December 25, 2005

Introduction to Cryptography
Lecture 8

Digital signatures,
Public Key Infrastructure (PKI)

Benny Pinkas

Introduction to Cryptography, Benny Pinkas page

Document M

Private signature key

H

December 25, 2005

signer

Public verification key

_

depends on M valid / invalid

Introduction to Cryptography, Benny Pinkas page

» Associate a document to an signer

« A digital signature is attached to a document (rather
then be part of it)

- The signature is easy to verify but hard to forge
- Signing is done using knowledge of a private key

- Verification is done using a public key associated with the
signer (rather than comparing to an original signature)

- Itis impossible to change even one bit in the signed
document

- A copy of a digitally signed document is as good as the
original signed document.

- Digital signatures could be legally binding...

December 25, 2005 Introduction to Cryptography, Benny Pinkas

« Attacks against digital signatures

- Key only attack: the adversary knows only the verification
key

- Known signature attack: in addition, the adversary has
some message/signature pairs.

- Chosen message attack: the adversary can ask for
signatures of messages of its choice (e.g. attacking a
notary system).

Seems even more reasonable than chosen message
attacks against encryption.

December 25, 2005 Introduction to Cryptography, Benny Pinkas

Security definitions for digital signatures

» Several levels of success for the adversary

- Existential forgery: the adversary succeeds in forging the
signature of one message.

- Selective forgery: the adversary succeeds in forging the
signature of one message of its choice.

- Universal forgery: the adversary can forge the signature of
any message.

- Total break: the adversary finds the private signature key.

- Different levels of security, against different attacks, are
required for different scenarios.

Example: simple RSA based signatures

« Key generation: (as in RSA)
— Alice picks random p,q. Finds e-d=1 mod (p-1)(g-1).
— Public verification key: (N,e)
- Private signature key: d

« Signing: Given m, Alice computes s=m¢ mod N.
- Verification: given m,s and public key (N,e).

- Compute m’ = s mod N.
— Output “valid” iff m’=m.

Attacks against plain RSA signatures

« Signature of m is s=md mod N.

« Universally forgeable under a chosen message attack:

— Universal forgery: the adversary can forge the signature of
any message of its choice.

- Chosen message attack: the adversary can ask for
signatures of messages of its choice.

- Existentially forgeable under key only attack.

- Existential forgery: succeeds in forging the signature of at
least one message.

- Key only attack: the adversary knows the public
verification key but does not ask any queries.

RSA will a full domain hash function

- Signature is sig(m) = f -}(H(m)) = (H(m))4 mod N.
- H() is such that its range is [1,N]

« The system is no longer homomorphic
- sig(m) - sig(m’) # sig(m-m’)

- Seems hard to generate a random signature

- Computing s¢ is insufficient, since it is also required to
show m s.t. H(m) = se.

« Proof of security in the random oracle model — where
H() is modeled as a random function

RSA with full domain hash —proof of security

« Claim: If H() is a random oracle, then if there is a
polynomial-time A() which forges a signature with non-
negligible probability, then it is possible to invert the
RSA function, on a random input, with non-neg prob.

« Proof:

— Our input: y. Should compute y9 mod N.

— A() queries H() and a signature oracle sig(), and generates
a signature s of a message for which it did not query sig().

- Suppose A() made at most t queries to H(), and always
queries H(m) before querying sig(m).

- We will show how to use A() to compute yd mod N.

RSA with full domain hash —proof of security

« Proof (contd.)
- We decide how to answer A’s queries to H(),sig().
- Choose arandom i in [1,t], answer queries to H() as follows:
« The answer to the ith query (m) is y.

+ The answer to the jth query (j=) is (r;)¢, where r; is random.
— Answer to sig(m) queries:
« If m=m, j, then answer with r;. (Indeed sig(m)= (H(mj))d =)
« If m=m; then stop. (we failed)
- A’s output is (m,s).
« If m=m, and s is the correct signature, then we found y¢.
» Otherwise we failed.
— Success probability is 1/t times success probability of A().

