Introduction to Cryptography Lecture 10

Public Key Infrastructure (PKI), hash chains, hash trees. SSL.

Benny Pinkas

January 3, 2007

Introduction to Cryptography, Benny Pinkas

nane 1

Certification Authorities (CA)

- The Certificate Authority (CA) is trusted party.
- All users have a copy of the public key of the CA
- The CA signs Alice's digital certificate. A simplified certificate is of the form (Alice, Alice's public key).
- · When we get Alice's certificate, we
- Examine the identity in the certificate
- Verify the signature
- Use the public key given in the certificate to
- Encrypt messages to Alice
- Or, verify signatures of Alice
- The certificate can be sent by Alice without any interaction with the CA.

January 3, 200

Introduction to Cryptography, Benny Pinkas

page 3

Certification Authorities (CA)

- Public key technology requires every user to remember its private key, and to have access to other users' public keys
- How can the user verify that a public key PK_v corresponds to user v?
- What can go wrong otherwise?
- A simple solution:
- A trusted public repository of public keys and corresponding identities
 - · Doesn't scale up
 - Requires online access per usage of a new public key

January 3, 2007

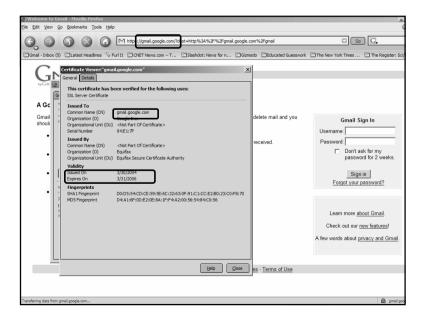
Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

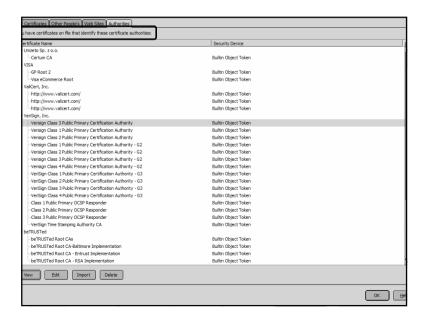
- Unlike KDCs, the CA does not have to be online to provide keys to users
- It can therefore be better secured than a KDC
- The CA does not have to be available all the time
- Users only keep a single public key of the CA
- The certificates are not secret. They can be stored in a public place.
- When a user wants to communicate with Alice, it can get her certificate from either her, the CA, or a public repository.
- · A compromised CA
- can mount active attacks (certifying keys as being Alice's)
- but it cannot decrypt conversations.

January 3, 200

Introduction to Cryptography, Benny Pinkas


page 4

Certification Authorities (CA)

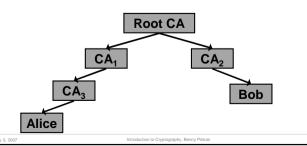

- · For example.
- To connect to a secure web site using SSL or TLS, we send an https:// command
- The web site sends back a public key⁽¹⁾, and a certificate.
- Our browser
- Checks that the certificate belongs to the url we're visiting
- Checks the expiration date
- Checks that the certificate is signed by a CA whose public key is known to the browser
- Checks the signature
- If everything is fine, it chooses a session key and sends it to the server encrypted with RSA using the server's public key

(1) This is a very simplified version of the actual protocol.

January 3, 2007 Introduction to Cryptography, Benny Pinkas ps

Certificates

- A certificate usually contains the following information
- Owner's name
- Owner's public key
- Encryption/signature algorithm
- Name of the CA
- Serial number of the certificate
- Expiry date of the certificate
- ...
- Your web browser contains the public keys of some CAs
- A web site identifies itself by presenting a certificate which is signed by a chain starting at one of these CAs


January 3, 200

Introduction to Cryptography, Benny Pinkas

nane 9

Public Key Infrastructure (PKI)

- Monopoly: a single CA vouches for all public keys
- Monopoly + delegated CAs:
- top level CA can issue certificates for other CAs
- Certificates of the form
- [(Alice, PK_A)_{CA3}, (CA3, PK_{CA3})_{CA1}, (CA1, PK_{CA1})_{TOP-CA}]

Public Key Infrastructure (PKI)

- The goal: build trust on a global level
- Running a CA:
- If people trust you to vouch for other parties, everyone needs you.
- A license to print money
- But,
- The CA should limit its responsibilities, buy insurance...
- It should maintain a high level of security
- Bootstrapping: how would everyone get the CA's public key?

