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Perfect Cipher

• What type of security would we like to achieve?
• “Given C, the adversary has no idea what M is”

– Impossible since adversary might have a-priori information

• In an “ideal” world, the message will be delivered in a 
magical way, out of the reach of the adversary
– We would like to achieve similar security

• Definition: a perfect cipher
– Pr( plaintext = P | ciphertext = C ) = Pr( plaintext = P)
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Perfect Ciphers

• A simple criteria for perfect ciphers.
• Claim: The cipher is perfect if, and only if,
∀ m1,m2∈M, ∀cipher c, 

Pr(Enc(m1)=c) = Pr(Enc(m2)=c).    (homework)

• Idea: Regardless of the plaintext, the adversary sees 
the same distribution of ciphertexts.

• Note that the proof cannot assume that the cipher is the 
one-time-pad, but rather only that Pr( plaintext = P | 
ciphertext = C ) = Pr( plaintext = P)
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Size of key space

• Theorem: For a perfect encryption scheme, the number 
of keys is at least the size of the message space.

• Proof:
– Consider ciphertext C.
– Must be a possible encryption of any plaintext m.
– But, need a different key per message m.

• Corollary: Key length of one-time pad is optimal �
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Computational security

• We should only worry about polynomial adversaries
• Idea: Generate a string which “looks random” to any 

polynomial adversary. Use it instead of a OTP.

• Looks random?
– Fraction of bits set to 1 is ≈ 50%
– Longest run of 0’s is of length ≈ log(n), 
– Is that sufficient?...

• Enumerating a set of statistical tests that the string 
should pass is not enough.
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Computational security – Pseudo-randomness

• Pseudo-random string: no efficient observer can 
distinguish it from a uniformly random string of the 
same length

• Motivation: Indistinguishable objects are equivalent
• The foundation of modern cryptography

• (t,ε)-Pseudo-random generator (PRG) 
– G: {0,1}|k| ⇒{0,1}|m| |k|<|m|,   polynomially computable.
– ∀ adversary D running in time t,

for s∈R{0,1}|k|,    u∈R{0,1}|m|,
it holds that Pr(D(G(s)) ≠ D(u)) < ε
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Pseudo-random generators

• Pseudo-random generator (PRG) 
– G: {0,1}|k| ⇒{0,1}|m| |k|<|m|,   polynomially computable.
– ∀ polynomial time adversary D,

for s∈R{0,1}|k|,    u∈R{0,1}|m|,
it holds that Pr(D(G(s)) ≠ D(u) is negligible

– Polynomial time: running in time t(|k|) s.t. ∃polynomial p()
for which t(|k|)<p(|k|) for all large enough |k|

– Negligible: the difference is a function ε(|k|) s.t. 
∀polynomials q(), for all large enough |k| it holds that      
ε(|k|) < 1/q(|k|)
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Pseudo-random generator

Gs G(s)
seed

(random, short)

Pseudo-random
generator

output
u

Distinguisher

D

random

????

Claim: If G is a PRG then it 
passes all statistical tests (e.g., 
the probability that the number of 
1 bits is < |m|/3 is negligible). 
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Using a PRG for Encryption

• Key: a (short) random seed s∈{0,1}|k|.
• Message m= m1,…,m|m|.

• Encryption:
– Use the output of the PRG as a one-time pad. Namely,
– Generate G(s) = g1,…,g|m|

– Ciphertext C = g1⊕m1,…, g|m|⊕m|m|
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Using a PRG for Encryption: Security

• One time pad: 
– ∀ m1,m2∈M, ∀c, the probability that c is an encryption of 

m1 is equal to the probability that c is an encryption of m2.
– I.e., ∀ m1,m2∈M ∀c, it is impossible to tell whether c is an 

encryption of m1 or of m2.

• Security of pseudo-random encryption: 
– Show that ∀ m1,m2∈M, no polynomial time adversary can 

distinguish between the encryptions of m1 and of m2.

• Proof by reduction: if one can break the security of the encryption 
(distinguish between encryptions of m1 and of m2), it can also 
break the security of the PRG (distinguish it from random).
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Proof of Security

Enc(m1) with

PRG

Enc(m1) with

one-time pad

Enc(m2) with

one-time pad

Enc(m2) with

PRG

Polynomially indistinguishable?

Same distribution

Indistinguishable since otherwise 
PRG output was distinguishable 
from  a random string

Distinguishing between (1) and (4), implies distinguishing between (1) 
and (2), or (2) and (3), or (3) and (4). 

