{1} is equal to the probability that c is an encryption of m_{2}.
- I.e., $\forall m_{1}, m_{2} \in M \forall c$, it is impossible to tell whether c is an encryption of m_{1} or of m_{2}.
- Security of pseudo-random encryption:
$-\forall \mathrm{m}_{1}, \mathrm{~m}_{2} \in \mathrm{M}$, no polynomial time adversary can distinguish between the encryptions of m_{1} and of m_{2}.
- Proof by reduction: if one can break the security of the encryption (distinguish between encryptions of m_{1} and of m_{2}), it can also break the security of the PRG (distinguish it from random).

Using a PRG for Encryption

- Key: a (short) random seed $s \in\{0,1\}^{|k|}$.
- Message $m=m_{1}, \ldots, m_{|m|}$.
- Encryption:
- Use the output of the PRG as a one-time pad. Namely,
- Generate $G(\mathrm{~s})=\mathrm{g}_{1}, \ldots, \mathrm{~g}_{|\mathrm{m}|}$
- Ciphertext $C=g_{1} \oplus m_{1}, \ldots, g_{|m|} \oplus m_{|m|}$

Proof of Security

Polynomially indistinguishable?

- Suppose that there is a $D()$ which distinguishes between (1) and (2)
- No D() can distinguish between (3) and (4)
- We are given a string S and need to decide whether it is drawn from a pseudorandom distribution or from a uniformly random distribution
- Choose a random $b \in\{1,2\}$ and compute $m_{b} \oplus S$. Give the result to $D()$.
- If D() outputs b then declare "pseudorandom", otherwise declare "random"!

Block Ciphers

- Plaintexts, ciphertexts of fixed length, |m|

Usually, $|\mathrm{m}|=64$ or $|\mathrm{m}|=128$ bits

- The encryption algorithm E_{k} is a permutation over $\{0,1\}^{|m|}$, and the decryption D_{k} is its over $\{0,1\}^{m / \prime}$, and the decryption D_{k} is its bit order, but rather of the entire string.)
- Ideally, use a random permutation.

Can only be implemented using a table with $2^{\text {m/ }}$ entries $*$
Instead, use a pseudo-random permutation, keyed by a key k

- Implemented by a computer program whose input is m, k

How can we encrypt longer inputs? different modes of operation were designed for this task

CBC Encryption Mode (Cipher Block Chaining)

Previous ciphertext is XORed with current plaintext before encrypting current block.
An initialization vector IV is used as a "seed" for the process. IV can be transmitted in the clear (unencrypted)

ECB Encryption Mode (Electronic Code Book)

Namely, encrypt each plaintext block separately.

OFB Mode (Output FeedBack)

IV

- An initialization vector IV is used as a "seed" for generating a sequence of "pad" blocks
- $\mathrm{E}_{\mathrm{k}}(\mathrm{IV}), \mathrm{E}_{\mathrm{k}}\left(\mathrm{E}_{\mathrm{k}}(\mathrm{IV})\right), \mathrm{E}_{\mathrm{k}}\left(\mathrm{E}_{\mathrm{k}}\left(\mathrm{E}_{\mathrm{k}}(\mathrm{IV})\right)\right), \ldots$
- Essentially a one time pad

Properties of OFB

- Synchronous stream cipher. I.e., the two parties must know s_{0} and the current bit position. :
- The parties must synchronize the location they are encrypting/decrypting. :
- Errors in ciphertext do not propagate -
- Implementation:
- Pre-processing is possible $)$
- No parallel implementation known $*$
- No random access ${ }^{\circ}$
- Conceals plaintext patterns $)$
- Active attacks (by manipulating the plaintext) are possible :

Design of Block Ciphers

- More an art/engineering challenge than science. Based on experience and public scrutiny.
- "Diffusion": each intermediate/output bit affected by many input bits
- "Confusion": avoid structural relationships between bits
- Cascaded (round) design: the encryption algorithm is composed of iterative applications of a simple round

Confusion-Diffusion and Substitution-Permutation

 Networks- Divide the input to small parts, and apply rounds:
- Feed the parts through random functions ("confusion")
- Mix the parts ("diffusion")
- Repeat
-Why both confusion and diffusion are necessary?
- Design choices: Avalanche effect. Using reversible s-boxes.

