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» Associate a document to an signer

« A digital signature is attached to a document (rather
then be part of it)

- The signature is easy to verify but hard to forge
- Signing is done using knowledge of a private key

- Verification is done using a public key associated with the
signer (rather than comparing to an original signature)

- Itis impossible to change even one bit in the signed
document

- A copy of a digitally signed document is as good as the
original signed document.

- Digital signatures could be legally binding...
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« Attacks against digital signatures

- Key only attack: the adversary knows only the verification
key

- Known signature attack: in addition, the adversary has
some message/signature pairs.

- Chosen message attack: the adversary can ask for
signatures of messages of its choice (e.g. attacking a
notary system).

Seems even more reasonable than chosen message
attacks against encryption.
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Security definitions for digital signatures

» Several levels of success for the adversary

- Existential forgery: the adversary succeeds in forging the
signature of one message.

- Selective forgery: the adversary succeeds in forging the
signature of one message of its choice.

- Universal forgery: the adversary can forge the signature of
any message.

- Total break: the adversary finds the private signature key.

- Different levels of security, against different attacks, are
required for different scenarios.

Example: simple RSA based signatures

« Key generation: (as in RSA)
— Alice picks random p,q. Finds e-d=1 mod (p-1)(g-1).
— Public verification key: (N,e)
- Private signature key: d

« Signing: Given m, Alice computes s=m¢ mod N.
- Verification: given m,s and public key (N,e).

- Compute m’ = s mod N.
— Output “valid” iff m’=m.

Attacks against plain RSA signatures

« Signature of m is s=md mod N.

« Universally forgeable under a chosen message attack:

— Universal forgery: the adversary can forge the signature of
any message of its choice.

- Chosen message attack: the adversary can ask for
signatures of messages of its choice.

- Existentially forgeable under key only attack.

- Existential forgery: succeeds in forging the signature of at
least one message.

- Key only attack: the adversary knows the public
verification key but does not ask any queries.

RSA will a full domain hash function

- Signature is sig(m) = f -}(H(m)) = (H(m))4 mod N.
- H() is such that its range is [1,N]

« The system is no longer homomorphic
- sig(m) - sig(m’) # sig(m-m’)

- Seems hard to generate a random signature

- Computing s¢ is insufficient, since it is also required to
show m s.t. H(m) = se.

« Proof of security in the random oracle model — where
H() is modeled as a random function




RSA with full domain hash —proof of security

« Claim: If H() is a random oracle, then if there is a
polynomial-time A() which forges a signature with non-
negligible probability, then it is possible to invert the
RSA function, on a random input, with non-neg prob.

« Proof:

— Our input: y. Should compute y9 mod N.

— A() queries H() and a signature oracle sig(), and generates
a signature s of a message for which it did not query sig().

- Suppose A() made at most t queries to H(), and always
queries H(m) before querying sig(m).

- We will show how to use A() to compute yd mod N.

RSA with full domain hash —proof of security

« Proof (contd.)
- We decide how to answer A’s queries to H(),sig().
- Choose arandom i in [1,t], answer queries to H() as follows:
« The answer to the ith query (m) is y.

+ The answer to the jth query (j=) is (r;)¢, where r; is random.
— Answer to sig(m) queries:
« If m=m, j, then answer with r;. (Indeed sig(m)= (H(mj))d =)
« If m=m; then stop. (we failed)
- A’s output is (m,s).
« If m=m, and s is the correct signature, then we found y¢.
» Otherwise we failed.
— Success probability is 1/t times success probability of A().

Rabin signatures

« Same paradigm:
- f(m) =m2mod N. (N=pq).
- Sig(m) = s, s.t. s2= m mod N. l.e., the square root of m.

« Unlike RSA,
- Not all m are QR mod N.
- Therefore, only ¥ of messages can be signed.
- Solutions:
- Use random padding. Choose padding until you get a QR.
- Deterministic padding (Williams system).
- A total break given a chosen message attack. (show)
« Must use a hash function H as in RSA.

El Gamal signature scheme

- Invented by same person but different than the
encryption scheme. (think why)

- A randomized signature: same message can have
different signatures.

- Based on the hardness of extracting discrete logs

- The DSS (Digital Signature Standard) that was adopted
by NIST in 1994 is a variation of EI-Gamal signatures.




- Key generation:
- Work in a group Z," where discrete log is hard.
- Let g be a generator of Z".
- Private key 1<a<p-1.
- Public key p, g, y=02.

« Signature: (of M)
- Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
— Compute m=H(M).
« r=g“mod p.
« s=(m-r-a)-k! mod (p-1)
- Signatureisr, s.
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» Can work in any finite Abelian group

- The discrete log problem appears to be harder in elliptic
curves over finite fields than in Z,* of the same size.

