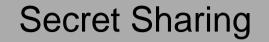


- 3-out-of-3 secret sharing:
 - Three parties, A, B and C.
 - Secret S.
 - No two parties should know *anything* about S, but all three together should be able to retrieve it.
- In other words
 - $A + B + C \implies S$
 - But,
 - A + B ∌ S
 - A + C ∌ S
 - B + C ∌ S



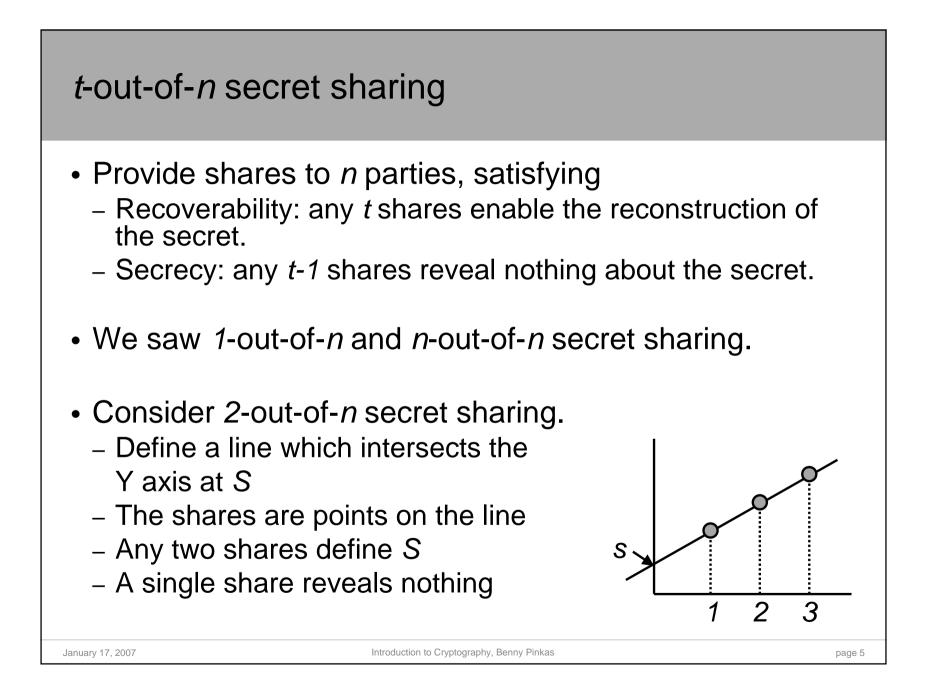
- 3-out-of-3 secret sharing:
- How about the following scheme:
 - Let $S=s_1s_2...s_m$ be the bit representation of *S. (m* is a multiple of 3)
 - Party A receives $s_1, \ldots, s_{m/3}$.
 - Party B receives $s_{m/3+1}, \ldots, s_{2m/3}$.
 - Party C receives $s_{2m/3+1}, \ldots, s_m$.
 - All three parties can recover S.
 - Why doesn't this scheme satisfy the definition of secret sharing?
 - Why does each share need to be as long as the secret?

