Introduction to Cryptography

Lecture 2

Benny Pinkas

November 8, 2006

Introduction to Cryptography, Benny Pinkas

page 1

Perfect Ciphers

- A simple criteria for perfect ciphers.
- Claim: The cipher is perfect if, and only if,
 ∀ m₁,m₂∈M, ∀cipher c,
 Pr(Enc(m₁)=c) = Pr(Enc(m₂)=c). (homework)
- Idea: Regardless of the plaintext, the adversary sees the same distribution of ciphertexts.
- Note that the proof cannot assume that the cipher is the one-time-pad, but rather only that Pr(plaintext = P | ciphertext = C) = Pr(plaintext = P)

November 8, 2006

Introduction to Cryptography, Benny Pinkas

page 3

Perfect Cipher

- What type of security would we like to achieve?
- "Given C, the adversary has no idea what M is"
- Impossible since adversary might have a-priori information
- In an "ideal" world, the message will be delivered in a magical way, out of the reach of the adversary
- We would like to achieve similar security
- Definition: a perfect cipher
- $Pr(plaintext = P \mid ciphertext = C) = Pr(plaintext = P)$

November 8, 20

Introduction to Cryptography, Benny Pinkas

Size of key space

- Theorem: For a perfect encryption scheme, the number of keys is at least the size of the message space.
- Proof:
- Consider ciphertext C.
- Must be a possible encryption of any plaintext m.
- But, need a different key per message m.
- \bullet Corollary: Key length of one-time pad is optimal $\ensuremath{\mathfrak{S}}$

lovember 8, 200

oduction to Cryptography, Benny Pinkas

page 4

Computational security

- We should only worry about polynomial adversaries
- Idea: Generate a string which "looks random" to any polynomial adversary. Use it instead of a OTP.
- Looks random?
- Fraction of bits set to 1 is ≈ 50%
- Longest run of 0's is of length ≈ log(n),
- Is that sufficient?...
- Enumerating a set of statistical tests that the string should pass is not enough.

November 8, 2006

Introduction to Cryptography, Benny Pinkas

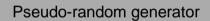
Pseudo-random generators

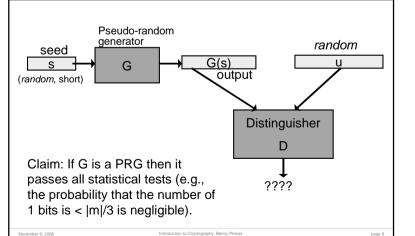
- Pseudo-random generator (PRG)
- G: $\{0,1\}^{|k|} \Rightarrow \{0,1\}^{|m|}$ |k| < |m|, polynomially computable.
- \forall polynomial time adversary D, for s∈_R{0,1}^{|k|}, $u∈_R$ {0,1}^{|m|}, it holds that $Pr(D(G(s)) \neq D(u)$ is negligible
- Polynomial time: running in time t(|k|) s.t. ∃polynomial p() for which t(|k|) < p(|k|) for all large enough |k|
- Negligible: the difference is a function $\varepsilon(|k|)$ s.t. \forall polynomials q(), for all large enough |k| it holds that $\varepsilon(|k|) < 1/q(|k|)$

November 8, 20

Introduction to Cryptography, Benny Pinkas

page 7

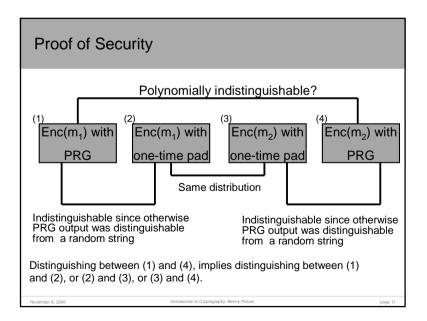

Computational security - Pseudo-randomness


- Pseudo-random string: no efficient observer can distinguish it from a uniformly random string of the same length
- · Motivation: Indistinguishable objects are equivalent
- The foundation of modern cryptography
- (*t*,ε)-Pseudo-random generator (PRG)
- G: $\{0,1\}^{|k|} \Rightarrow \{0,1\}^{|m|}$ |k| < |m|, polynomially computable.
- \forall adversary D running in time t, for s∈_R{0,1}^{|k|}, u∈_R{0,1}^{|m|}, it holds that Pr(D(G(s)) ≠ D(u)) < ε

