Introduction to Cryptography
Lecture 10

Public Key Infrastructure (PKI), hash
chains, hash trees. SSL.

Benny Pinkas

Certification Authorities (CA)

- Public key technology requires every user to remember
its private key, and to have access to other users’
public keys

How can the user verify that a public key PK,
corresponds to user v?

- What can go wrong otherwise?

A simple solution:

- A trusted public repository of public keys and
corresponding identities

» Doesn't scale up
» Requires online access per usage of a new public key

Certification Authorities (CA)

- The Certificate Authority (CA) is trusted party.
« All users have a copy of the public key of the CA

» The CA signs Alice’s digital certificate. A simplified
certificate is of the form (Alice, Alice’s public key).

« When we get Alice’s certificate, we
— Examine the identity in the certificate
- Verify the signature
- Use the public key given in the certificate to
« Encrypt messages to Alice
« Or, verify signatures of Alice

- The certificate can be sent by Alice without any
interaction with the CA.

Certification Authorities (CA)

« Unlike KDCs, the CA does not have to be online to
provide keys to users
— It can therefore be better secured than a KDC
- The CA does not have to be available all the time

« Users only keep a single public key — of the CA

- The certificates are not secret. They can be stored in a
public place.

+ When a user wants to communicate with Alice, it can
get her certificate from either her, the CA, or a public
repository.

« A compromised CA
- can mount active attacks (certifying keys as being Alice’s)
— but it cannot decrypt conversations.

Certification Authorities (CA)

» For example.

— To connect to a secure web site using SSL or TLS, we
send an https:// command

- The web site sends back a public key®, and a certificate.
— Our browser
» Checks that the certificate belongs to the url we're visiting

« Checks the expiration date

« Checks that the certificate is signed by a CA whose public key
is known to the browser

« Checks the signature

- If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

O Thisis a very simplified version of the actual protocol.

) Welcome to Gmail - Mozilla Firefox - =

Fle Edt Vew Go Eookmarks Tools Help

QO O O Q [Mrcdiomiomcondsmirirgui ez [=

E56mail - Inbox (5) LatestHeadlines S FurlIt 3 CNET News.com —T... 3Slashdot: News forn... E3Gizmodo EIEducated Guesswork 3 The New York Times 5 The Register: 5d

(; Certificate Viewer-"gmailgoogle.com" i x|

General | Detals.

This certificate has been verified for the following uses:

G| ssLserver Certificate
|

AGe Tssued To.

Common Name (C1)
Grmail | | organzaten (o) - delete mail and you Gmail Sign In
shoulc Organizational Unit (OU) <Not Part Of Certificate >

Serial Number 0%ELTF Usemams|
B
Issued By 3 N
assword|
Common Name (CN) <NotPart Of Certificate>> received.

. Organization (O} Equifax [~ Den't ask for my
Organizational nit {OU) Equifax Secure Cartificate Authority passward for 2 weeks
Validity

Signin

Forgot your password?

ngerprints
o SHA1 Fingerprint DO:DS: 54:CD:CE: 59:5E:6C: OF:91:C1:CC:E2:60: 23:C0:F8: 70
MDS Fingerprint D4:A Li6F:0DIE2I0E BA: LFIF4:A2100: 56:5484C0:56

Leam more about Gmail
Check out our new features!

A few words about privacy and Gmail

s - Terms of Use

Transfering data from gmail.google.com... B gmeils

General | Detals

(gonsdt=924anis=HE

[=x] (=8

This certificate has been verified for the following uses:
SSL Server Certificate

n... E3Gimodo FJEducated Guesswork £ The New York Times ... £3The Register: S

Issued To

Common Name (CN) ~ www.bankpoalim.co.i

Organization (0) Bank Hapoalim Ltd

Organizational Linit (OU) Internet departement

Serial Number 6C:F8:30:09:89:46:C5:FA: 11:8A:40:CD: 14:6A:E5: A3
Issued By

Common Name (CH) <Nt Part Of Certificate >

Organization (0) Verisign Trust Network

Organizational Linit (OU) VeriSign, Inc

Validity

Issued On 7/12/2004

Expires On 7/13/2005

Fingerprints

SHA1 Fingerprint LEEZFE: AE 3057 36:TFE6:09:40: 17:47:A9:20: 1F C8:96:9F
MDS Fingerprint 6CIESICCD:40:E 1:28:3A19F140: 5D:DB: SAIF 4:94:EB

o*ywi9n p124p

binY w mrwh aen Ty
arawn’ nony”

