
1

page 1November 8, 2006 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography

Lecture 2

Benny Pinkas

page 2November 8, 2006 Introduction to Cryptography, Benny Pinkas

Perfect Cipher

• What type of security would we like to achieve?
• “Given C, the adversary has no idea what M is”

– Impossible since adversary might have a-priori information

• In an “ideal” world, the message will be delivered in a
magical way, out of the reach of the adversary
– We would like to achieve similar security

• Definition: a perfect cipher
– Pr(plaintext = P | ciphertext = C) = Pr(plaintext = P)

page 3November 8, 2006 Introduction to Cryptography, Benny Pinkas

Perfect Ciphers

• A simple criteria for perfect ciphers.
• Claim: The cipher is perfect if, and only if,
∀ m1,m2∈M, ∀cipher c,

Pr(Enc(m1)=c) = Pr(Enc(m2)=c). (homework)

• Idea: Regardless of the plaintext, the adversary sees
the same distribution of ciphertexts.

• Note that the proof cannot assume that the cipher is the
one-time-pad, but rather only that Pr(plaintext = P |
ciphertext = C) = Pr(plaintext = P)

page 4November 8, 2006 Introduction to Cryptography, Benny Pinkas

Size of key space

• Theorem: For a perfect encryption scheme, the number
of keys is at least the size of the message space.

• Proof:
– Consider ciphertext C.
– Must be a possible encryption of any plaintext m.
– But, need a different key per message m.

• Corollary: Key length of one-time pad is optimal �

2

page 5November 8, 2006 Introduction to Cryptography, Benny Pinkas

Computational security

• We should only worry about polynomial adversaries
• Idea: Generate a string which “looks random” to any

polynomial adversary. Use it instead of a OTP.

• Looks random?
– Fraction of bits set to 1 is ≈ 50%
– Longest run of 0’s is of length ≈ log(n),
– Is that sufficient?...

• Enumerating a set of statistical tests that the string
should pass is not enough.

page 6November 8, 2006 Introduction to Cryptography, Benny Pinkas

Computational security – Pseudo-randomness

• Pseudo-random string: no efficient observer can
distinguish it from a uniformly random string of the
same length

• Motivation: Indistinguishable objects are equivalent
• The foundation of modern cryptography

• (t,ε)-Pseudo-random generator (PRG)
– G: {0,1}|k| ⇒{0,1}|m| |k|<|m|, polynomially computable.
– ∀ adversary D running in time t,

for s∈R{0,1}|k|, u∈R{0,1}|m|,
it holds that Pr(D(G(s)) ≠ D(u)) < ε

page 7November 8, 2006 Introduction to Cryptography, Benny Pinkas

Pseudo-random generators

• Pseudo-random generator (PRG)
– G: {0,1}|k| ⇒{0,1}|m| |k|<|m|, polynomially computable.
– ∀ polynomial time adversary D,

for s∈R{0,1}|k|, u∈R{0,1}|m|,
it holds that Pr(D(G(s)) ≠ D(u) is negligible

– Polynomial time: running in time t(|k|) s.t. ∃polynomial p()
for which t(|k|)<p(|k|) for all large enough |k|

– Negligible: the difference is a function ε(|k|) s.t.
∀polynomials q(), for all large enough |k| it holds that
ε(|k|) < 1/q(|k|)

page 8November 8, 2006 Introduction to Cryptography, Benny Pinkas

Pseudo-random generator

Gs G(s)
seed

(random, short)

Pseudo-random
generator

output
u

Distinguisher

D

random

????

Claim: If G is a PRG then it
passes all statistical tests (e.g.,
the probability that the number of
1 bits is < |m|/3 is negligible).

3

page 9November 8, 2006 Introduction to Cryptography, Benny Pinkas

Using a PRG for Encryption

• Key: a (short) random seed s∈{0,1}|k|.
• Message m= m1,…,m|m|.

• Encryption:
– Use the output of the PRG as a one-time pad. Namely,
– Generate G(s) = g1,…,g|m|

– Ciphertext C = g1⊕m1,…, g|m|⊕m|m|

page 10November 8, 2006 Introduction to Cryptography, Benny Pinkas

Using a PRG for Encryption: Security

• One time pad:
– ∀ m1,m2∈M, ∀c, the probability that c is an encryption of

m1 is equal to the probability that c is an encryption of m2.
– I.e., ∀ m1,m2∈M ∀c, it is impossible to tell whether c is an

encryption of m1 or of m2.

• Security of pseudo-random encryption:
– Show that ∀ m1,m2∈M, no polynomial time adversary can

distinguish between the encryptions of m1 and of m2.

• Proof by reduction: if one can break the security of the encryption
(distinguish between encryptions of m1 and of m2), it can also
break the security of the PRG (distinguish it from random).

page 11November 8, 2006 Introduction to Cryptography, Benny Pinkas

Proof of Security

Enc(m1) with

PRG

Enc(m1) with

one-time pad

Enc(m2) with

one-time pad

Enc(m2) with

PRG

Polynomially indistinguishable?

Same distribution

Indistinguishable since otherwise
PRG output was distinguishable
from a random string

Distinguishing between (1) and (4), implies distinguishing between (1)
and (2), or (2) and (3), or (3) and (4).