November 8, 200

Introduction to Cryptography, Benny Pinkas

nage 6


Using a PRG for Encryption

- Key: a (short) random seed s∈{0,1}^{|k|}.
- Message m= m₁,...,m_{lml}.
- Encryption:
- Use the output of the PRG as a one-time pad. Namely,
- Generate $G(s) = g_1, \dots, g_{|m|}$
- Ciphertext C = $g_1 \oplus m_1, ..., g_{|m|} \oplus m_{|m|}$

November 8, 2006

Introduction to Cryptography, Benny Pinkas

nage 9

Using a PRG for Encryption: Security

- One time pad:
- \forall m₁,m₂∈M, \forall c, the probability that c is an encryption of m₁ is equal to the probability that c is an encryption of m₂.
- I.e., \forall m₁,m₂ \in M \forall c, it is impossible to tell whether c is an encryption of m₁ or of m₂.
- Security of pseudo-random encryption:
- Show that ∀ m₁,m₂∈M, no polynomial time adversary can distinguish between the encryptions of m₁ and of m₂.
- Proof by reduction: if one can break the security of the encryption (distinguish between encryptions of m₁ and of m₂), it can also break the security of the PRG (distinguish it from random).

November 8, 2006

Introduction to Cryptography, Benny Pinkas

Symmetric systems used in practice

- Are not based on computational problems
- Are (usually) not proven secure by reductions
- · Are designed for specific input and key lengths
- Are very efficient
- Stream ciphers
- Meant to implement a pseudo-random generator
- Usually used for encryption in the same way as OTP
- Examples: A5, RC4, SEAL.
- Require synchronization

November 8, 20

Introduction to Cryptography, Benny Pinkas

age 12

Block Ciphers

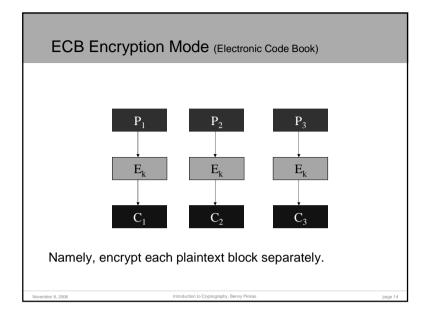
- Plaintexts, ciphertexts of fixed length, |m|. Usually, |m|=64 or |m|=128 bits.
- The encryption algorithm E_k is a permutation over {0,1}^{|m|}, and the decryption D_k is its inverse.
- Ideally, use a random permutation. Instead, use a pseudo-random permutation, keyed by a key k.
- Encrypt/decrypt whole blocks of bits
- Might provide better encryption by simultaneously working on a block of bits
- Error propagation: one error in ciphertext affects whole block
- Delay in encryption/decryption
- Different modes of operation (for encrypting longer inputs)