(1) (2) (3) (4)

Indistinguishable since otherwise 
PRG output was distinguishable 
from  a random string
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Symmetric systems used in practice

• Are not based on computational problems
• Are (usually) not proven secure by reductions
• Are designed for specific input and key lengths
• Are very efficient

• Stream ciphers
– Meant to implement a pseudo-random generator
– Usually used for encryption in the same way as OTP
– Examples: A5, RC4, SEAL.
– Require synchronization
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Block Ciphers

• Plaintexts, ciphertexts of fixed length, |m|. 
Usually, |m|=64 or |m|=128 bits.

• The encryption algorithm Ek is a permutation
over {0,1}|m|, and the decryption Dk is its 
inverse.

• Ideally, use a random permutation. Instead, 
use a pseudo-random permutation, keyed 
by a key k. 

• Encrypt/decrypt whole blocks of bits
– Might provide better encryption by 

simultaneously working on a block of bits
– Error propagation: one error in ciphertext 

affects whole block
– Delay in encryption/decryption

• Different modes of operation

m1,…,m|m|

Block cipher

c1,…,c|m|

(for encrypting longer inputs)
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ECB Encryption Mode (Electronic Code Book)

P1

Ek

C1

P2

Ek

C2

P3

Ek

C3

Namely, encrypt each plaintext block separately.
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Properties of ECB

• Simple and efficient ☺
• Parallel implementation is possible ☺
• Does not conceal plaintext patterns �

– Enc(P1, P2, P1, P3)

• Active attacks are possible � (plaintext can be easily 
manipulated by  removing, repeating, or interchanging 
blocks).
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CBC Encryption Mode (Cipher Block Chaining)

P1

Ek

C1

P2

Ek

C2

P3

Ek

C3

IV

Previous ciphertext is XORed with current plaintext before
encrypting current block.
An initialization vector IV is used as a “seed” for the process.
IV can be transmitted in the clear (unencrypted).
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CBC Mode

P1
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C1
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Ek
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IV

P1
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P2

Dk

C2

P3

Dk
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IV

Encryption:

Decryption:
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Properties of CBC

• Asynchronous: the receiver can start decrypting from 
any block in the ciphertext. ☺

• Errors in one ciphertext block propagate to the 
decryption of the next block (but that’s it). ☺

• Conceals plaintext patterns (same block ⇒ different 
ciphertext blocks) ☺

– But if IV is fixed, CBC does not hide not common 
prefixes

• No parallel implementation is known �
• Plaintext cannot be easily manipulated ☺
• Standard in most systems: SSL, IPSec, etc.
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OFB Mode (Output FeedBack)

• An initialization vector s0 is used as a “seed” for 
generating a sequence of “pad” blocks si. (si=Ek(si-1) )
• Essentially a stream cipher
• s0 can be sent in the clear.
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Properties of OFB

• Synchronous stream cipher. I.e., the two parties must 
know s0 and the current bit position. �

• The parties must synchronize the location they are 
encrypting/decrypting. �

• Errors in ciphertext do not propagate ☺
• Implementation:

– Pre-processing is possible ☺
– No parallel implementation known �

• Conceals plaintext patterns ☺
• Active attacks (by manipulating the plaintext) are 

possible �
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Design of Block Ciphers

• More an art/engineering challenge than science. Based 
on experience and public scrutiny.

• “Diffusion”: each intermediate/output bit affected by 
many input bits

• “Confusion”: avoid structural relationships between bits

• Cascaded (round) design: the encryption algorithm is 
composed of iterative applications of a simple round

• A common round function: Feistel network
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Feistel Networks

• Encryption:
• Input: P = L i-1 | R i-1. |L i-1|=|R i-1|

– L i = R i-1
– R i = L i-1 ⊕ F(K i, R i-1)

• Decryption?

• No matter which function is used 
as F, we obtain a permutation 
(i.e., F is reversible even if f is not).

• The same code/circuit, with keys 
in reverse order, can be used for 
decryption.

• Theoretical result [LubRac]: If F is 
a pseudo-random function then 4 
rounds give a pseudo-random 
permutation
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DES  (Data Encryption Standard)

• A Feistel network encryption algorithm:
– How many rounds?
– How are the round keys generated?
– What is F?

• DES (Data Encryption Standard)
– Designed by IBM and the NSA, 1977.
– 64 bit input and output
– 56 bit key
– 16 round Feistel network
– Each round key is a 48 bit subset of the key

• Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).
• Criticized for unpublished design decisions (designers did not 

want to disclose differential cryptanalysis).
• Linear cryptanalysis: about 240 known plaintexts
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What we’ve learned today

• Perfect security implies |M| ≤ |K|
• Computational security
• Pseudo-randomness, Pseudo-random generator
• Block ciphers
• DES