(1) (2) (3) (4)

Indistinguishable since otherwise
PRG output was distinguishable
from a random string

page 12November 8, 2006 Introduction to Cryptography, Benny Pinkas

Symmetric systems used in practice

• Are not based on computational problems
• Are (usually) not proven secure by reductions
• Are designed for specific input and key lengths
• Are very efficient

• Stream ciphers
– Meant to implement a pseudo-random generator
– Usually used for encryption in the same way as OTP
– Examples: A5, RC4, SEAL.
– Require synchronization

4

page 13November 8, 2006 Introduction to Cryptography, Benny Pinkas

Block Ciphers

• Plaintexts, ciphertexts of fixed length, |m|.
Usually, |m|=64 or |m|=128 bits.

• The encryption algorithm Ek is a permutation
over {0,1}|m|, and the decryption Dk is its
inverse.

• Ideally, use a random permutation. Instead,
use a pseudo-random permutation, keyed
by a key k.

• Encrypt/decrypt whole blocks of bits
– Might provide better encryption by

simultaneously working on a block of bits
– Error propagation: one error in ciphertext

affects whole block
– Delay in encryption/decryption

• Different modes of operation

m1,…,m|m|

Block cipher

c1,…,c|m|

(for encrypting longer inputs)
page 14November 8, 2006 Introduction to Cryptography, Benny Pinkas

ECB Encryption Mode (Electronic Code Book)

P1

Ek

C1

P2

Ek

C2

P3

Ek

C3

Namely, encrypt each plaintext block separately.

page 15November 8, 2006 Introduction to Cryptography, Benny Pinkas

Properties of ECB

• Simple and efficient ☺
• Parallel implementation is possible ☺
• Does not conceal plaintext patterns �

– Enc(P1, P2, P1, P3)

• Active attacks are possible � (plaintext can be easily
manipulated by removing, repeating, or interchanging
blocks).

page 16November 8, 2006 Introduction to Cryptography, Benny Pinkas

CBC Encryption Mode (Cipher Block Chaining)

P1

Ek

C1

P2

Ek

C2

P3

Ek

C3

IV

Previous ciphertext is XORed with current plaintext before
encrypting current block.
An initialization vector IV is used as a “seed” for the process.
IV can be transmitted in the clear (unencrypted).

5

page 17November 8, 2006 Introduction to Cryptography, Benny Pinkas

CBC Mode

P1

Ek

C1

P2

Ek

C2

P3

Ek

C3

IV

P1

Dk

C1

P2

Dk

C2

P3

Dk

C3

IV

Encryption:

Decryption:

page 18November 8, 2006 Introduction to Cryptography, Benny Pinkas

Properties of CBC

• Asynchronous: the receiver can start decrypting from
any block in the ciphertext. ☺

• Errors in one ciphertext block propagate to the
decryption of the next block (but that’s it). ☺

• Conceals plaintext patterns (same block ⇒ different
ciphertext blocks) ☺

– But if IV is fixed, CBC does not hide not common
prefixes

• No parallel implementation is known �
• Plaintext cannot be easily manipulated ☺
• Standard in most systems: SSL, IPSec, etc.

page 19November 8, 2006 Introduction to Cryptography, Benny Pinkas

OFB Mode (Output FeedBack)

• An initialization vector s0 is used as a “seed” for
generating a sequence of “pad” blocks si. (si=Ek(si-1))
• Essentially a stream cipher
• s0 can be sent in the clear.

page 20November 8, 2006 Introduction to Cryptography, Benny Pinkas

Properties of OFB

• Synchronous stream cipher. I.e., the two parties must
know s0 and the current bit position. �

• The parties must synchronize the location they are
encrypting/decrypting. �

• Errors in ciphertext do not propagate ☺
• Implementation:

– Pre-processing is possible ☺
– No parallel implementation known �

• Conceals plaintext patterns ☺
• Active attacks (by manipulating the plaintext) are

possible �

6

page 21November 8, 2006 Introduction to Cryptography, Benny Pinkas

Design of Block Ciphers

• More an art/engineering challenge than science. Based
on experience and public scrutiny.

• “Diffusion”: each intermediate/output bit affected by
many input bits

• “Confusion”: avoid structural relationships between bits

• Cascaded (round) design: the encryption algorithm is
composed of iterative applications of a simple round

• A common round function: Feistel network

page 22November 8, 2006 Introduction to Cryptography, Benny Pinkas

Feistel Networks

• Encryption:
• Input: P = L i-1 | R i-1. |L i-1|=|R i-1|

– L i = R i-1
– R i = L i-1 ⊕ F(K i, R i-1)

• Decryption?

• No matter which function is used
as F, we obtain a permutation
(i.e., F is reversible even if f is not).

• The same code/circuit, with keys
in reverse order, can be used for
decryption.

• Theoretical result [LubRac]: If F is
a pseudo-random function then 4
rounds give a pseudo-random
permutation

page 23November 8, 2006 Introduction to Cryptography, Benny Pinkas

DES (Data Encryption Standard)

• A Feistel network encryption algorithm:
– How many rounds?
– How are the round keys generated?
– What is F?

• DES (Data Encryption Standard)
– Designed by IBM and the NSA, 1977.
– 64 bit input and output
– 56 bit key
– 16 round Feistel network
– Each round key is a 48 bit subset of the key

• Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).
• Criticized for unpublished design decisions (designers did not

want to disclose differential cryptanalysis).
• Linear cryptanalysis: about 240 known plaintexts

page 24November 8, 2006 Introduction to Cryptography, Benny Pinkas

What we’ve learned today

• Perfect security implies |M| ≤ |K|
• Computational security
• Pseudo-randomness, Pseudo-random generator
• Block ciphers
• DES