1 WRNYR P @

:an @
:RRDD @

muwa nuake At

137 mme mna Y2 #

J 0'Nan 01N

TNYN PIYnn DN

AT WY YTpan
VLRI DY TIT

911 1T AN NTM

"pY DrTpan

0.25% 5 Mywa

1TPann D12OH

Jteib B ealor)

v barkhaposiim. co.il

B wnw.benkpo)

i have certificates on file thatidentify these certificate authorities: I

ertificate Name

| security Device

Unizeto Sp. z 0.0.

Certum CA
VISA

GPRoot 2

Visa eCommerce Root
ValiCert, Inc.

https/fw. vaiicert.com/

https/ . vaiicert.com/

hittp: /[, valicert.com/
VeriSign, Inc.
Verisign Class 3 Public Primary Certification Authority
Verisign Class 1 Public Primary Certfication Authority
Verisign Class 2 Public Primary Certification Authority
Verisign Class 1Public Primary Certification Autherity - 62
Nerisign Class 2 Public Primary Certification Authority - G2
Verisign Class 3 Public Primary Certification Authority - G2
Verisign Class 4 Public Primary Certification Autherity - G2
VeriSign Class 1Public Primary Certification Authority - G3
Verisign Class 2 Public Primary Certification Autharity - G3
NeriSign Class 3 Public Primary Certification Authority - G3
VeriSign Class 4Public Primary Certification Authority - G3
Class 1Public Primary OCSP Responder
Class 2 Public Primary OCSP Responder
‘Class 3 Public Primary OCSP Responder
NeriSign Time Stamping Authority CA
beTRUSTed
beTRUSTed Root CAs
beTRUSTed Root CA-Baltimore Implementation
beTRUSTed Root CA - Entrust Implementation
beTRUSTed Root CA -RSA

Builtin Object Token

Bultin Object Token
Builtin Object Token

Builtin Object Token
Builtin Object Token
Bultin Object Token

Builtn Object Token
Builtin Object Token
Builtin Object Token
Bultin Object Token
Builtin Object Token
Buitin Object Token
Bultin Object Token
Builtin Object Token
Builtn Object Token
Builtin Object Token
Builtin Object Token
Bultin Object Token
Builtin Object Token
Builtn Object Token
Builtin Object Token

Bultin Object Token
Builtin Object Token
Builtn Object Token
Bultin Object Token

« A certificate usually contains the following information
- Owner’s name
— Owner’s public key
- Encryption/signature algorithm
- Name of the CA
- Serial number of the certificate
- Expiry date of the certificate

«» Your web browser contains the public keys of some
CAs

+ A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 9

« The goal: build trust on a global level

« Running a CA:

- If people trust you to vouch for other parties, everyone
needs you.

- Alicense to print money
- But,
« The CA should limit its responsibilities, buy insurance...

- It should maintain a high level of security
« Bootstrapping: how would everyone get the CA’s public key?

January 3, 2007 Introduction to Cryptography, Benny Pinkas

page 10

« Monopoly: a single CA vouches for all public keys
« Monopoly + delegated CAs:
- top level CA can issue certificates for other CAs
- Certificates of the form
* [(Alice, PKp)caz: (CA3, PKcpg)oars (CAL, PKear)top.cal

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 11

B opseacn - A P16
a View Certificate 2=
General | petails
o | l General | Detais Certfication Path | Trust |
s
5 =t Signature Information Equifax Secure Certficate Authorty
= geformats | S/MIME . E Canification Authority
Signed by: TR 2. iom.com
Signature status: VWarning: There were problems validating ==
Signing time: 9:20:07 AM 12/24/2004 |
Digest algorithm: SHA1
‘Signature algorithm: RSA {1024-bits)
5| .
Certificate Information b
)
E Issued by: 18M Certification Autharity i Lot F
c Certificate status: \Warning: The Certificate Revocation List == ey
g B
[This cenficate s OK.
N \View Certificate...
r —I
[e=] :
(I
: ; i S [o< 1f,
1 & A StaticPersol| [——————————————— N
January 3, 2007 Itroduction to Cryptography, Benny Pinkas page 12

Public Key Infrastructure

« Oligarchy
— Multiple trust anchors (top level CAs)
« Pre-configured in software

« User can add/remove CAs

» Top-down with name constraints
- Like monopoly + delegated CAs

- But every delegated CA has a predefined portion of the
name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)

— More trustworthy

Revocation

« Revocation is a key component of PKI

- Each certificate has an expiry date

— But certificates might get stolen, employees might leave
companies, etc.

