Introduction to Cryptography Lecture 8

Rabin's encryption system, Digital signatures

Benny Pinkas

December 18, 2005

Introduction to Cryptography, Benny Pinkas

Reminders

- The Chinese Remainder Theorem (CRT):
- Let N=pq with gcd(p,q)=1.
- Then for every pair $(y,z) \in Z_p \times Z_q$ there exists a unique $x \in Z_n$, s.t.
- x=y mod p
- x=z mod q
- Quadratic Residues:
- The square root of $x \in Z_p^*$ is $y \in Z_p^*$ s.t. $y^2 = x \mod p$.
- $-x \in \mathbb{Z}_p^*$ has either 2 or 0 square roots, and is denoted as a Quadratic Residue (QR) or Non Quadratic Residue (NQR), respectively.
- Euler's theorem: $x \in \mathbb{Z}_p^*$ is a QR iff $x^{(p-1)/2} = 1 \mod p$.

December 18, 200

ntroduction to Cryptography, Benny Pinkas

page 3

Reminder: RSA Public Key Cryptosystem

- The multiplicative group $Z_N^* = Z_{pq}^*$. The size of the group is $\varphi(n) = \varphi(pq) = (p-1) \ (q-1)$
- Public key:
- N=pq the product of two primes
- e such that $gcd(e, \varphi(N))=1$ (are these hard to find?)
- Private key:
- d such that de≡1 mod φ(N)
- Encryption of $M \in \mathbb{Z}_N^*$
- $-C=E(M)=M^e \mod N$
- Decryption of $C \in \mathbb{Z}_N^*$
- $-M=D(C)=C^d \mod N$ (why does it work?)

December 18, 20

Introduction to Cryptography, Benny Pinkas

Rabin's encryption systems

- Key generation:
- Private key: random primes p,q (e.g. 512 bits long).
- Public key: N=pq.
- Encryption:
- Plaintext $m \in Z_N^*$.
- Ciphertext: $c = m^2 \mod N$. (very efficient)
- Decryption: Compute $c^{1/2} \mod N$.

December 18, 2005

oduction to Cryptography, Benny Pinkas

Square roots modulo N

- \Rightarrow Let x be a quadratic residue (QR) modulo N=pq, then
- $-x \mod p$ is a QR mod p. $x \mod q$ is a QR mod q
- $-x \mod p$ has two roots mod p: v and p v
- $-x \mod q$ has two roots mod q: z and q z
- \leftarrow If x is a QR mod p and mod q, it is a QR mod N. (Follows from the Chinese remainder theorem.)
- Each combination of roots modulo p and q results in a root modulo N.
- We get four roots modulo pq: A, B, pq A, pq B
- -(y,z) -> A

$$(p - y, q - z) -> pq - A$$

$$-(y, q - z) -> B, (p - y, z) -> pq - B$$

 $= (y,z) \cdot (1,-1)$

Introduction to Cryptography, Benny Pinkas

Finding square roots modulo N

- Need to compute $y=x^{1/2} \mod N$.
- Suppose we know (the private key) p, q.
- Compute the roots of x modulo p. q. Use Chinese remainder theorem to find x.
- Computing square roots in Z_n^*
- Recall, $x \in QR_p$ iff $x^{(p-1)/2} = 1 \mod p$.
- Assume $p=3 \mod 4$. (p is a Blum integer).
- Compute the root as $y=x^{(p+1)/4} \mod p$.
- (p+1)/4 is an integer

•
$$y^2 = (x^{(p+1)/4})^2 = x^{(p+1)/2} = x^{(p-1)/2}x = x$$

- If p=1 mod 4 the computation is more complicated (no deterministic algorithm is known)

Square roots modulo N

- If x has a square root modulo N then it has 4 different square roots modulo N.
- Let A be s.t. $A^2 = x \mod N$.
- Let c be s.t. $c=1 \mod p$, $c=-1 \mod q$.
- Then A, -A, cA, -cA are all square roots of x modulo N.
- Exactly ¼ of the elements are QR mod N.
- $QR_N = QR_p \times QR_q$. $|QR_N| = (p-1)(q-1)/4$
- Assume that p=q=3 mod 4. (Blum integers.)
- -1 is an NQR mod p and mod q (Euler's thm).
- Exactly one of the roots is a QR mod p and a QR mod q.
- Similarly, for every combination of QR/NQR mod p and mod q.