Rabin signatures

« Same paradigm:
- f(m) =m2mod N. (N=pq).
- Sig(m) = s, s.t. s2= m mod N. l.e., the square root of m.

« Unlike RSA,
- Not all m are QR mod N.
- Therefore, only ¥ of messages can be signed.
- Solutions:
- Use random padding. Choose padding until you get a QR.
- Deterministic padding (Williams system).
- A total break given a chosen message attack. (show)
« Must use a hash function H as in RSA.

El Gamal signature scheme

- Invented by same person but different than the
encryption scheme. (think why)

- A randomized signature: same message can have
different signatures.

- Based on the hardness of extracting discrete logs

- The DSS (Digital Signature Standard) that was adopted
by NIST in 1994 is a variation of EI-Gamal signatures.

- Key generation:
- Work in a group Z," where discrete log is hard.
- Let g be a generator of Z".
- Private key 1<a<p-1.
- Public key p, g, y=02.

« Signature: (of M)
- Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
— Compute m=H(M).
« r=g“mod p.
« s=(m-r-a)-k! mod (p-1)
- Signatureisr, s.

December 25, 2005 Introduction to Cryptography, Benny Pinkas page 13

» Can work in any finite Abelian group

- The discrete log problem appears to be harder in elliptic
curves over finite fields than in Z,* of the same size.

- Therefore can use smaller groups = shorter signatures.
- Forging: find y"- rs=g™mod p
- E.g., choose random r = gk and either solve dlog of gm/y'to
the base r, or find s=k*(m - logyy - 1) (???7?)
 Notes:
- A different k must be used for every signature
- If no hash function is used (i.e. sign M rather than
m=H(M)), existential forgery is possible
- If receiver doesn’t check that O<r<p, adversary can sign
messages of his choice.

December 25, 2005 Introduction to Cryptography, Benny Pinkas page 15

- Signature:
- Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
- Compute
« r=g“mod p.
+ s=(m-r-a)-k!mod (p-1)
« Verification:
— Accept if
e 0<r<

samerin
both places!

ey - S g™modp
- It works since y"-rs = (g?)" -(g¥)s = g -g™"@ = g™
+ Overhead:
- Signature: one (offline) exp. Verification: three exps.

December 25, 2005 Introduction to Cryptography, Benny Pinkas

page 14

Public Key Infrastructure (PKI)

December 25, 2005 Introduction to Cryptography, Benny Pinkas

page 16

Key Infrastructure for symmetric key encryption

« Each user has a shared key with each other user
— Atotal of n(n-1)/2 keys
- Each user stores n-1 keys

Key Distribution Center (KDC)

- The KDC shares a symmetric key K, with every user u
- Using this key they can establish a trusted channel
+ When u wants to communicate with v
- u sends a request to the KDC
- The KDC
« authenticates u
- generates a key K, to be used by u and v
- sends Enc(K,, K,,) to u, and Enc(K,, K,,) to v

Key Distribution Center (KDC)

- Advantages:
- Atotal of n keys, one key per user.
- easier management of joining and leaving users.

- Disadvantages:
— The KDC can impersonate anyone
- The KDC is a single point for failure, for both
- security,
« and quality of service

« Multiple copies of the KDC
— More security risks
— But better availability

Certification Authorities (CA)

- Public key technology requires every user to remember
its private key, and to have access to other users’
public key

« How can the user verify that a public key PK,
corresponds to user v?

- What can go wrong otherwise?

« A simple solution:

- A trusted public repository of public keys and
corresponding identities
» Doesn'’t scale up

» Requires online access per usage of a new public key

Certification Authorities (CA)

- The Certificate Authority (CA) is trusted party.
« All users have a copy of the public key of the CA

» The CA signs Alice’s digital certificate. A simplified
certificate is of the form (Alice, Alice’s public key).

« When we get Alice’s certificate, we
— Examine the identity in the certificate
- Verify the signature
- Use the public key given in the certificate to
« Encrypt messages to Alice
« Or, verify signatures of Alice

- The certificate can be sent by Alice without any
interaction with the CA.