AES (Advanced Encryption Standard)

- Design initiated in 1997 by NIST
- Goals: improve security and software efficiency of DES
- 15 submissions, several rounds of public analysis
- The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

Reversible s-boxes

- Using reversible s-boxes
- Allows for easy decryption
- However, we want the block cipher to be "as random as possible"
- s-boxes need to have some structure to be invertible
- Enter Feistel networks
- A round-based block-cipher which uses s-boxes which are not necessarily invertible

Rijndael animation

Feistel Networks

- Encryption:
- Input: $P=L_{i-1}\left|R_{i-1} \cdot\right| L_{i-1}\left|=\left|R_{i-1}\right|\right.$
$-L_{i}=R_{i-1}$
$-R_{i}=L_{i-1} \oplus F\left(K_{i}, R_{i-1}\right)$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).
- The same code/circuit, with keys in reverse order, can be used for decryption
- Theoretical result [LubRac]: If f is a pseudo-random function then 4 rounds give a pseudo-random permutation

DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
- How many rounds?
- How are the round keys generated?
- What is F ?
- DES (Data Encryption Standard)
- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput \approx software: $10 \mathrm{Mb} / \mathrm{sec}$, hardware: $1 \mathrm{~Gb} / \mathrm{sec}$ (in 1991!).

DES diagram (Data Encryption Standard)

Security of DES

- Criticized for unpublished design decisions (designers did not want to disclose differential cryptanalysis).
- Very secure - the best attack in practice is brute force - 2006: \$1 million search machine: 30 seconds
- cost per key: less than \$1
- 2006 : 1000 PCs at night: 1 month
- Cost per key: essentially 0 (+ some patience)
- Some theoretical attacks were discovered in the 90s:
- Differential cryptanalysis
- Linear cryptanalysis: requires about 2^{40} known plaintexts
- The use of DES is not recommend since 2004 , but 3DES is still recommended for use.

DES F functions

The S-boxes

- Very careful design (it is now clear that random choices for the S-boxes result in weak encryption).
- Each s-box maps 6 bits to 4 bits:
- A 4×16 table of 4 -bit entries.
- Bits 1 and 6 choose the row, and bits 2-5 choose column.
- Each row is a permutation of the values $0,1, \ldots, 15$.
- Therefore, given an output there are exactly 4 options for the input
- Changing one input bit changes at least two output bits \Rightarrow avalanche effect.

Differential Cryptanalysis [Biham-Shamir 1990]

- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
$-a=b \oplus c$
$-a=$ the bits of b in (known) permuted order
- Linear relations can be exposed by solving a system of linear equations

Differential Cryptanalysis of DES

A Linear F in a Feistel Network?

- Suppose $F\left(\mathrm{R}_{\mathrm{i}-1}, \mathrm{~K}_{\mathrm{i}}\right)=\mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$
- Namely, that F is linear
- Then $R_{i}=L_{i-1} \oplus R_{i-1} \oplus K_{i}$

$$
L_{i}=R_{i-1}
$$

- Write L_{16}, R_{16} as linear functions of L_{0}, R_{0} and K.
- Given $L_{0} R_{0}$ and $L_{16} R_{16}$ Solve and find K .
- F must therefore be non-linear.

- F is the only source of non-
linearity in DES.

Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
- The plaintexts are P and P^{*}
- Their difference is $\mathrm{dP}=\mathrm{P} \oplus \mathrm{P}^{*}$
- Let X and X^{*} be two intermediate values, for P and P^{*}, respectively, in the encryption process.
- Their difference is $d X=X \oplus X^{*}$
- Namely, dX is always the result of two inputs

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X^{*} are inputs to the same S-box, and we know their difference $d X=X \oplus X^{*}$.
- $Y=S(X)$
- When $d X=0, X=X^{*}$, and therefore $Y=S(X)=S\left(X^{*}\right)=Y^{*}$, and $\mathrm{d} Y=0$.
- When $d X \neq 0, X \neq X^{*}$ and we don't know $d Y$ for sure, but we can investigate its distribution.
- For example,

