

Administrative Details

- Grade
- Exam 75\%
- Homework 25\% (might include programming)
- Office hours: Wednesday, 12-13.
- Email: benny@cs.haifa.ac.il
- Web page:
http://www.pinkas.net/courses/itc/2006/index.html
- Goal: Learn the basics of modern cryptography
- Method: introductory, applied, precise.

In the Library

- In the "reserved books" section:
- Four copies of
- Cryptography :theory and practice / Douglas R. Stinson
- Introduction to cryptography :principles and applications /Hans Delfs, Helmut Knebl
- Foundations of cryptography / Oded Goldreich
- Handbook of Applied Cryptography, by A. Menezes, P. Van Oorschot, S. Vanstone. (Free!)
- Introduction to Cryptography Applied to Secure Communication and Commerce, by Amir Herzberg. (Free!)
- Applied Cryptography, by B. Schneier.

Course Outline

- Course Outline
- Data secrecy: encryption
- Symmetric encryption
- Asymmetric (public key) encryption
- Data Integrity: authentication, digital signatures.
- Required background in number theory
- Cryptographic protocols

Secret key

- Alice must have some secret information that Eve does not know. Otherwise...
- In symmetric encryption, Alice and Bob share a secret key k, which they use for encrypting and decrypting the message.

Encryption

-Two parties: Alice and Bob
-Reliable communication link
-Goal: send a message m while hiding it from Eve (as if they were both in the same room)

Authentication / Signatures

-Goal:
-Enable Bob to verify that Eve did not change messages sent by Alice
-Enable Bob to prove to others the origin of messages sent by Alice

- (We'll discuss these issues in later classes)

Encryption

- For every message m
- $D_{k 2}\left(E_{k 1}(m)\right)=m$
- I.e., the decryption of the encryption of m is m
- Symmetric encryption $k=k_{1}=k_{2}$

Adversarial Model

- Adversary Knows encryption and decryption algorithms E and D, and message space.
- Kerckhoff's Principle (1883):
- The only thing Eve does not know is the secret key k
- The design is public
- Allows public scrutiny of the design
- No need to replace the system if the design is exposed \Rightarrow no need to keep the design secret
- Same design can be used for multiple applications
- Focus on securing the key
- Examples
- Security by obscurity, Intel's HDCP *
- DES, AES, SSL ©

Security Goals

(1) No adversary can determine m
or, even better,
(2) No adversary can determine any information about m

- Suppose $m=$ "attack on Sunday, October 17, 2004".
- The adversary can at most learn that
- $m=$ "attack on $S^{* *}$ day, Oct**er 17, 2004"
- $\mathrm{m}=$ "****** ** *u**** ******* *** ****"
- Here, goal (1) is satisfied, but not goal (2)

Adversarial Power

- Types of attacks:
- Ciphertext only attack - ciphertext known to the adversary (eavesdropping)
- Known plaintext attack - plaintext and ciphertext are known to the adversary
- Chosen plaintext attack - the adversary can choose the plaintext and obtain its encryption (e.g. he has access to the encryption system)
- Chosen ciphertext attack - the adversary can choose the ciphertext and obtain its decryption
- Assume restrictions on the adversary's capabilities, but not that it is using specific attacks or strategies.

Breaking the Enigma

- German cipher in WW II
- Kerckhoff's principle
- Known plaintext attack
- (somewhat) chosen plaintext attack

Brute Force Attacks

- Brute force attack: adversary tests all key space and checks which key decrypts the message
- Caesar cipher: |key space| = 26
- We need a large key space
- Usually, the key is a bit string chosen uniformly at random from $\{0,1\}^{|k|}$. Implying $2^{|k|}$ equiprobable keys.
- How long should k be?
- The adversary should not be able to do $2^{|k|}$ decryption trials

Caesar Cipher

- A shift cipher
- Plaintext: "ATTACK AT DAWN"
- Ciphertext: "DWWDFN DW GDZQ"
- Key: $k \in_{R}\{0,25\}$. (In this example $k=3$)
- More formally:
- Key: $k \in_{R}\{0 \ldots 25\}$, chosen at random.
- Message space: English text (i.e., $\{0 . . .25\}^{|m|}$)
- Algorithm: ciphertext letter $=$ plaintext letter $+k \bmod 25$
- Kerckhoff's principle
- Not a good idea

Adversary's computation power

- Theoretically
- Adversary can perform poly(/k/) computation
- Key space = $2^{|k|}$
- Practically
- |k| = 64 is too short for a key length
- $|\mathrm{k}|=80$ starts to be reasonable
- Why? (what can be done by 1000 computers in a year?)
- $2^{55}=2^{20}$ (ops per second)
- $\quad \times 2^{20}$ (seconds in two weeks)
- $\quad x 2^{5}$ (\approx fortnights in a year) (might invest more than a year..) - $\quad \times 2^{10}$ (computers in parallel)
- All this, assuming that the adversary cannot do better than a brute force attack

Monoalphabetic Substitution cipher

ABCDEFFGHIJ KILM|NOPQRSTUVWXYZ YAHPOGZQWBTSFLRCVMUEKJDIXN

- Plaintext: "Attack at DAwn"
- Ciphertext: "YEEYHT YE PYDL"
- More formally:
- Plaintext space $=$ ciphertext space $=\{0 . .25\}^{/ m \mid}$
- Key space $=1$-to- 1 mappings of $\{0 . .25\}$ (i.e., permutations)
- Encryption: map each letter according to the key
- Key space $=26!\approx 4 \times 10^{28} \approx 2^{95}$. (Large enough.)
- Still easy to break