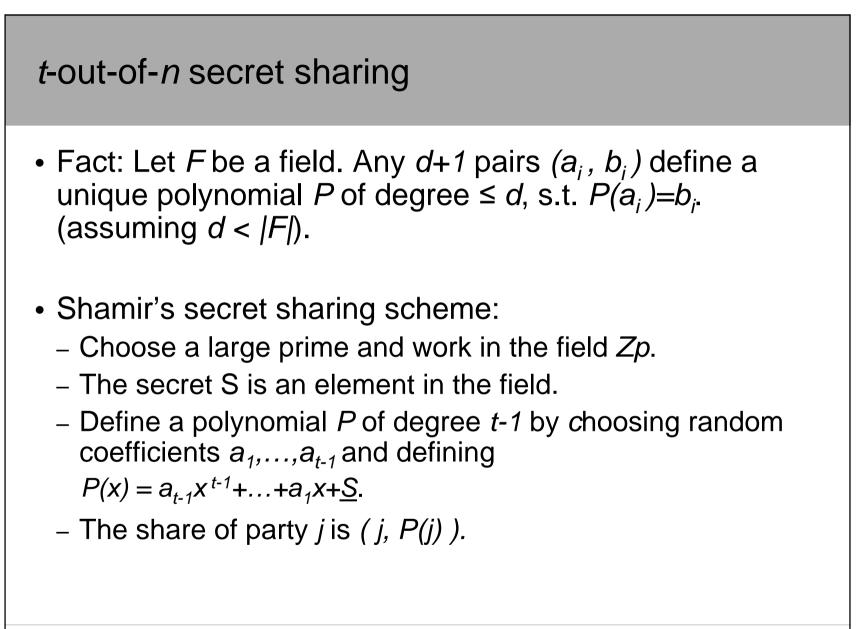
Secret Sharing

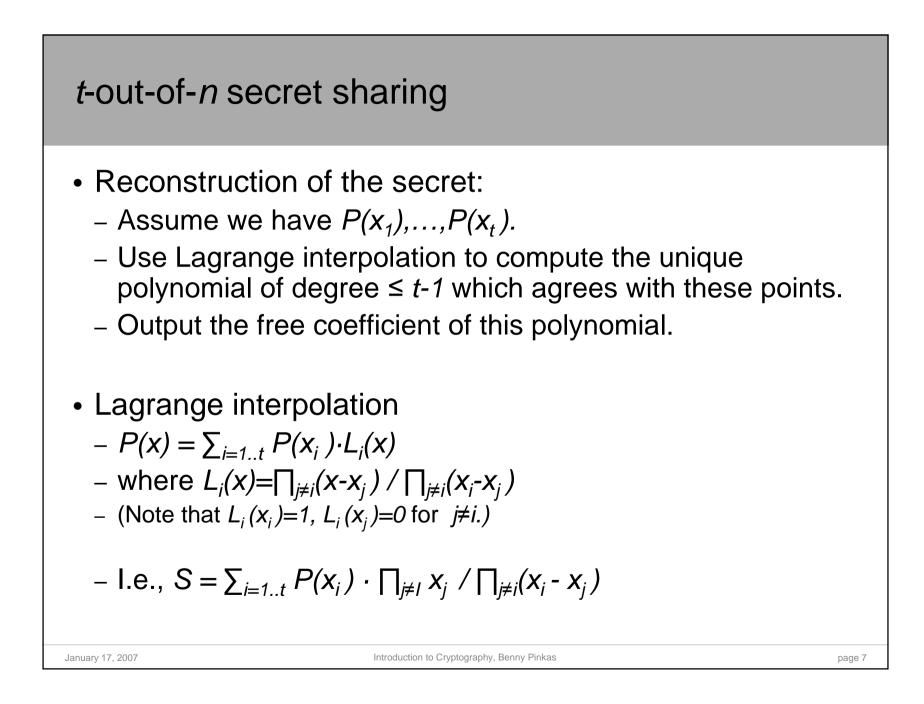
- Solution:
 - Define shares for A,B,C in the following way
 - (S_A, S_B, S_C) is a random triple, subject to the constraint that
 - $S_A \oplus S_B \oplus S_C = S$
 - or, S_A and S_B are random, and $S_C = S_A \oplus S_B \oplus S_B$.
- What if it is required that any one of the parties should be able to compute *S*?

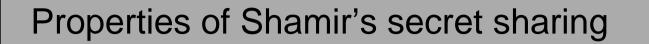
– Set $S_A = S_B = S_C = S$

• What if each pair of the three parties should be able to compute S?