Distribution of Y^{\prime} for S1

- $d X=110100$
- $2^{6}=64$ input pairs, $\{(000000,110100),(000001,110101), \ldots\}$
- For each pair compute xor of outputs of S1
- E.g., S1(000000)=1110, S1(110100)=1001. $\mathrm{dY}=0111$.
- Table of frequencies of each dY :

Warmup

Inputs: $\mathrm{L}_{0} \mathrm{R}_{0}, \quad \mathrm{~L}_{0}{ }^{*} \mathrm{R}_{0}{ }^{*}$, s.t. $\mathrm{R}_{0}=\mathrm{R}_{0}{ }^{*}$.
Namely, inputs whose xor is $\mathrm{dL}_{0} 0$

Differential Probabilities

- The probability of $d X \Rightarrow d Y$ is the probability that a pair of difference $d X$ results in a pair of difference $d Y$ (for a given S-box).
- Namely, for $\mathrm{dX}=110100$ these are the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values
$-d X=0 \Rightarrow d Y=0$
- Entries with value 16/64
- (Recall that the values in the S-box are uniformly distributed, so the attacker gains a lot by looking at diffs.)

3 Round DES

The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

Intermediate differences equal to plaintext/ciphertext differences

DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if $\mathrm{dL}_{0}=40080000_{x}, \mathrm{dR}_{0}=04000000_{x}$

Then, with probability $1 / 4, \mathrm{dL}_{3}=04000000_{x}, \mathrm{dR}_{3}=4008000_{x}$

- 8 round DES is broken given 2^{14} chosen plaintexts.
- 16 round DES is broken given 2^{47} chosen plaintexts...

Finding K

Double DES

- DES is out of date due to brute force attacks on its short key (56 bits)
- Why not apply DES twice with two keys? - Double DES: DES ${ }_{\mathrm{k} 1, \mathrm{k} 2}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right)$
- Key length: 112 bits

- But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.
- Compared to brute a force attack, requiring 2^{112} operations and $O(1)$ storage

Meet-in-the-middle attack

- Meet-in-the-middle attack
$-\mathrm{c}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right)$
$-D_{k 2}(c)=E_{k 1}(m)$
- The attack:
- Input: (m, c) for which $c=E_{k 2}\left(E_{k 1}(m)\right)$
- For every possible value of k_{1}, generate and store $E_{k 1}(m)$
- For every possible value of k_{2}, check if $D_{k 2}(c)$ is in the table
- Might obtain several options for $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$. Check them or repeat the process again with a new (m, c) pair.
- The attack is applicable to any iterated cipher

Triple DES

- 3DES $_{k 1, k 2}=E_{k 1}\left(D_{k 2}\left(E_{k 1}(m)\right)\right.$
- Why use Enc(Dec(Enc())) ?
- Backward compatibility: setting $\mathrm{k}_{1}=\mathrm{k}_{2}$ is compatible with single key DES
- Only two keys
- Effective key length is 112 bits
- Why not use three keys? There is a meet-in-the-middle attack with 2^{112} operations
- 3DES provides good security. Widely used. Less efficient.

Meet-in-the-middle attack

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given two plaintext-ciphertext pairs (m,c) ($\mathrm{m}^{\prime}, \mathrm{c}^{\prime}$)
- The attack looks for $\mathrm{k} 1, \mathrm{k} 2$, such that $\mathrm{D}_{\mathrm{k} 2}(\mathrm{c})=\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})$ and $\mathrm{D}_{\mathrm{k} 2}\left(\mathrm{c}^{\prime}\right)$ $=\mathrm{E}_{\mathrm{k} 1}\left(\mathrm{~m}^{\prime}\right)$
- The correct value of $\mathrm{k} 1, \mathrm{k} 2$ satisfies both equalities
- There are 2^{112} (actually $2^{112}-1$) other values for $\mathrm{k} 1, \mathrm{k} 2$.
- Each one of these satisfies the equalities with probability 2^{-128}
- The probability that there exists one or more of these other pairs of keys, which satisfy both equalities, is bounded from above by $2^{112-128}=2^{-16}$.