— Certificates might therefore need to be revoked before
their expiry date

- New problem: before using a certificate we must verify that
it has not been revoked
« Often the most costly aspect of running a large scale public

key infrastructure (PKI)

» How can this be done efficiently?

Certificate Revocation Lists (CRLS)

- A revocation agency (RA) issues a list of revoked

certificates (i.e., “bad” certificates)

— The list is updated and published regularly (e.g. daily)

- Before trusting a certificate, users must consult the most
recent CRL in addition to checking the expiry date.

Advantages: simple.

Drawbacks:

— Scalability. CRLs can be huge. There is no short proof that
a certificate is valid.

— There is a vulnerability windows between a compromise of
certificate and the next publication of a CRL.

- Need a reliable way of distributing CRLs.

Improving scalability using “delta CRLs": a CRL that only

lists certificates which were revoked since the issuance of a
specific, previously issued CRL.

Explicit revocation: OCSP

+ OCSP (Online Certificate Status Protocol)
- RFC 2560, June 1999.
« OCSP can be used in place, or in addition, to CRLs
« Clients send a request for certificate status information.

— An OCSP server sends back a response of "current",
"expired," or "unknown".

- The response is signed (by the CA, or a Trusted
Responder, or an Authorized Responder certified by the
CA).

- Provides instantaneous status of certificates

- Overcomes the chief limitation of CRL: the fact that
updates must be frequently downloaded and parsed by
clients to keep the list current

Certificate Revocation System (CRS)

- Certificate Revocation System (Micali’96)
- Puts the burden of proof on the certificate holder

- Uses a hash chain

- The certificate includes Y445 = f 365(Y,). This value is part
of the information signed by the CA. f is one-way.

- Ondayd,
« If the certificate is valid, then Y45 4 = £3559(Y,) is sent by the
CA to the certificate holder or to a directory.

« The certificate receiver uses the daily value (f3659(Y,)) to
verify that the certificate is still valid. (how?)

« Advantage: A short, individual, proof per certificate.
- Disadvantage: Daily overhead, even when a cert is valid.

Merkle Hash Tree

- A method of committing to (by hashing together) n
values, X,...,X,, such that
- The result is a single hash value

- For any x;, it is possible to prove that it appeared in the
original list, using a proof of length O(log n).

v=H(vo.vy)

T

‘ Vo H(V001V01) H V1 H(V101V11) ‘

‘VUU H(ab)‘ ‘vm—H(c d)‘ vm-H(ef)‘ }VM—H(g h)‘

@@@@i@

Merkle Hash Tree

- H is a collision intractable hash function

- Any change to a leaf results in a change to the root

- To sign the set of values it is sufficient to sign the root
(a single signature instead of n).

- How do we verify that an element appeared in the
signed set?

00=H(avbi 01=H(Cvdi ‘Vlo:H(evf)‘ pn—H(g hi

(allb] [c][d] [e] 1] [g][n]

Verifying that a appears in the signed set

- Provide a’s leaf, and the siblings of the nodes in the path
from a to the root. (O(log n) values)

- The verifier can use H to compute the values of the
nodes in the path from the leaf to the root.

« It then compares the computed root to the signed value.

- Originally (for a year long certificate)
- the certificate includes f 365(Y)
- On day d, certificate holder obtains f365-d(Y,)
- The certificate receiver computes f 35(Y) from f365-d(Y)
by invoking f() d times.
« Slight improvement:

- The CA assigns a different leaf for every day, constructs a
hash tree, and signs the root.

- On day d, it releases node d and the siblings of the path
from it to the root.

- This is the proof that the certificate is valid on day d
- The overhead of verification is O(log 365).

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 21

- Preferred operation mode:
« Every day the CA constructs an updated tree.

« The CA signs a statement including the root of the tree and
the date.

« Itis Alice’s responsibility to retrieve the leaf which shows that
her certificate is valid, the route from this leaf to the root, and
the CA’s signature of the root.

