Introduction to Cryptography
Lecture 10

Public Key Infrastructure (PKI), hash
chains, hash trees. SSL.

Benny Pinkas

Certification Authorities (CA)

- Public key technology requires every user to remember
its private key, and to have access to other users’
public keys

How can the user verify that a public key PK,
corresponds to user v?

- What can go wrong otherwise?

A simple solution:

- A trusted public repository of public keys and
corresponding identities

» Doesn't scale up
» Requires online access per usage of a new public key

Certification Authorities (CA)

- The Certificate Authority (CA) is trusted party.
« All users have a copy of the public key of the CA

» The CA signs Alice’s digital certificate. A simplified
certificate is of the form (Alice, Alice’s public key).

« When we get Alice’s certificate, we
— Examine the identity in the certificate
- Verify the signature
- Use the public key given in the certificate to
« Encrypt messages to Alice
« Or, verify signatures of Alice

- The certificate can be sent by Alice without any
interaction with the CA.

Certification Authorities (CA)

« Unlike KDCs, the CA does not have to be online to
provide keys to users
— It can therefore be better secured than a KDC
- The CA does not have to be available all the time

« Users only keep a single public key — of the CA

- The certificates are not secret. They can be stored in a
public place.

+ When a user wants to communicate with Alice, it can
get her certificate from either her, the CA, or a public
repository.

« A compromised CA
- can mount active attacks (certifying keys as being Alice’s)
— but it cannot decrypt conversations.




Certification Authorities (CA)

» For example.

— To connect to a secure web site using SSL or TLS, we
send an https:// command

- The web site sends back a public key®, and a certificate.
— Our browser
» Checks that the certificate belongs to the url we're visiting

« Checks the expiration date

« Checks that the certificate is signed by a CA whose public key
is known to the browser

« Checks the signature

- If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

O Thisis a very simplified version of the actual protocol.
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« A certificate usually contains the following information
- Owner’s name
— Owner’s public key
- Encryption/signature algorithm
- Name of the CA
- Serial number of the certificate
- Expiry date of the certificate

«» Your web browser contains the public keys of some
CAs

+ A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs
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« The goal: build trust on a global level

« Running a CA:

- If people trust you to vouch for other parties, everyone
needs you.

- Alicense to print money
- But,
« The CA should limit its responsibilities, buy insurance...

- It should maintain a high level of security
« Bootstrapping: how would everyone get the CA’s public key?
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« Monopoly: a single CA vouches for all public keys
« Monopoly + delegated CAs:
- top level CA can issue certificates for other CAs
- Certificates of the form
* [ (Alice, PKp)caz: (CA3, PKcpg)oars (CAL, PKear)top.cal
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Public Key Infrastructure

« Oligarchy
— Multiple trust anchors (top level CAs)
« Pre-configured in software

« User can add/remove CAs

» Top-down with name constraints
- Like monopoly + delegated CAs

- But every delegated CA has a predefined portion of the
name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)

— More trustworthy

Revocation

« Revocation is a key component of PKI

- Each certificate has an expiry date

— But certificates might get stolen, employees might leave
companies, etc.

— Certificates might therefore need to be revoked before
their expiry date

- New problem: before using a certificate we must verify that
it has not been revoked
« Often the most costly aspect of running a large scale public

key infrastructure (PKI)

» How can this be done efficiently?

Certificate Revocation Lists (CRLS)

- A revocation agency (RA) issues a list of revoked

certificates (i.e., “bad” certificates)

— The list is updated and published regularly (e.g. daily)

- Before trusting a certificate, users must consult the most
recent CRL in addition to checking the expiry date.

Advantages: simple.

Drawbacks:

— Scalability. CRLs can be huge. There is no short proof that
a certificate is valid.

— There is a vulnerability windows between a compromise of
certificate and the next publication of a CRL.

- Need a reliable way of distributing CRLs.

Improving scalability using “delta CRLs": a CRL that only

lists certificates which were revoked since the issuance of a
specific, previously issued CRL.

Explicit revocation: OCSP

+ OCSP (Online Certificate Status Protocol)
- RFC 2560, June 1999.
« OCSP can be used in place, or in addition, to CRLs
« Clients send a request for certificate status information.

— An OCSP server sends back a response of "current",
"expired," or "unknown".

- The response is signed (by the CA, or a Trusted
Responder, or an Authorized Responder certified by the
CA).

- Provides instantaneous status of certificates

- Overcomes the chief limitation of CRL: the fact that
updates must be frequently downloaded and parsed by
clients to keep the list current




Certificate Revocation System (CRS)

- Certificate Revocation System (Micali’96)
- Puts the burden of proof on the certificate holder

- Uses a hash chain

- The certificate includes Y445 = f 365(Y, ). This value is part
of the information signed by the CA. f is one-way.

- Ondayd,
« If the certificate is valid, then Y45 4 = £3559(Y,) is sent by the
CA to the certificate holder or to a directory.

« The certificate receiver uses the daily value (f3659(Y,) ) to
verify that the certificate is still valid. (how?)

« Advantage: A short, individual, proof per certificate.
- Disadvantage: Daily overhead, even when a cert is valid.

Merkle Hash Tree

- A method of committing to (by hashing together) n
values, X,...,X,, such that
- The result is a single hash value

- For any x;, it is possible to prove that it appeared in the
original list, using a proof of length O(log n).
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Merkle Hash Tree

- H is a collision intractable hash function

- Any change to a leaf results in a change to the root

- To sign the set of values it is sufficient to sign the root
(a single signature instead of n).

