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Secret Sharing

• 3-out-of-3 secret sharing:
– Three parties, A, B and C. 
– Secret S.
– No two parties should know anything about S, but all three 

together should be able to retrieve it.
• In other words

– A + B + C  ⇒ S
– But,

• A + B ⇒ S

• A + C ⇒ S

• B + C ⇒ S

/
/

/
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Secret Sharing

• 3-out-of-3 secret sharing:
• How about the following scheme:

– Let S=s1s2…sm be the bit representation of S. (m is a 
multiple of 3)
• Party A receives s1,…,sm/3.

• Party B receives sm/3+1,…,s2m/3.

• Party C receives s2m/3+1,…,sm. 

– All three parties can recover S.

– Why doesn’t this scheme satisfy the definition of secret 
sharing?

– Why does each share need to be as long as the secret?
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Secret Sharing

• Solution:
– Define shares for A,B,C in the following way
– (SA, SB, SC) is a random triple, subject to the constraint 

that 
• SA⊕ SB ⊕ SC = S
• or, SA and SB are random, and SC = SA⊕ SB ⊕ S.

• What if it is required that any one of the parties should 
be able to compute S?
– Set SA = SB = SC = S

• What if each pair of the three parties should be able to 
compute S?
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t-out-of-n secret sharing

• Provide shares to n parties, satisfying
– Recoverability: any t shares enable the reconstruction of

the secret.
– Secrecy: any t-1 shares reveal nothing about the secret.

• We saw 1-out-of-n and n-out-of-n secret sharing.

• Consider 2-out-of-n secret sharing.
– Define a line which intersects the 

Y axis at S
– The shares are points on the line
– Any two shares define S
– A single share reveals nothing

s

1 2 3
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t-out-of-n secret sharing

• Fact: Let F be a field. Any d+1 pairs (ai , bi ) define a 
unique polynomial P of degree ≤ d, s.t. P(ai )=bi.  
(assuming d < |F|).

• Shamir’s secret sharing scheme:
– Choose a large prime and work in the field Zp.
– The secret S is an element in the field.
– Define a polynomial P of degree t-1 by choosing random 

coefficients a1,…,at-1 and defining 
P(x) = at-1x

t-1+…+a1x+S.

– The share of party j is ( j, P(j) ).
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t-out-of-n secret sharing

• Reconstruction of the secret:
– Assume we have P(x1),…,P(xt ).
– Use Lagrange interpolation to compute the unique 

polynomial of degree ≤ t-1 which agrees with these points.
– Output the free coefficient of this polynomial. 

• Lagrange interpolation
– P(x) = ∑i=1..t P(xi )·Li(x)
– where Li(x)=∏j≠i(x-xj ) / ∏j≠i(xi-xj )  
– (Note that Li (xi )=1, Li (xj )=0 for j≠i.)

– I.e., S = ∑i=1..t P(xi ) ·∏j≠I xj / ∏j≠i(xi - xj ) 
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Properties of Shamir’s secret sharing

• Perfect secrecy: Any t-1 shares give no information 
about the secret: Pr(secret=s | P(1),…,P(t-1)) = Pr(secret=s). 
(Security is not based on any assumptions.)

• Proof: (Intuition: think about 2-out-of-n secret sharing)

– The polynomial is generated by choosing a random 
polynomial of degree t-1, subject to P(0)=secret.

– Suppose that the shares are P(x1),…,P(xt-1).
– P() is generated by choosing uniformly random values to 

the t-1 coefficients, a1,…,at-1.  (a0  is already set to be S)
• The values of P(x1),…,P(xt-1) are defined by t-1 linear 

equations of a1,…,at-1, s.

• Since a1,…,at-1 are uniformly distributed, so are the values of 
P(x1),…,P(xt-1).
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Additional properties of Shamir’s secret sharing

• Ideal size: Each share is the same size as the secret.

• Extendable: Additional shares can be easily added.

• Flexible: different weights can be given to different 
parties by giving them more shares.