« To prove the validity of her cert, Alice sends this information.

- The receiver verifies the value in the leaf, the route to the
tree, and the signature.

- Advantage:
« a short proof for the status of a certificate.

« The CA does not have to handle individual requests.
- Drawback: the entire hash tree must be updated daily.

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 23

« A CRT is a hash tree with leaves corresponding to

statements about ranges of certificates

- Statements describe regions of certificate ids, in which
only the smallest id is revoked.
- For example, a leaf might read: “if 100 < id <234, then cert is

revoked iff id=100".

- Each certificate matches exactly one statement.

- The statements are the leaves of a signed hash tree,
ordered according to the ranges of certificate values.

- To examine the state of a certificate we retrieve the
statement for the corresponding region.

— A single hash tree is used for all certs.

January 3, 2007 Introduction to Cryptography, Benny Pinkas

page 22

SSL/TLS

January 3, 2007 Introduction to Cryptography, Benny Pinkas

page 24

- General structure of secure HTTP connections

- To connect to a secure web site using SSL or TLS, we
send an https:// command

- The web site sends back a public key®, and a certificate.
— Our browser
» Checks that the certificate belongs to the url we're visiting

« Checks the expiration date

« Checks that the certificate is signed by a CA whose public key
is known to the browser

» Checks the signature

« If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

(O This is a very simplified version of the actual protocol.

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 25

« SSL/TLS operates over TCP, which ensures reliable
transport.
. ﬁup)ports any application protocol (usually used with
ttp).

SEL
Hancshake
Protocol

S50 Change | S50 Alert

Cipher Spec | Protocal HTTF Telnet e

S5L Record Protocol

TCP

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 27

« SSL (Secure Sockets Layer)
- SSLv2
» Released in 1995 with Netscape 1.1

« A flaw found in the key generation algorithm

- SSLv3
« Improved, released in 1996

« Public design process

« TLS (Transport Layer Security)
- IETF standard, RFC 2246

« Common browsers support all these protocols

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 26

« Handshake Protocol - establishes a session
- Agreement on algorithms and security parameters
— Identity authentication
- Agreement on a key
- Report error conditions to each other

- Record Protocol - Secures the transferred data
- Message encryption and authentication

« Alert Protocol — Error notification (including “fatal”
errors).

« Change Cipher Protocol — Activates the pending crypto
suite

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 28

Simplified SSL Handshake

Client Server

| want to talk, ciphers| support, R

Certificate (PKgyye), Cipher | choose, Rg

S , 1 keyed hash of handshak
compute {5} e {Key of hendhoke mesgee) compute
K=f(SRcR9 {keyed hash of handshake message} K=f(SR.,Ry)

Data protected by keys derived from K

A typical run of a TLS protocol

+C=>S
— ClientHello.protocol.version = “TLS version 1.0”
- ClientHello.random = T, N¢
— ClientHello.session_id = “NULL”"
— ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
— ClientHello.compression_method = “NULL”"
+S=C
- ServerHello.protocol.version = “TLS version 1.0”
- ServerHello.random = Tg, Ng
- ServerHello.session_id = “1234”
— ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
— ServerHello.compression_method = “NULL”"
- ServerCertificate = pointer to server’s certificate
- ServerHelloDone

Some additional issues

« MoreonS=C

- The ServerHello message can also contain Certificate
Request Message

- L.e., server may request client to send its certificate
- Two fields: certificate type and acceptable CAs

- Negotiating crypto suites

- The crypto suite defines the encryption and authentication
algorithms and the key lengths to be used.

- ~30 predefined standard crypto suites

— Selection (SSL v3): Client proposes a set of suites. Server
selects one.

Key generation

- Key computation:
- The key is generated in two steps:

- pre-master secret S is exchanged during
handshake

- master secret K is a 48 byte value calculated
using pre-master secret and the random nonces

Session vs. Connection: a session is relatively long
lived. Multiple TCP connections can be supported
under the same SSL/TSL connection.

For each connection: 6 keys are generated from the
master secret K and from the nonces. (For each
direction: encryption key, authentication key, 1V.)

Application Data

Fragment

Compress

Add MAC

Encrypt

Append SSL
Record Header

Figure 17.3 SSL Record Protocol Operation

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 33