Certification Authorities (CA)

« For example.

— To connect to a secure web site using SSL or TLS, we
send an https:// command

- The web site sends back a public key®, and a certificate.
- Our browser

» Checks that the certificate belongs to the url we’re visiting

« Checks the expiration date

« Checks that the certificate is signed by a CA whose public key
is known to the browser

» Checks the signature

- If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

O Thisis a very simplified version of the actual protocol.

Certification Authorities (CA)

- Unlike KDCs, the CA does not have to be online to
provide keys to users

— It can therefore be better secured than a KDC
- The CA does not have to be available all the time

« Users only keep a single public key — of the CA

- The certificates are not secret. They can be stored in a
public place.

+ When a user wants to communicate with Alice, it can
get her certificate from either her, the CA, or a public
repository.

« A compromised CA
- can mount active attacks (certifying keys as being Alice’s)
— but it cannot decrypt conversations.

. = |
General | Detas | ljonsdt=924anis=HE == [IcL
This certificate has been verified for the following uses: n... E3Gizmodo EJFducated Guesswork 3 The New York Times ... £ The Register: Sc
SSL Server Certificate
o*ywi9n p124p
Int ent
erial er 6C:F8:30:09:69:46:C5:FA: 11:8A:40:CD: 14:6A:E8:A3
Tssued By b orean 0312 FMpY 0Tpan
Common Name (CN) ~ <Not Part Of Certificate> ¥ 5
Organization (0) VeriSign Trust Network RULRARE AR I
Organizational Unit (OU) VeriSign, Inc. bpny v Tl ae Ty
e mTens nons” A"YPY WIY 1Tpan
Issued On 7/12/2004
Expires On 7/13/2005 1 VRnYR TP @ LIILIRI DOME T
Fingerprints N @
SHA1 Fingerprint 11216 AdE 30 5:F 9:96: TF:E6:09: 40: 17:47:A8: 20: 1F:C8:96:9F 1 NRYY @
MDS Fingerprint 6CIED:CECD:40:E 1 28:3A:0F 1 40: SuDE: SAF 4:04:EB 91771 1T AR NAm
0.25% 5w w1
MV ML AT .NTpann D1on
D0 mnay
Mnw mnar 93 #

m
8

o bankhapoaiim.co.if

Fle Edt Vew Go Eookmarks Tooks Help

i have certificates on file thatidentify these certificate authorities: I

Q0 0 O QYo =

E36mail - Inbox (5) SLatestHeadlines % Furl It EICNET News.com —T... 3Slashdot: News forn... E3Gizmodo EIEducated Guesswork 3 The New York Times 3 The Register: 5d

Certificate Viewer-"gmail.google.com” x|
I (ceneral Detals
This certificate has been verified for the following uses:
SSL Server Certficate

AGe Tssued T

°
Grmail Organization (O) - delete mail and you

Sover Gmail Sign In
shoulc Organizational Unit (OU) <Not Part Of Certificate>

Serial Number 0%ELTF Usemame:
.

_ T2l

Issued By P | '—
’ assword]
Commontiame () <NotPartOf Certiicate> fpeaes
u Organization (0) Equifax [~ Den' ask for my
Organizational Unit (OL) Equifax Seare Certificate Authority password for 2 wesks
Validity

Signin

Forgot your password?

(| Fingerprints
o 5HA1 Fingerprint D0:D5: 54:C0:CF: 58:5E: 6C: 32:63:0F:8 1:C 1:CC:E2:B0: 23:C0:F8: 70
VDS Fingerprint D4:A Li6F:0DIE2I0E BA: LFIF4:AZi00: 5658 4:C 0156

Leam more about Gmail
Check out our new features!