- How do we verify that an element appeared in the
signed set?
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Verifying that a appears in the signed set

- Provide a’s leaf, and the siblings of the nodes in the path
from a to the root. (O(log n) values)

- The verifier can use H to compute the values of the
nodes in the path from the leaf to the root.

« It then compares the computed root to the signed value.




- Originally (for a year long certificate)
- the certificate includes f 365(Y)
- On day d, certificate holder obtains f365-d(Y,)
- The certificate receiver computes f 35(Y ) from f365-d(Y )
by invoking f() d times.
« Slight improvement:

- The CA assigns a different leaf for every day, constructs a
hash tree, and signs the root.

- On day d, it releases node d and the siblings of the path
from it to the root.

- This is the proof that the certificate is valid on day d
- The overhead of verification is O(log 365).
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- Preferred operation mode:
« Every day the CA constructs an updated tree.

« The CA signs a statement including the root of the tree and
the date.

« Itis Alice’s responsibility to retrieve the leaf which shows that
her certificate is valid, the route from this leaf to the root, and
the CA’s signature of the root.

« To prove the validity of her cert, Alice sends this information.

- The receiver verifies the value in the leaf, the route to the
tree, and the signature.

- Advantage:
« a short proof for the status of a certificate.

« The CA does not have to handle individual requests.
- Drawback: the entire hash tree must be updated daily.
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« A CRT is a hash tree with leaves corresponding to

statements about ranges of certificates

- Statements describe regions of certificate ids, in which
only the smallest id is revoked.
- For example, a leaf might read: “if 100 < id <234, then cert is

revoked iff id=100".

- Each certificate matches exactly one statement.

- The statements are the leaves of a signed hash tree,
ordered according to the ranges of certificate values.

- To examine the state of a certificate we retrieve the
statement for the corresponding region.

— A single hash tree is used for all certs.

January 3, 2007 Introduction to Cryptography, Benny Pinkas
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SSL/TLS

January 3, 2007 Introduction to Cryptography, Benny Pinkas
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- General structure of secure HTTP connections

- To connect to a secure web site using SSL or TLS, we
send an https:// command

- The web site sends back a public key®, and a certificate.
— Our browser
» Checks that the certificate belongs to the url we're visiting

« Checks the expiration date

« Checks that the certificate is signed by a CA whose public key
is known to the browser

» Checks the signature

« If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

(O This is a very simplified version of the actual protocol.
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« SSL/TLS operates over TCP, which ensures reliable
transport.
. ﬁup)ports any application protocol (usually used with
ttp).

SEL
Hancshake
Protocol

S50 Change | S50 Alert

Cipher Spec | Protocal HTTF Telnet e

S5L Record Protocol

TCP
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« SSL (Secure Sockets Layer)
- SSLv2
» Released in 1995 with Netscape 1.1

« A flaw found in the key generation algorithm

- SSLv3
« Improved, released in 1996

« Public design process

« TLS (Transport Layer Security)
- IETF standard, RFC 2246

« Common browsers support all these protocols

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 26

« Handshake Protocol - establishes a session
- Agreement on algorithms and security parameters
— Identity authentication
- Agreement on a key
- Report error conditions to each other

- Record Protocol - Secures the transferred data
- Message encryption and authentication

« Alert Protocol — Error notification (including “fatal”
errors).

« Change Cipher Protocol — Activates the pending crypto
suite

January 3, 2007 Introduction to Cryptography, Benny Pinkas page 28




Simplified SSL Handshake

Client Server

| want to talk, ciphers| support, R

Certificate (PKgyye), Cipher | choose, Rg

S , 1 keyed hash of handshak
compute {5} e {Key of hendhoke mesgee) compute
K=f(SRcR9 {keyed hash of handshake message} K=f(SR.,Ry)

Data protected by keys derived from K

A typical run of a TLS protocol

+C=>S
— ClientHello.protocol.version = “TLS version 1.0”
- ClientHello.random = T, N¢
— ClientHello.session_id = “NULL”"
— ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
— ClientHello.compression_method = “NULL”"
+S=C
- ServerHello.protocol.version = “TLS version 1.0”
- ServerHello.random = Tg, Ng
- ServerHello.session_id = “1234”
— ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
— ServerHello.compression_method = “NULL”"
- ServerCertificate = pointer to server’s certificate
- ServerHelloDone

Some additional issues

« MoreonS=C

- The ServerHello message can also contain Certificate
Request Message

- L.e., server may request client to send its certificate
- Two fields: certificate type and acceptable CAs

- Negotiating crypto suites

- The crypto suite defines the encryption and authentication
algorithms and the key lengths to be used.

- ~30 predefined standard crypto suites

— Selection (SSL v3): Client proposes a set of suites. Server
selects one.

Key generation

- Key computation:
- The key is generated in two steps:

- pre-master secret S is exchanged during
handshake

- master secret K is a 48 byte value calculated
using pre-master secret and the random nonces

Session vs. Connection: a session is relatively long
lived. Multiple TCP connections can be supported
under the same SSL/TSL connection.

For each connection: 6 keys are generated from the
master secret K and from the nonces. (For each
direction: encryption key, authentication key, 1V.)




Application Data

Fragment

Compress

Add MAC

Encrypt

Append SSL
Record Header

Figure 17.3 SSL Record Protocol Operation
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