Introduction to Cryptography, Benny Pinkas

Decryption of Rabin cryptosystem

- Input: c, p, q. (p=q=3 mod 4)
- Decryption:
- Compute $m_p = c^{(p+1)/4} \mod p$.
- Compute $m_q = c^{(q+1)/4} \mod q$.
- Use CRT to compute the four roots mod N, i.e. four values mod N corresponding to $[m_n, p-m_n] \times [m_n, q-m_n]$
- There are four possible options for the plaintext!
- The receiver must select the correct plaintext
- This can be solved by requiring the sender to embed some redundancy in m
- . E.g., a string of bits of specific form

Introduction to Countagraphy Renny Pinkas

Security of the Rabin cryptosystem

- The Rabin cryptosystem is secure against passive attacks iff factoring is hard. ☺
- The Rabin cryptosystem is completely insecure against chosen-ciphertext attacks ☺

December 18, 2005

Introduction to Cryptography, Benny Pinkas

The reduction

- Input: N
- Operation:
- Choose random x.
- Send N and $c=x^2 \mod N$, to adversary.
- Adversary answers with y s.t. $c=y^2 \mod N$.
- If y=x or y=N-x, go back to step 1.
- Otherwise
- $x^2 y^2 = 0 \mod N$.
- $0 \neq (x-y)(x+y) = cN = cpq$.
- Compute gcd(x+y,N), gcd(x-y,N) and obtain p or q.
- (The gcd is not N since 0<x,y<N, and therefore −N < x+y,x-y < 2N, and it's known that x+y,x-y≠0,N).

December 18, 2005

Introduction to Cryptography, Benny Pinkas

age 11

happens with

prob 1/2

Security of the Rabin cryptosystem

- · Security against chosen plaintext attacks
- Suppose there is an adversary that breaks the system
- Adversary's input: N. c
- Adversary's output: m s.t. $m^2 = c \mod N$.
- We show a reduction showing that given this adversary we can break the factoring assumption.
- I.e., we build an algorithm:
- Input: N
- Operation: can ask queries to the Rabin decryption oracle
- Output: the factoring of N.
- Therefore, if one can break Rabin's cryptosystem it can also solve factoring.
- Therefore, if factoring is hard the Rabin cryptosystem is "secure".

December 18, 2005

Introduction to Cryptography, Benny Pinkas

Insecurity against chosen-ciphertext attacks

- A chosen-ciphertext attack reveals the factorization of *N*.
- The attacker's challenge is to decrypt a ciphertext c.
- It can ask the receiver to decrypt any ciphertext except c.
- The attacker can use the receiver as the "adversary" in the reduction, namely
- Chooses a random x and send $c=x^2 \mod N$ to the receiver
- The receiver returns a square root y of c
- With probability $\frac{1}{2}$, $x \neq y$ and $x \neq -y$. In this case the attacker can factor N by computing gcd(x-y,N).
- (The attack does not depend on homomorphic properties of the ciphertext. Namely, it is not required that E(x)E(y)=E(xy).)

December 18, 2005

Introduction to Cryptography, Benny Pinkas

page 12

Digital Signatures

December 18, 2005

Introduction to Cryptography, Benny Pinkas

---- 40

Desiderata for digital signatures

- Associate a document to an signer
- A digital signature is attached to a document (rather then be part of it)
- The signature is easy to verify but hard to forge
- Signing is done using knowledge of a private key
- Verification is done using a public key associated with the signer (rather than comparing to an original signature)
- It is impossible to change even one bit in the signed document
- A copy of a digitally signed document is as good as the original signed document.
- Digital signatures could be legally binding...