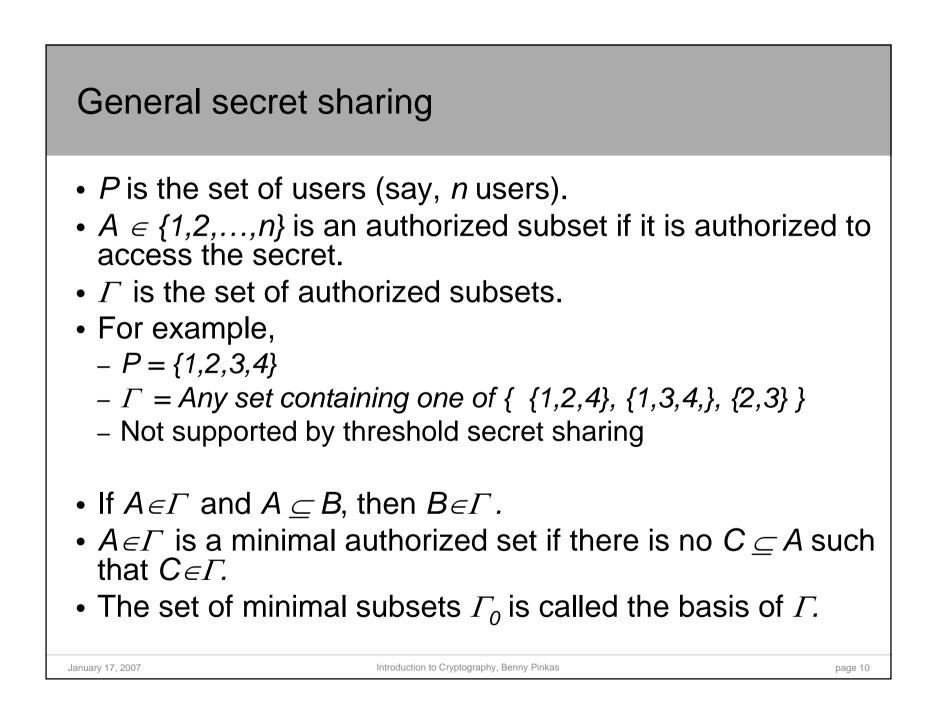




- Perfect secrecy: Any *t-1* shares give no information about the secret: Pr(secret=s | P(1),...,P(t-1)) = Pr(secret=s). (Security is not based on any assumptions.)
- **Proof:** (Intuition: think about 2-out-of-n secret sharing)
 - The polynomial is generated by choosing a random polynomial of degree t-1, subject to P(0)=secret.
 - Suppose that the shares are $P(x_1), \ldots, P(x_{t-1})$.
 - P() is generated by choosing uniformly random values to the *t*-1 coefficients, a_1, \ldots, a_{t-1} . (a_0 is already set to be S)
 - The values of $P(x_1), \dots, P(x_{t-1})$ are defined by *t-1* linear equations of a_1, \dots, a_{t-1} , *s*.
 - Since a_1, \ldots, a_{t-1} are uniformly distributed, so are the values of $P(x_1), \ldots, P(x_{t-1})$.

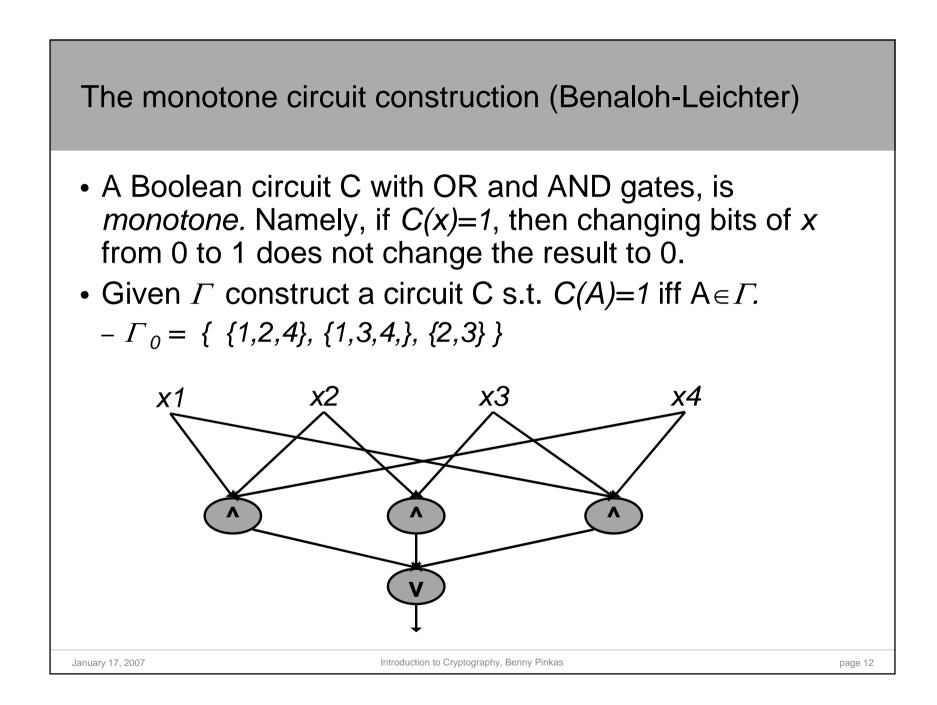
Additional properties of Shamir's secret sharing