2007 Introduction to Cryptography, Benny Pinkas

Certificate chain

| Comparison Continue Comparison Com

Public Key Infrastructure

- Oligarchy
- Multiple trust anchors (top level CAs)
- · Pre-configured in software
- User can add/remove CAs
- Top-down with name constraints
- Like monopoly + delegated CAs
- But every delegated CA has a predefined portion of the name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)
- More trustworthy

January 3, 2007

Introduction to Cryptography, Benny Pinkas

---- 40

Certificate Revocation Lists (CRLs)

- A revocation agency (RA) issues a list of revoked certificates (i.e., "bad" certificates)
- The list is updated and published regularly (e.g. daily)
- Before trusting a certificate, users must consult the most recent CRL in addition to checking the expiry date.
- Advantages: simple.
- · Drawbacks:
- Scalability. CRLs can be huge. There is no short proof that a certificate is valid.
- There is a vulnerability windows between a compromise of certificate and the next publication of a CRL.
- Need a reliable way of distributing CRLs.
- Improving scalability using "delta CRLs": a CRL that only lists certificates which were revoked since the issuance of a specific, previously issued CRL.

January 3, 2007

Introduction to Cryptography, Benny Pinkas

page 15

Revocation

- · Revocation is a key component of PKI
- Each certificate has an expiry date
- But certificates might get stolen, employees might leave companies, etc.
- Certificates might therefore need to be revoked before their expiry date
- New problem: before using a certificate we must verify that it has not been revoked
- Often the most costly aspect of running a large scale public key infrastructure (PKI)
- How can this be done efficiently?

January 3, 20

Introduction to Cryptography, Benny Pinkas

Explicit revocation: OCSP

- OCSP (Online Certificate Status Protocol)
- RFC 2560, June 1999.
- · OCSP can be used in place, or in addition, to CRLs
- Clients send a request for certificate status information.
- An OCSP server sends back a response of "current", "expired," or "unknown".
- The response is signed (by the CA, or a Trusted Responder, or an Authorized Responder certified by the CA).
- · Provides instantaneous status of certificates
- Overcomes the chief limitation of CRL: the fact that updates must be frequently downloaded and parsed by clients to keep the list current

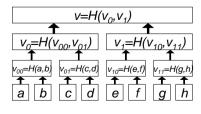
January 3, 200

Introduction to Cryptography, Benny Pinkas

page 16

Certificate Revocation System (CRS)

- Certificate Revocation System (Micali'96)
- Puts the burden of proof on the certificate holder
- · Uses a hash chain
- The certificate includes $Y_{365} = f^{365}(Y_0)$. This value is part of the information signed by the CA. f is one-way.
- On day d,
- If the certificate is valid, then $Y_{365-d} = f^{365-d}(Y_0)$ is sent by the CA to the certificate holder or to a directory.
- The certificate receiver uses the daily value (f^{365-d}(Y₀)) to verify that the certificate is still valid. (how?)
- Advantage: A short, individual, proof per certificate.
- Disadvantage: Daily overhead, even when a cert is valid.

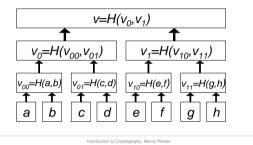

January 3, 2007

Introduction to Cryptography, Benny Pinkas

---- 47

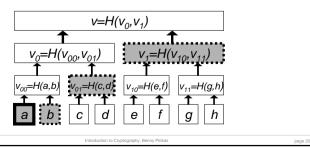
Merkle Hash Tree

- · H is a collision intractable hash function
- Any change to a leaf results in a change to the root
- To sign the set of values it is sufficient to sign the root (a single signature instead of *n*).
- How do we verify that an element appeared in the signed set?



January 3, 20

introduction to Cryptography, Benny Pinkas


Merkle Hash Tree

- A method of committing to (by hashing together) n values, $x_1,...,x_n$, such that
- The result is a single hash value
- For any x_i, it is possible to prove that it appeared in the original list, using a proof of length O(log n).

Verifying that a appears in the signed set

- Provide a's leaf, and the siblings of the nodes in the path from a to the root. (O(log n) values)
- The verifier can use *H* to compute the values of the nodes in the path from the leaf to the root.
- It then compares the computed root to the signed value.

Using hash trees to improve the overhead of CRS

- Originally (for a year long certificate)
- the certificate includes $f^{365}(Y_0)$
- On day d, certificate holder obtains $f^{365-d}(Y_0)$
- The certificate receiver computes $f^{365}(Y_0)$ from $f^{365-d}(Y_0)$ by invoking f() d times.
- Slight improvement:
- The CA assigns a different leaf for every day, constructs a hash tree, and signs the root.
- On day d, it releases node d and the siblings of the path from it to the root.
- This is the proof that the certificate is valid on day d
- The overhead of verification is O(log 365).

January 3, 2007

Introduction to Cryptography, Benny Pinkas

nage 21

Certificate Revocation Tree (CRT)

- Preferred operation mode:
- Every day the CA constructs an updated tree.
- The CA signs a statement including the root of the tree and the date.
- It is Alice's responsibility to retrieve the leaf which shows that her certificate is valid, the route from this leaf to the root, and the CA's signature of the root.
- To prove the validity of her cert, Alice sends this information.
- The receiver verifies the value in the leaf, the route to the tree, and the signature.
- Advantage:
- a short proof for the status of a certificate.
- The CA does not have to handle individual requests.
- Drawback: the entire hash tree must be updated daily.