• Homomorphic property: Suppose P(1),…,P(n) are 
shares of S, and P’(1),…,P’(n) are shares of S’, then 
P(1)+P’(1),…,P(n)+P’(n) are shares for S+S’.
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General secret sharing

• P is the set of users (say, n users).
• A ∈ {1,2,…,n} is an authorized subset if it is authorized to 

access the secret.
• Γ is the set of authorized subsets.
• For example,

– P = {1,2,3,4}
– Γ = Any set containing one of {  {1,2,4}, {1,3,4,}, {2,3} }
– Not supported by threshold secret sharing

• If A∈Γ and A ⊆ B, then B∈Γ .
• A∈Γ is a minimal authorized set if there is no C ⊆ A such 

that C∈Γ.
• The set of minimal subsets Γ0 is called the basis of Γ.
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Why should we examine general access 
structures?

• Not all access structures can be represented by 
threshold access structures 

• For example, consider the access structure 
Γ={{1,2},{3,4}}
– Any threshold based secret sharing scheme with threshold t 

gives weights to parties, such that w1+w2≥ t, and w3+w4 ≥ t. 
– Therefore either w1≥ t/2, or w2 ≥ t/2. Suppose that this is w1.
– Similarly either w3≥ t/2, or w4 ≥ t/2. Suppose that this is w3.
– In this case parties 1 and 3 can reveal the secret, since 

w1+w3≥ t.
– Therefore, this access structure cannot be realized by a 

threshold scheme. 
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The monotone circuit construction (Benaloh-Leichter)

• A Boolean circuit C with OR and AND gates, is 
monotone. Namely, if C(x)=1, then changing bits of x
from 0 to 1 does not change the result to 0. 

• Given Γ construct a circuit C s.t. C(A)=1 iff A∈Γ.
– Γ 0 =  {  {1,2,4}, {1,3,4,}, {2,3} }

x1 x2 x3 x4

^ ^ ^

v
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Handling OR gates

x1 x2 x3 x4

^ ^ ^

v
S

SSS

Starting from the output gate and going backwards

An OR  gate is a 
1-out-of-N 
scheme 
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Handling AND gates

x1 x2 x3 x4

^ ^ ^

v
S

SSS

a1 a2S⊕a1⊕a2
b1 S⊕b1 c1

c2 S⊕c1⊕c2

Final step: each user gets the keys of the 
wires going out from its variable

Proof of security: 
by induction

An AND  gate is 
an N-out-of-N 
scheme 
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A graph based construction

• Represent the access structure by an undirected graph.
• An authorized set corresponds to a path from s to t in 

an undirected graph.
• Γ 0 =  {  {1,2,4}, {1,3,4,}, {2,3} }

s t

1
4

2

3

2 3
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A graph based construction

R

R1 R2

R’

R3

1
4

2

3

2 3

Assign random values to nodes, s.t. R’-R= shared secret 
(R’=R+shared secret)
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A graph based construction

• Assign to edge R1→R2 the value R2-R1

• Give to each user the values associated with its edges

R

R1 R2

R’

R3

1
4

2

3

2 3

R1-R R2-R1
R’-R2

R’-R2

R’-R3
R3-R
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A graph based construction

• Consider the set {1,2,4}

• why can an authorized set reconstruct the secret? Why 
can’t a unauthorized set do that? 

R

R1 R2

R’

R3

1
4

2

3

2 3

R1-R R2-R1
R’-R2

R’-R2

R’-R3
R3-R
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Electronic cash
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Simple electronic checks

• A payment protocol:
– Sign a document transferring money from your account to 

another account
• This document goes to your bank
• The bank verifies that this is not a copy of  a previous 

check
• The bank checks your balance
• The bank transfers the sum 

• Problems:
• Requires online access to the bank (to prevent reusage)
• Expensive.
• The transaction is traceable (namely, the bank knows 

about the transaction between you and Alice).
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First try at a payment protocol

• Withdrawal
– User gets bank signature on {I am a $100 bill, #1234}
– Bank deducts $100 from user’s account

• Payment
– User gives the signature to a merchant
– Merchant verifies the signature, and checks online with the 

bank to verify that this is the first time that it is used.
• Problems:

– As before, online access to the bank, and lack of anonymity.
• Advantage:

– The bank doesn’t have to check online whether there is 
money in the user’s account.