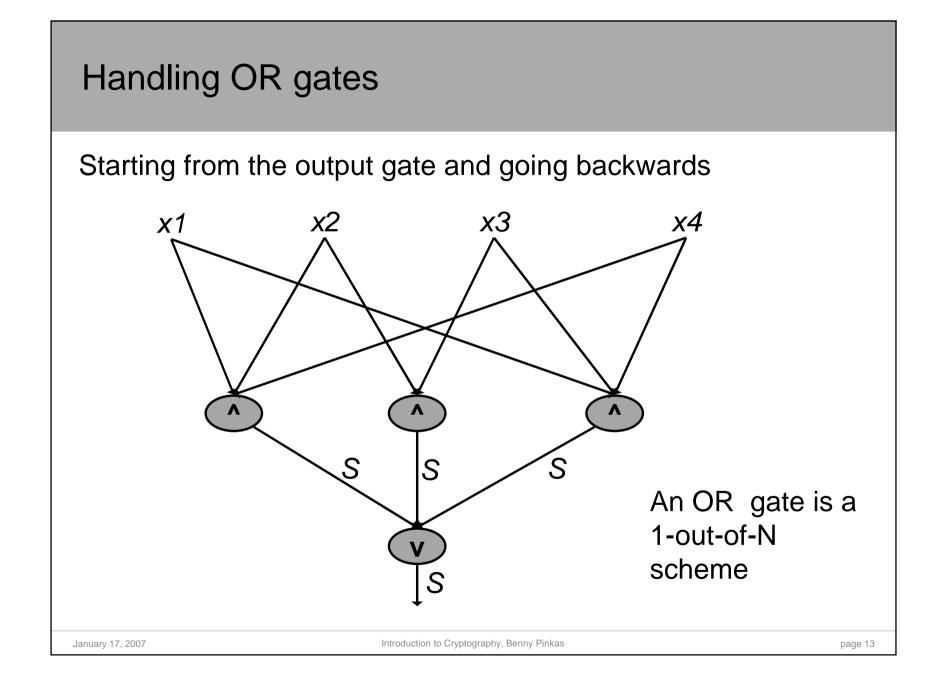
- Ideal size: Each share is the same size as the secret.
- Extendable: Additional shares can be easily added.
- Flexible: different weights can be given to different parties by giving them more shares.
- Homomorphic property: Suppose P(1),...,P(n) are shares of S, and P'(1),...,P'(n) are shares of S', then P(1)+P'(1),...,P(n)+P'(n) are shares for S+S'.