December 18, 200

Introduction to Cryptography, Benny Pinkas

age 15

Handwritten signatures

- Associate a document with an signer (individual)
- Signature can be verified against a different signature of the individual
- It is hard to forge the signature...
- It is hard to change the document after it was signed...
- · Signatures are legally binding

December 18, 20

Introduction to Cryptography, Benny Pinkas

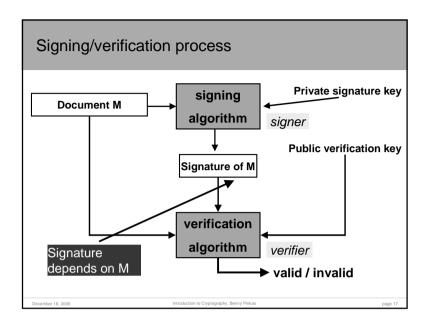
Non Repudiation

- Prevent sender from denying that it sent the message
- I.e., the receiver can prove to third parties that the message was signed by the sender
- This is different than message authentication (MACs)
- There the receiver is assured that the message was sent by the receiver and was not changed in transit
- But the receiver cannot prove this to other parties
 - MACs: sender and receiver share a secret key K
 - If R sees a message MACed with K, it knows that it could have only been generated by S
- But if R shows the MAC to a third party, it cannot prove that the MAC was generated by S and not by R

December 18, 2005

Introduction to Cryptography, Benny Pinkas

page 10



Example: simple RSA based signatures

- Key generation: (as in RSA)
- Alice picks random p,q. Finds $e \cdot d=1 \mod (p-1)(q-1)$.
- Public verification key: (N,e)
- Private signature key: d
- Signing: Given m, Alice computes $s=m^d \mod N$.
- Verification: given m,s and public key (N,e).
- Compute $m' = s^e \mod N$.
- Output "valid" iff m'=m.

December 18, 20

Introduction to Cryptography, Benny Pinkas

age 19

Diffie-Hellman

"New directions in cryptography" (1976)

- In public key encryption
- The encryption function is a trapdoor permutation *f*
 - Everyone can encrypt = compute f(). (using the public key)
 - Only Alice can decrypt = compute $f^{-1}()$. (using her private key)
- Alice can use f for signing
- Alice signs m by computing $s=f^{-1}(m)$.
- Verification is done by computing m=f(s).
- Intuition: since only Alice can compute f⁻¹(), forgery is infeasible.
- Caveat: none of the established practical signature schemes following this paradigm is provably secure

December 18, 2005

Introduction to Cryptography, Benny Pinkas

Message lengths

- A technical problem:
 - |m| might be longer than |N|
 - m might not be in the domain of $f^{-1}()$

Solution:

- Signing: First compute H(m), then compute the signature $f^{-1}(H(M))$. Where,
- H() is collision intractable. I.e. it is hard to find m, m' s.t. H(m)=H(m').
- The range of H() is contained in the domain of $f^{1}()$.
- Verification:
- Compute f(s). Compare to H(m).
- Use of *H()* is also good for security reasons. See below.

December 18, 2005

oduction to Cryptography, Benny Pinkas

page 20

Security of using hash function

- Intuitively
- Adversary can compute H(), f(), but not f⁻¹().
 Can only compute (m,H(m)) by choosing m and computing H().
- Adversary wants to compute $(m, f^{-1}(H(m)))$.
- To break signature needs to show s s.t. f(s)=H(m). (E.g. s°=H(m).)
- Failed attack strategy 1:
- Pick s, compute f(s), and look for m s.t. H(m)=f(s).
- Failed attack strategy 2:
- Pick m,m's.t. H(m)=H(m'). Ask for a signature s of m' (which is also a signature of m).
- (If *H()* is not collision resistant, adversary could find *m,m*'s.t. H(m)' = H(m').
- This doesn't mean that the scheme is secure, only that these attacks fail.

December 18, 2005

Introduction to Cryptography, Benny Pinkas