Cryptanalysis of a substitution cipher

Cryptanalysis of a substitution cipher
- QEFP FP QEB CFOPQ QBUQ
- QEFP FP QEB CFOPQ QBUQ
- TH TH T T T
- THFP FP THB CFOPT TBUT
-THIS IS TH I ST T T
-THIS IS THB CIOST TBUT
- THIS IS THE I ST TE T
- THIS IS THE FIRST TEXT

Breaking the substitution cipher

- The plaintext has a lot of structure
- Known letter distribution in English (e.g. $\operatorname{Pr}(" e ")=13 \%$).
- Known distribution of pairs of letters ("th" vs. "jj")

Attacking the Vigenere cipher

- Known plaintext attack (or rather, known plaintext distribution)
- Guess the key length $/ k /$
- Examine every $/ k /$ 'th letter, this is a shift cipher
- THIS IS THE PLAINTEXT TO BE ENCRYPTED
- SECR ET SEC RETSECRET SE CR ETSECRETS
- Attack time: $|k| x|k| x$ time of attacking a shift cipher ${ }^{(1)}$
- Chosen plaintext attack:
- Use the plaintext "aaaaaaa..."
${ }^{(1)}$ Can't assume English plaintext. Can assume known letter frequency

Perfect Cipher

- For a perfect cipher, it holds that given ciphertext C,

$$
-\operatorname{Pr}(\text { plaintext }=P / C)=\operatorname{Pr}(\text { plaintext }=P)
$$

- i.e., knowledge of ciphertext does not change the a-priori distribution of the plaintext
- Probabilities taken over key space and plaintext space
- Does this hold for monoalphabetic substitution?
- One Time Pad (Vernam cipher): (for a one bit plaintext) - Plaintext $p \in\{0,1\}$
- $\operatorname{Key} k \in_{\mathrm{R}}\{0,1\}$ (i.e. $\operatorname{Pr}(k=0)=\operatorname{Pr}(k=1)=1 / 2$)
- Ciphertext $=\mathrm{p} \oplus \mathrm{k}$
- What happens if we know a-priori that $\operatorname{Pr}($ plaintext $=1)=0.8$?

Perfect Cipher

- What type of security would we like to achieve?
- "Given C, the adversary has no idea what M is"
- Impossible since the adversary might have a-priori information
- In an "ideal" world, the message will be delivered in a magical way, out of the reach of the adversary
- We would like to achieve similar security
- Definition: a perfect cipher
- $\operatorname{Pr}($ plaintext $=P /$ ciphertext $=C)=\operatorname{Pr}($ plaintext $=P)$
- The ciphertext does not add information about the plaintext

The one-time-pad is a perfect cipher

$$
\begin{aligned}
& \text { ciphertext = plaintext } \oplus \mathrm{k} \\
& \operatorname{Pr}(\text { ciphertext }=1) \\
= & \operatorname{Pr}(\text { plaintext } \oplus \text { key }=1) \\
= & \operatorname{Pr}(\text { key }=\text { plaintext } \oplus 1)=1 / 2 \\
& \operatorname{Pr}(\text { plaintext }=1 \mid \text { ciphertext }=1) \\
= & \operatorname{Pr}(\text { plaintext }=1 \& \text { ciphertext }=1) / \operatorname{Pr}(\text { ciphertext }=1) \\
= & \operatorname{Pr}(\text { plaintext }=1 \& \text { ciphertext }=1) / 1 / 2 \\
= & \operatorname{Pr}(\text { ciphertext }=1 \mid \text { plaintext }=1) \cdot \operatorname{Pr}(\text { plaintext }=1) / 1 / 2 \\
= & \operatorname{Pr}(\text { key }=0) \cdot \operatorname{Pr}(\text { plaintext }=1) / 1 / 2 \\
= & 1 / 2 \cdot \operatorname{Pr}(\text { plaintext }=1) / 1 / 2 \\
= & \operatorname{Pr}(\text { plaintext }=1)
\end{aligned}
$$

The one-time-pad

- Plaintext $=p_{1} p_{2} \ldots p_{m} \in \Sigma^{m} \quad$ (e.g. $\Sigma=\{0,1\}$, or $\Sigma=\{A \ldots Z\}$)
- key $=k_{1} k_{2} \ldots k_{m} \in_{R} \Sigma^{m}$
- Ciphertext $=c_{1} c_{2} \ldots c_{m}, \quad c_{i}=p_{i} \oplus k_{i}$
- Essentially a shift cipher with a different key for every character
- Shannon [47,49]:
- An OTP is a perfect cipher, unconditionally secure. ©
- As long as the key is a random string, of the same length as the plaintext. $:+$
- Cannot use
- Shorter key (e.g., Vigenere cipher)
- A key which is not chosen uniformly at random

What we've learned today

- Introduction
- Kerckhoff's Principle
- Some classic ciphers
- Brute force attacks
- Required key length
- A large key does no guarantee security
- Perfect ciphers