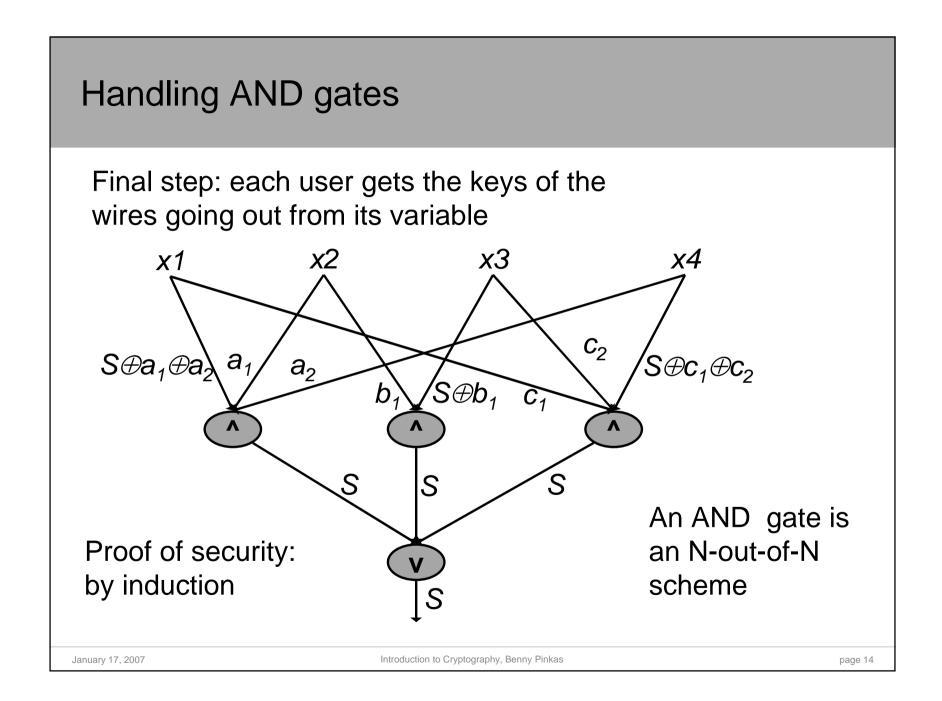


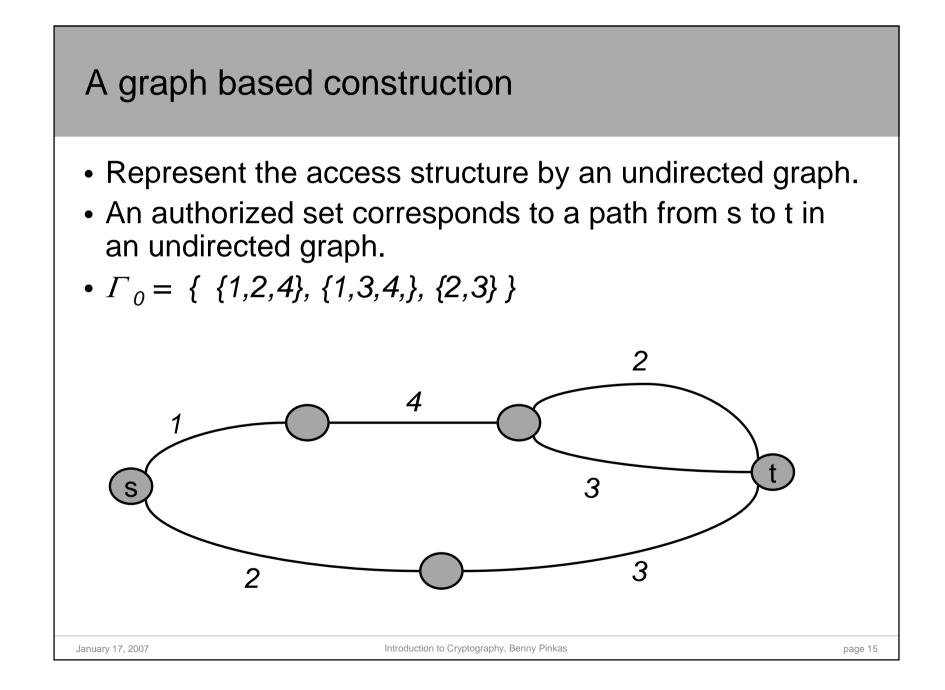
Why should we examine general access structures?

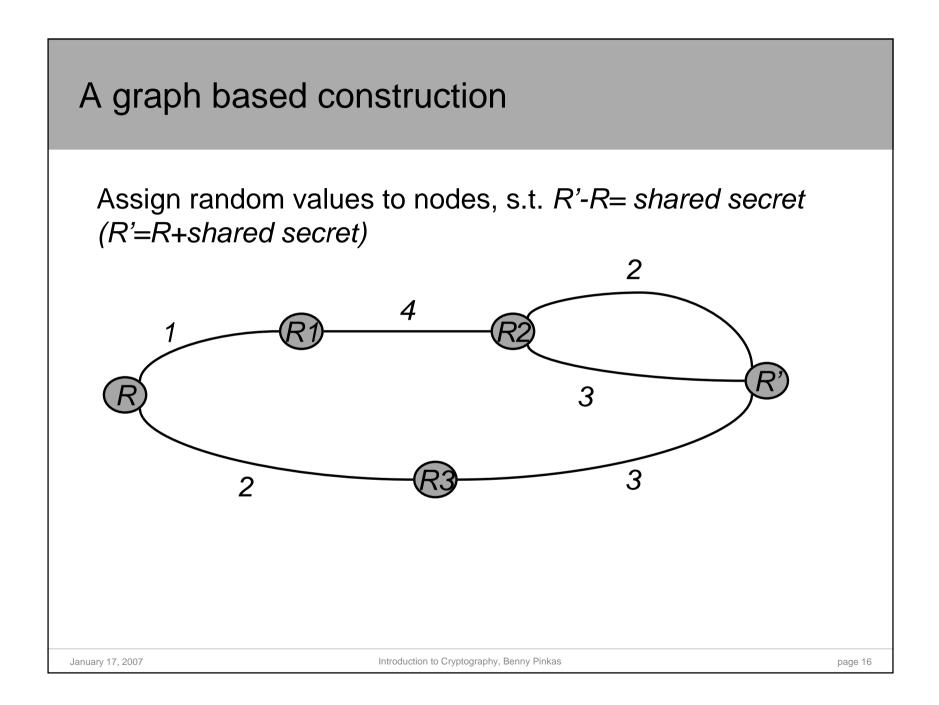
- Not all access structures can be represented by threshold access structures
- For example, consider the access structure
 Γ={{1,2},{3,4}}
 - Any threshold based secret sharing scheme with threshold t gives weights to parties, such that $w_1+w_2 \ge t$, and $w_3+w_4 \ge t$.
 - Therefore either $w_1 \ge t/2$, or $w_2 \ge t/2$. Suppose that this is w_1 .
 - Similarly either $w_3 \ge t/2$, or $w_4 \ge t/2$. Suppose that this is w_3 .
 - In this case parties 1 and 3 can reveal the secret, since $w_1 + w_3 \ge t$.
 - Therefore, this access structure cannot be realized by a threshold scheme.