– In fact, there is no real need for the signature, since the 
bank checks its own signature. 
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Anonymous cash via blind signatures

• In order to preserve payer’s anonymity the bank signs the bill 
without seeing it 
– (e.g. like signing on a carbon paper)

• RSA Blind signatures (Chaum)
• RSA signature:  (H(m))1/e mod n
• Blind RSA signature: 

– Alice sends Bob (r e H(m)) mod n, where r is a random value.
– Bob computes (r e H(m))1/e = r H(m)1/e mod n, and sends to Alice.
– Alice divides by r and computes H(m)1/e mod n

• Problem: Alice can get Bob to sign anything, Bob does not know 
what he is signing.
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Enabling the bank to verify the signed value

• “cut and choose” protocol
• Suppose Alice wants to sign a $20 bill.

– A $20 bill is defined as H(random index,$20).
– Alice sends to bank 100 different $20 bills for blind signature.
– The bank chooses 99 of these and asks Alice to unblind them 

(divide by the corresponding r values). It verifies that they are 
all $20 bills.

– The bank blindly signs the remaining bill and gives it to Alice.
– Alice can use the bill without being identified by the bank.

• If Alice tries to cheat she is caught with probability 99/100.
• 100 can be replaced by any parameter m.
• But we would like to have an exponentially small cheating 

probability.
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Exponentially small cheating probability

• Define that a $20 bill is valid if it is the eth root of the multiplication of 
50 values of the form H(x), (where x=“random index,$20”), and the 
owner of the bill can present all 50 x values.

• The withdrawal protocol:
– Alice sends to the Bank z1, z2, …, z100 (where zi= ri

e·H(xi)). 
– The Bank asks Alice to reveal ½ of the values zi = ri

e·H(xi).
– The Bank verifies them and extracts the eth root of the multiplication of all 

the other 50 values. 
• Payment: Alice sends the signed bill and reveals the 50 preimage

values. The merchant sends them to the bank which verifies that 
they haven’t been used before. 

• Alice can only cheat if she guesses the 50 locations in which she will 
be asked to unblind the zis, which happens with probability ~2-100. 
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Online vs. offline digital cash

• We solved the anonymity problem, while verifying that 
Alice can only get signatures on bills of the right value.

• The bills can still be duplicated
• Merchants must check with the bank whenever they get 

a new bill, to verify that it wasn’t used before. 

• A new idea:
– During the payment protocol the user is forced to encode 

a random identity string (RIS) into the bill
– If the bill is used twice, the RIS reveals the user’s identity 

and she loses her anonymity. 
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Offline digital cash

Withdrawal protocol:
• Alice prepares 100 bills of the form

– {I am a $20 bill, #1234, y1,y’1,y2,y’2,…,ym,y’m}
– S.t. ∀ i yi=H(xi), y’i=H(x’i), and it holds that xi⊕x’i =Alice’s id, 

where H() is a collision resistant function.

• Alice blinds these bills and sends to the bank.

• The bank asks her to unblind 99 bills and show their  
xi,x’i values, and checks their validity. (Alternatively, as 
in the previous example, Alice can do a check with fails 
with only an exponential probability.)

• The bank signs the remaining blinded bill. 
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Offline digital cash

Payment protocol:
• Alice gives a signed bill to the vendor

– {I am a $20 bill, #1234, y1,y’1,y2,y’2,…,ym,y’m}
• The vendor verifies the signature, and if it is valid sends 

to Alice a random bit string b=b1b2…bm of length m.
• ∀ i if bi=0 Alice returns xi, otherwise (bi=1) she returns x’I
• The vendor checks that yi=H(xi) or y’i=H(x’i) (depending 

on bi ). If this check is successful it accepts the bill. (Note 
that Alice’s identity is kept secret.)

• Note that the merchant does not need to contact the 
bank during the payment protocol.
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Offline digital cash

• The merchant must deposit the bill in the bank. It 
cannot use the bill to pay someone else.
– Because it cannot answer challenges b* different than the 

challenge b it sent to Alice. 

• How can the bank detect double spenders?
– Suppose two merchants M and M* receive the same bill
– With very high probability, they ask Alice different queries 

b,b*
– There is an index i for which bi=0, b*i =1. Therefore M 

receives xi and M* receives x’i.
– When they deposit the bills, the bank receives xi and x*i, 

and can compute xi ⊕ x’i =Alice’s id.