A few words about privacy and Gmail

s - Terms of Use

er tificate Name | security Device
Urizeto Sp. 6.0,

Certum CA Bultin Object Token
VISA

&P Root2 Bultn Object Token

Visa eCommerce Root Bultin Object Token

vaiiCert, Inc.

v valicert. com/ Builtin Object Token
v vaicert. com/ Builtin Object Token
Bultin Object Token

Verisign, Inc.
Verisign Class 3 Public Primary Certification Authority Builtn Object Token
Verisign Class 1Public Primary Certification Autherity Builtin Object Token
Verisign Class 2 Public Primary Certification Authority Builtin Object Token
Verisign Class 1Public Primary Certification Authority - 62 Bultin Object Token
Verisign Class 2 Public Primary Certification Authority - G2 Builtin Object Token
Verisign Class 3 Public Primary Certification Authority - 62 Buitin Object Token
Verisign Class 4 Public Primary Certification Autherity - G2 Bultin Object Token
VeriSign Class 1Pubiic Primary Certification Authority - G3 Builtin Object Token
Verisign Class 2 Pubiic Primary Certification Authority - G3 Builtin Object Token
VeriSign Class 3 Pubiic Primary Certification Authority - G3 Builtin Object Token
VeriSign Class 4Pubiic Primary Certification Authority - G3 Builtin Object Token
Class 1Public Primary OCSP Responder Builtin Object Token
Class 2 Public Primary OCSP Responder Builtin Object Token
Class 3 Public Primary OCSP Responder Builtin Object Token
VeriSign Time Stamping Authority CA Builtin Object Token
beTRUSTed
beTRUSTed Root CAs Builtin Object Token
‘beTRUSTed Root CA-Baltimore Implementation Builtin Object Token
‘beTRUSTed Root CA - Entrust Implementation Builtin Object Token
beTRUSTed Root CA -RSA Builtin Object Token

[Transferring data from gmalgoosk:

B gmsil

Certificates

« A certificate usually contains the following information
Owner’s name

Owner’s public key

Encryption/signature algorithm

Name of the CA

Serial number of the certificate

— Expiry date of the certificate

Your web browser contains the public keys of some
CAs

A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

Public Key Infrastructure (PKI)

« The goal: build trust on a global level

« Running a CA:

— If people trust you to vouch for other parties, everyone
needs you.

— Alicense to print money
— But,
« The CA should limit its responsibilities, buy insurance...
« It should maintain a high level of security
« Bootstrapping: how would everyone get the CA’s public key?

« Monopoly: a single CA vouches for all public keys
« Monopoly + delegated CAs:
- top level CA can issue certificates for other CAs
- Certificates of the form
* [(Alice, PKp)caz: (CA3, PKcpg)oars (CAL, PKear)top.cal

Degember 25, 2005 Introduction to Cryptography, Benny Pinkas page 29

« Oligarchy
— Multiple trust anchors (top level CAs)
« Pre-configured in software
« User can add/remove CAs

» Top-down with name constraints
- Like monopoly + delegated CAs

- But every delegated CA has a predefined portion of the
name space (il, ac.il, haifa.ac.il, cs.haifa.ac.il)

— More trustworthy

December 25, 2005 Introduction to Cryptography, Benny Pinkas page 31

M_ = !iDOSearm + A Indexer !@
x
i CErre— 22
o | l General | Detais Certfication Path | Trust |
si
E =
5 Signature Information Equifax Secure Certficate Authorty
= geformats | S/MIME . E IBM Cantification Authority
I
Signed by: . 2. jom.com
Signature status: VWarning: There were problems validating ==
Signing time: 9:20:07 AM 12/242004 |
Digest algorithm: sHAT
Signature algorithm: RSA {1024-bits)
n .
Certificate Information I
s
E Issued by: 18M Certification Autharity i Lot F
5
c Certificate status: Warning: The Certificate Revocation st =4 = Certificate status:
o E
[Tris centficate s OK
View Certificate...
3 [t
¢
_= |)
s 2 T 1
1 59 A Staticpersor, |——————————— I~
December 25, 2005 Introdustion to Cryptography, Benny Pinkas page 30