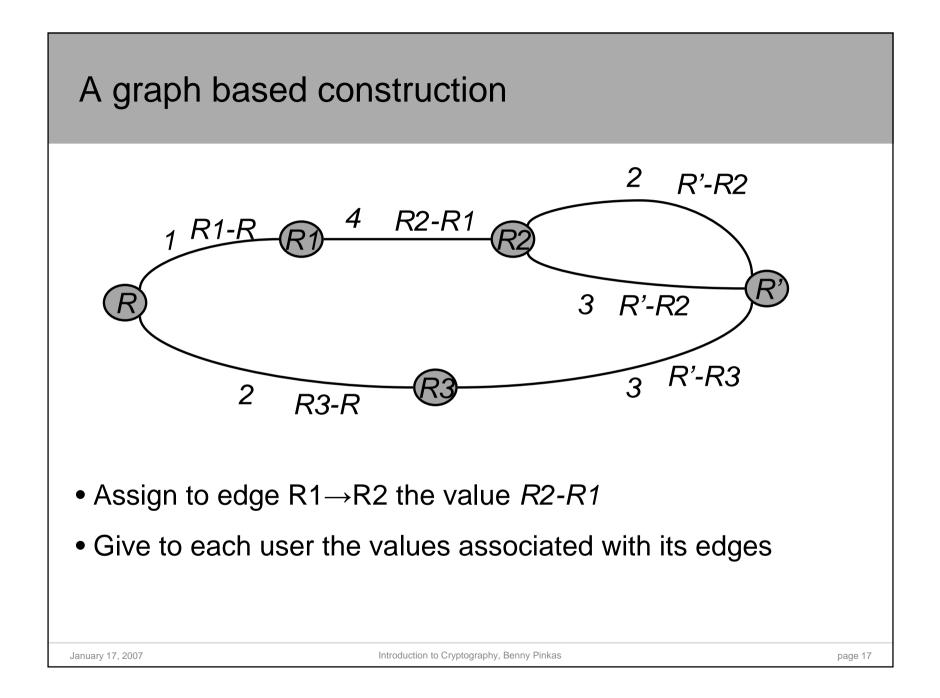


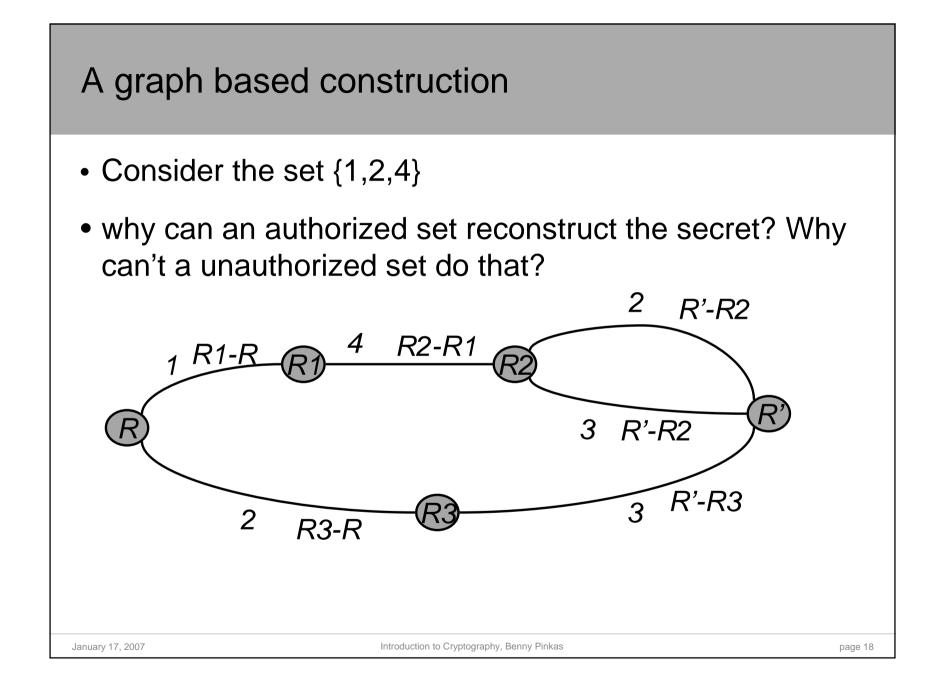


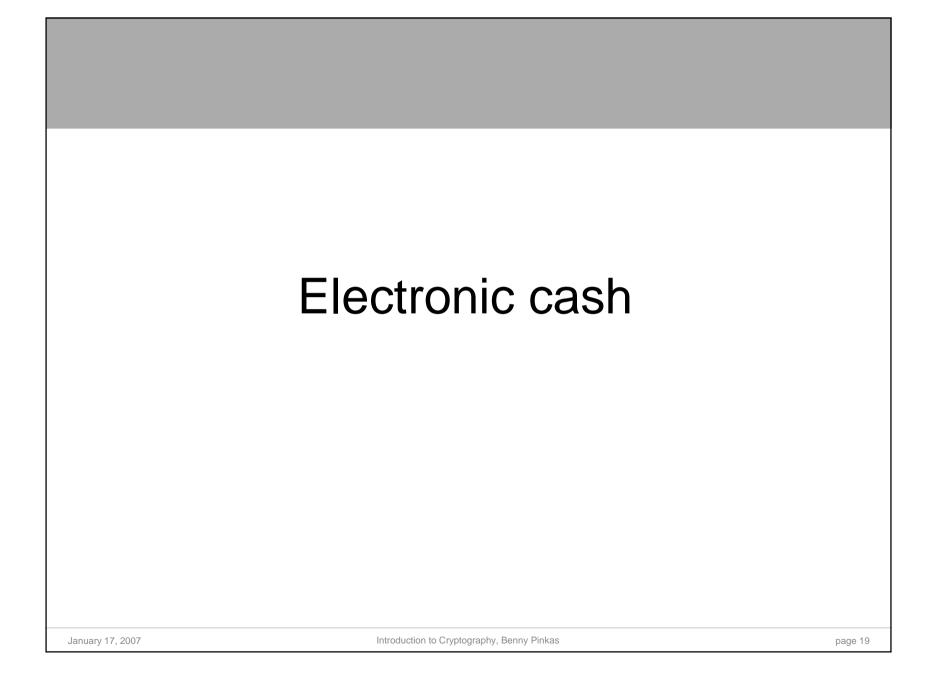










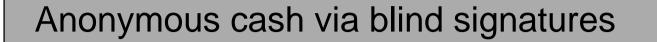


Simple electronic checks

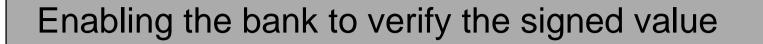
- A payment protocol:
 - Sign a document transferring money from your account to another account
 - This document goes to your bank
 - The bank verifies that this is not a copy of a previous check
 - The bank checks your balance
 - The bank transfers the sum
- Problems:
 - Requires online access to the bank (to prevent reusage)
 - Expensive.
 - The transaction is traceable (namely, the bank knows about the transaction between you and Alice).

First try at a payment protocol

- Withdrawal
 - User gets bank signature on {I am a \$100 bill, #1234}
 - Bank deducts \$100 from user's account
- Payment
 - User gives the signature to a merchant
 - Merchant verifies the signature, and checks online with the bank to verify that this is the first time that it is used.
- Problems:
 - As before, online access to the bank, and lack of anonymity.
- Advantage:
 - The bank doesn't have to check online whether there is money in the user's account.
 - In fact, there is no real need for the signature, since the bank checks its own signature.



- In order to preserve payer's anonymity the bank signs the bill without seeing it
 - (e.g. like signing on a carbon paper)
- RSA Blind signatures (Chaum)
- RSA signature: $(H(m))^{1/e} \mod n$
- Blind RSA signature:
 - Alice sends Bob $(r e H(m)) \mod n$, where r is a random value.
 - Bob computes $(r \in H(m))^{1/e} = r H(m)^{1/e} \mod n$, and sends to Alice.
 - Alice divides by r and computes $H(m)^{1/e} \mod n$
- Problem: Alice can get Bob to sign anything, Bob does not know what he is signing.