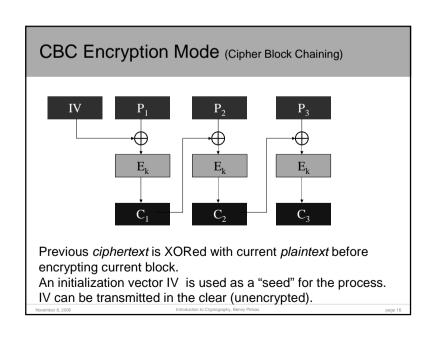
November 8, 2006

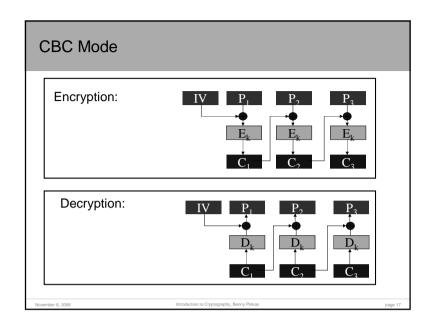
 $m_1, \ldots, m_{|m|}$

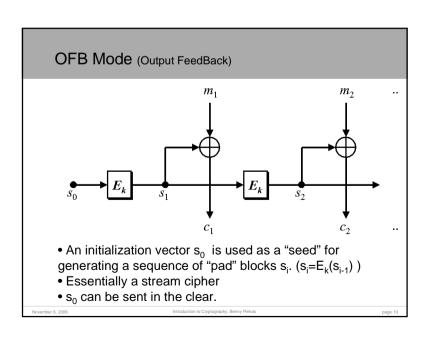
Block cipher

 C_1, \ldots, C_{lml}


Properties of ECB


- Simple and efficient ©
- Parallel implementation is possible ©
- Does not conceal plaintext patterns ⊗
- Enc(P₁, P₂, P₁, P₃)
- Active attacks are possible (plaintext can be easily manipulated by removing, repeating, or interchanging blocks).


November 8, 2


Introduction to Cryptography, Benny Pinkar

page 15

Properties of CBC

- Asynchronous: the receiver can start decrypting from any block in the ciphertext.
- Errors in one *ciphertext* block propagate to the decryption of the next block (but that's it). ©
- Conceals plaintext patterns (same block ⇒ different ciphertext blocks) ☺
 - But if IV is fixed, CBC does not hide not common prefixes
- No parallel implementation is known 🕾
- Plaintext cannot be easily manipulated ©
- Standard in most systems: SSL, IPSec, etc.

November 8, 2006

Introduction to Cryptography, Benny Pinkas

Properties of OFB

- Synchronous stream cipher. I.e., the two parties must know s₀ and the current bit position. ⊗
- The parties must synchronize the location they are encrypting/decrypting. ☺
- Errors in ciphertext do not propagate ©
- Implementation:
- Pre-processing is possible $\ensuremath{\textcircled{\sc o}}$
- No parallel implementation known $\ensuremath{\mbox{\ensuremath{\otimes}}}$
- Conceals plaintext patterns ©
- Active attacks (by manipulating the plaintext) are possible $\ensuremath{\mathfrak{S}}$

November 8, 2006

uction to Cryptography, Benny Pinkas

age 20

Design of Block Ciphers

- More an art/engineering challenge than science. Based on experience and public scrutiny.
- "Diffusion": each intermediate/output bit affected by many input bits
- "Confusion": avoid structural relationships between bits
- Cascaded (round) design: the encryption algorithm is composed of iterative applications of a simple round
- A common round function: Feistel network

November 8, 2006

Introduction to Cryptography, Benny Pinkas

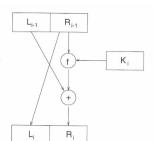
---- 04

DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
- How many rounds?
- How are the round keys generated?
- What is F?
- DES (Data Encryption Standard)
- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).
- Criticized for unpublished design *decisions* (designers did not want to disclose differential cryptanalysis).
- Linear cryptanalysis: about 240 known plaintexts

November 8, 200

Introduction to Cryptography, Benny Pinkas


page 23

Feistel Networks

- Encryption:
- Input: $P = L_{i-1} | R_{i-1}$. $|L_{i-1}| = |R_{i-1}|$

$$- L_{i} = R_{i-1} - R_{i} = L_{i-1} \oplus F(K_{i}, R_{i-1})$$

- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).
- The same code/circuit, with keys in reverse order, can be used for decryption.
- Theoretical result [LubRac]: If F is a pseudo-random function then 4 rounds give a pseudo-random permutation

What we've learned today

- Perfect security implies |M| ≤ |K|
- Computational security
- Pseudo-randomness, Pseudo-random generator

Introduction to Cryptography, Benny Pinkas

- Block ciphers
- DES

8, 2006 Introduc

age 24