- Therefore can use smaller groups = shorter signatures.
- Forging: find y"- rs=g™mod p
- E.g., choose random r = gk and either solve dlog of gm/y'to
the base r, or find s=k*(m - logyy - 1) (???7?)
 Notes:
- A different k must be used for every signature
- If no hash function is used (i.e. sign M rather than
m=H(M)), existential forgery is possible
- If receiver doesn’t check that O<r<p, adversary can sign
messages of his choice.
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- Signature:
- Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
- Compute
« r=g“mod p.
+ s=(m-r-a)-k!mod (p-1)
« Verification:
— Accept if
e 0<r<

samerin
both places!

ey - S g™modp
- It works since y"-rs = (g?)" -(g¥)s = g -g™"@ = g™
+ Overhead:
- Signature: one (offline) exp. Verification: three exps.
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Public Key Infrastructure (PKI)
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Key Infrastructure for symmetric key encryption

« Each user has a shared key with each other user
— Atotal of n(n-1)/2 keys
- Each user stores n-1 keys

Key Distribution Center (KDC)

- The KDC shares a symmetric key K, with every user u
- Using this key they can establish a trusted channel
+ When u wants to communicate with v
- u sends a request to the KDC
- The KDC
« authenticates u
- generates a key K, to be used by u and v
- sends Enc(K,, K,,) to u, and Enc(K,, K,,) to v

Key Distribution Center (KDC)

- Advantages:
- Atotal of n keys, one key per user.
- easier management of joining and leaving users.

- Disadvantages:
— The KDC can impersonate anyone
- The KDC is a single point for failure, for both
- security,
« and quality of service

« Multiple copies of the KDC
— More security risks
— But better availability

Certification Authorities (CA)

- Public key technology requires every user to remember
its private key, and to have access to other users’
public key

« How can the user verify that a public key PK,
corresponds to user v?

- What can go wrong otherwise?

« A simple solution:

- A trusted public repository of public keys and
corresponding identities
» Doesn'’t scale up

» Requires online access per usage of a new public key




Certification Authorities (CA)

- The Certificate Authority (CA) is trusted party.
« All users have a copy of the public key of the CA

» The CA signs Alice’s digital certificate. A simplified
certificate is of the form (Alice, Alice’s public key).

« When we get Alice’s certificate, we
— Examine the identity in the certificate
- Verify the signature
- Use the public key given in the certificate to
« Encrypt messages to Alice
« Or, verify signatures of Alice

- The certificate can be sent by Alice without any
interaction with the CA.

Certification Authorities (CA)

« For example.

— To connect to a secure web site using SSL or TLS, we
send an https:// command

- The web site sends back a public key®, and a certificate.
- Our browser

» Checks that the certificate belongs to the url we’re visiting

« Checks the expiration date

« Checks that the certificate is signed by a CA whose public key
is known to the browser

» Checks the signature

- If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

O Thisis a very simplified version of the actual protocol.

Certification Authorities (CA)

- Unlike KDCs, the CA does not have to be online to
provide keys to users

— It can therefore be better secured than a KDC
- The CA does not have to be available all the time

« Users only keep a single public key — of the CA

- The certificates are not secret. They can be stored in a
public place.

+ When a user wants to communicate with Alice, it can
get her certificate from either her, the CA, or a public
repository.

« A compromised CA
- can mount active attacks (certifying keys as being Alice’s)
— but it cannot decrypt conversations.
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Certificates

« A certificate usually contains the following information
Owner’s name

Owner’s public key

Encryption/signature algorithm

Name of the CA

Serial number of the certificate

— Expiry date of the certificate

Your web browser contains the public keys of some
CAs

A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

Public Key Infrastructure (PKI)

« The goal: build trust on a global level

« Running a CA:

— If people trust you to vouch for other parties, everyone
needs you.

— Alicense to print money
— But,
« The CA should limit its responsibilities, buy insurance...
« It should maintain a high level of security
« Bootstrapping: how would everyone get the CA’s public key?




« Monopoly: a single CA vouches for all public keys
« Monopoly + delegated CAs:
- top level CA can issue certificates for other CAs
- Certificates of the form
* [ (Alice, PKp)caz: (CA3, PKcpg)oars (CAL, PKear)top.cal
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« Oligarchy
— Multiple trust anchors (top level CAs)
« Pre-configured in software
« User can add/remove CAs

» Top-down with name constraints
- Like monopoly + delegated CAs

- But every delegated CA has a predefined portion of the
name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)

— More trustworthy
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