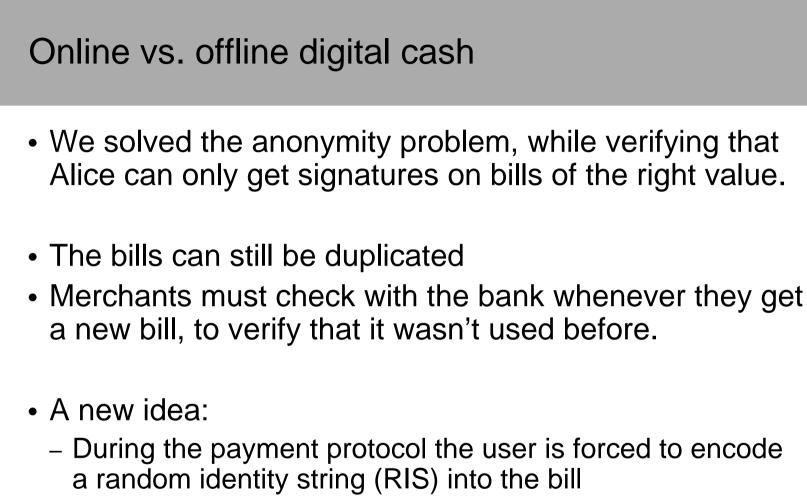


- "cut and choose" protocol
- Suppose Alice wants to sign a \$20 bill.
 - A \$20 bill is defined as *H*(*random index*,\$20).
 - Alice sends to bank 100 different \$20 bills for blind signature.
 - The bank chooses 99 of these and asks Alice to unblind them (divide by the corresponding *r* values). It verifies that they are all \$20 bills.
 - The bank blindly signs the remaining bill and gives it to Alice.
 - Alice can use the bill without being identified by the bank.
- If Alice tries to cheat she is caught with probability 99/100.
- 100 can be replaced by any parameter *m*.
- But we would like to have an exponentially small cheating probability.

Exponentially small cheating probability

- Define that a \$20 bill is valid if it is the eth root of the multiplication of 50 values of the form H(x), (where x="random index,\$20"), and the owner of the bill can present all 50 x values.
- The withdrawal protocol:
 - Alice sends to the Bank $z_1, z_2, ..., z_{100}$ (where $z_i = r_i^e \cdot H(x_i)$).
 - The Bank asks Alice to reveal $\frac{1}{2}$ of the values $z_i = r_i^{e} \cdot H(x_i)$.
 - The Bank verifies them and extracts the eth root of the multiplication of all the other 50 values.
- Payment: Alice sends the signed bill and reveals the 50 preimage values. The merchant sends them to the bank which verifies that they haven't been used before.
- Alice can only cheat if she guesses the 50 locations in which she will be asked to unblind the z_i s, which happens with probability ~2⁻¹⁰⁰.

January 17, 2007



 If the bill is used twice, the RIS reveals the user's identity and she loses her anonymity.

January 17, 2007

Offline digital cash

Withdrawal protocol:

- Alice prepares 100 bills of the form
 - {I am a \$20 bill, #1234, $y_1, y'_1, y_2, y'_2, \dots, y_m, y'_m$ }
 - S.t. $\forall i y_i = H(x_i)$, $y'_i = H(x'_i)$, and it holds that $x_i \oplus x'_i = Alice's$ id, where H(i) is a collision resistant function.
- Alice blinds these bills and sends to the bank.
- The bank asks her to unblind 99 bills and show their x_i, x'_i values, and checks their validity. (Alternatively, as in the previous example, Alice can do a check with fails with only an exponential probability.)
- The bank signs the remaining blinded bill.

Offline digital cash

Payment protocol:

- Alice gives a signed bill to the vendor
 - {I am a \$20 bill, #1234, $y_1, y'_1, y_2, y'_2, \dots, y_m, y'_m$ }
- The vendor verifies the signature, and if it is valid sends to Alice a random bit string $b=b_1b_2...b_m$ of length *m*.
- $\forall i \text{ if } b_i = 0 \text{ Alice returns } x_i, \text{ otherwise } (b_i = 1) \text{ she returns } x'_i$
- The vendor checks that y_i=H(x_i) or y'_i=H(x'_i) (depending on b_i). If this check is successful it accepts the bill. (Note that Alice's identity is kept secret.)
- Note that the merchant does not need to contact the bank during the payment protocol.

January 17, 2007

Introduction to Cryptography, Benny Pinkas

page 27