January 3, 20

Introduction to Cryptography, Benny Pinkas

age 23

Certificate Revocation Tree (CRT) [Kocher]

- A CRT is a hash tree with leaves corresponding to statements about ranges of certificates
- Statements describe regions of certificate ids, in which only the smallest id is revoked.
 - For example, a leaf might read: "if 100 ≤ id <234, then cert is revoked iff id=100".
- Each certificate matches exactly one statement.
- The statements are the leaves of a signed hash tree, ordered according to the ranges of certificate values.
- To examine the state of a certificate we retrieve the statement for the corresponding region.
- A single hash tree is used for all certs.

January 3, 2007

Introduction to Cryptography, Benny Pinkas

---- 00

SSL/TLS

January 3, 200

ntroduction to Cryptography, Benny Pinkas

SSL/TLS

- General structure of secure HTTP connections
- To connect to a secure web site using SSL or TLS, we send an https://command
- The web site sends back a public key⁽¹⁾, and a certificate.
- Our browser
- Checks that the certificate belongs to the url we're visiting
- · Checks the expiration date
- Checks that the certificate is signed by a CA whose public key is known to the browser
- Checks the signature
- If everything is fine, it chooses a session key and sends it to the server encrypted with RSA using the server's public key

(1) This is a very simplified version of the actual protocol.

January 3, 2007

Introduction to Cryptography, Benny Pinkas

---- 05

SSL Protocol Stack

- SSL/TLS operates over TCP, which ensures reliable transport.
- Supports any application protocol (usually used with http).

SSL Handshake Protocol	SSL Change Cipher Spec	SSL Alert Protocol	НТТР	Telnet	•••
SSL Record Protocol					
TCP					
IP					

Introduction to Chyptography, Banny Pinkas

SSL/TLS

- SSL (Secure Sockets Layer)
- SSL v2
 - Released in 1995 with Netscape 1.1
 - A flaw found in the key generation algorithm
- SSL v3
 - Improved, released in 1996
 - Public design process
- TLS (Transport Layer Security)
- IETF standard, RFC 2246
- Common browsers support all these protocols

January 3, 2007

Introduction to Cryptography, Benny Pinkas

---- 00

SSL/TLS Overview

- Handshake Protocol establishes a session
- Agreement on algorithms and security parameters
- Identity authentication
- Agreement on a key
- Report error conditions to each other
- Record Protocol Secures the transferred data
- Message encryption and authentication
- Alert Protocol Error notification (including "fatal" errors).
- Change Cipher Protocol Activates the pending crypto suite

January 3, 2007

Introduction to Cryptography, Benny Pinkas

Client Server I want to talk, ciphers I support, R_C Certificate (PK_{Server}) , cipher I choose, R_S compute $K = f(S, R_C, R_S)$ [S] PKSERVER, {keyed hash of handshake message} compute $K = f(S, R_C, R_S)$ Data protected by keys derived from KData protected by keys derived from K

Some additional issues

- More on S ⇒ C
- The ServerHello message can also contain Certificate Request Message
- I.e., server may request client to send its certificate
- Two fields: certificate type and acceptable CAs
- Negotiating crypto suites
- The crypto suite defines the encryption and authentication algorithms and the key lengths to be used.
- ~30 predefined standard crypto suites
- Selection (SSL v3): Client proposes a set of suites. Server selects one.

January 3, 20

Introduction to Cryptography, Benny Pinkas

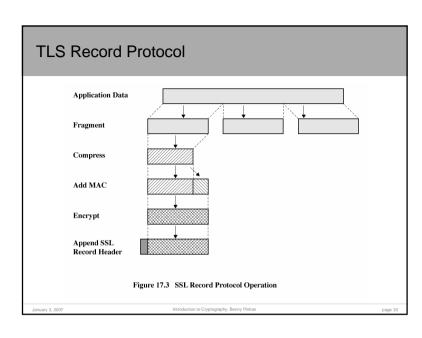
page 31

A typical run of a TLS protocol

- C ⇒ S
- ClientHello.protocol.version = "TLS version 1.0"
- ClientHello.random = T_C, N_C
- ClientHello.session id = "NULL"
- ClientHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
- ClientHello.compression_method = "NULL"
- $S \Rightarrow C$
- ServerHello.protocol.version = "TLS version 1.0"
- ServerHello.random = T_s, N_s
- ServerHello.session id = "1234"
- ServerHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
- ServerHello.compression method = "NULL"
- ServerCertificate = pointer to server's certificate
- ServerHelloDone

January 3, 2007

Introduction to Cryptography, Benny Pinkas


Key generation

- Key computation:
- The key is generated in two steps:
- pre-master secret S is exchanged during handshake
- master secret K is a 48 byte value calculated using pre-master secret and the random nonces
- Session vs. Connection: a session is relatively long lived. Multiple TCP connections can be supported under the same SSL/TSL connection.
- For each connection: 6 keys are generated from the master secret K and from the nonces. (For each direction: encryption key, authentication key, IV.)

January 3, 200

Introduction to Cryptography, Benny Pinkas

age 32

