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« The Chinese Remainder Theorem (CRT):
- Let N=pq with gcd(p,q)=1.
- Then for every pair (y,z) € Z,x Z, there exists a unique
xeZ,, s.t.
« X=y mod p
« Xx=zmod g

« Quadratic Residues:
- The square root of xeZ," is yeZ," s.t. y?=x mod p.

- XGZP* has either 2 or 0 square roots, and is denoted as a
Quadratic Residue (QR) or Non Quadratic Residue (NQR),
respectively.

- Euler’s theorem: xeZ," is a QR iff x(*-%/2 = 1 mod p.
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- The multiplicative group Z" =Z,,". The size of the group is
@(n) = @(pg) = (p-1) (a-1)

« Public key:
- N=pq the product of two primes
- e such that ged(e, @(N))=1

« Private key:
- d such that de=1 mod ¢(N)

(are these hard to find?)

 Encryption of MeZ*
- C=E(M)=M® mod N
- Decryption of CeZ*
- M:D(C):Cd mod N (why does it work?)
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- Key generation:
— Private key: random primes p,q (e.g. 512 bits long).
- Public key: N=pq.

« Encryption:
- Plaintext me Z".

- Ciphertext: c=m2 mod N. (very efficient)

- Decryption: Compute ¢2mod N.
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« = Let x be a quadratic residue (QR) modulo N=pq, then
-xmodpisaQRmodp. xmodgqisaQRmodq
- xmod p has two roots mod p:y and p -y
- xmod q has two roots mod g: zand q - z

« < If xisa QR mod p and mod q, it is a QR mod N. (Follows
from the Chinese remainder theorem.)

modulo N.
- We get four roots modulo pqg: A, B, pq—A, pq—B
- (.2 > A, (P-y,q-2)->pg-A
-(,9-2->B, (p-y,2)->pq-B
=2 . (1,-1)
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- Each combination of roots modulo p and q results in a root
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+ N=pqg.
« If x has a square root modulo N then it has 4 different square
roots modulo N.
- Let A be s.t. A>=x mod N.
- Let c be s.t. c=1 mod p, c=-1mod g.
- Then A, -A, cA, -cA are all square roots of x modulo N.
« Exactly ¥% of the elements are QR mod N.

+ QRy =QR, x QR,. |QRy[ = (p-1)(g-1)/4

+ Assume that p=gq=3 mod 4. (Blum integers.)
- -lisan NQR mod p and mod q (Euler’s thm).
- Exactly one of the roots is a QR mod p and a QR mod g.
- Similarly, for every combination of QR/NQR mod p and mod g.
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- Need to compute y=x2mod N.
» Suppose we know (the private key) p, g.

— Compute the roots of x modulo p, g. Use Chinese
remainder theorem to find x.

- Computing square roots in Z,"

- Recall, xeQR,, iff x(-D2=1 mod p.

— Assume p=3 mod 4. (p is a Blum integer).

— Compute the root as y=x(P*4 mod p.
» (pt1)/4 is an integer
o y2 = (XPHDA)2 = x(P+DI2 = x(p-DI2y = x

- If p=1 mod 4 the computation is more complicated (no
deterministic algorithm is known)
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« Input: ¢, p, 4. (p=9=3 mod 4)
- Decryption:
- Compute m, =c**1/4 mod p.
- Compute m, =c@*1/4 mod q.
- Use CRT to compute the four roots mod N, i.e. four values
mod N corresponding to [m,,, p-m,] x [mg, g-m]

- There are four possible options for the plaintext!
- The receiver must select the correct plaintext

- This can be solved by requiring the sender to embed
some redundancy in m
- E.g., a string of bits of specific form
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+ The Rabin cryptosystem is secure against passive
attacks iff factoring is hard. ©

» The Rabin cryptosystem is completely insecure against
chosen-ciphertext attacks ®
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« Security against chosen plaintext attacks

Suppose there is an adversary that breaks the system
- Adversary's input: N, ¢

- Adversary’s output: m s.t. m?>=c mod N.

We show a reduction showing that given this adversary we can
break the factoring assumption.

I.e., we build an algorithm:

- Input: N

- Operation: can ask queries to the Rabin decryption oracle

- Output: the factoring of N.

Therefore, if one can break Rabin’s cryptosystem it can also solve
factoring.

Therefore, if factoring is hard the Rabin cryptosystem is “secure”.
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« Input: N
« Operation:
- Choose random x.
- Send N and c=x2 mod N, to adversary.
- Adversary answers with y s.t. c=y2 mod N.

- If y=x or y=N-Xx, go back to step 1.

- Otherwise \ happens with
« Xx2-y2=0mod N. prob 1/2
« 0 # (X-y)(x+y) = cN = cpq.
« Compute gcd(x+y,N) , gcd(x-y,N) and obtain p or g.

» (The gcd is not N since 0<x,y<N, and therefore
—N < x+y,x-y < 2N, and it's known that x+y,x-y=0,N).
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« A chosen-ciphertext attack reveals the factorization of N.

- The attacker’s challenge is to decrypt a ciphertext c.

« It can ask the receiver to decrypt any ciphertext except c.

- The attacker can use the receiver as the “adversary” in the
reduction, namely
- Chooses a random x and send c=x2mod N to the receiver
— The receiver returns a square root y of ¢

- With probability %5, x #y and x # -y. In this case the attacker
can factor N by computing gcd(x-y,N).

- (The attack does not depend on homomorphic properties of
the ciphertext. Namely, it is not required that E(x)E(y)=E(xy).)
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Digital Signatures
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« Associate a document with an signer (individual)

- Signature can be verified against a different signature
of the individual

« Itis hard to forge the signature...
- It is hard to change the document after it was signed...
- Signatures are legally binding
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 Associate a document to an signer

« A digital signature is attached to a document (rather
then be part of it)

- The signature is easy to verify but hard to forge
- Signing is done using knowledge of a private key

- Verification is done using a public key associated with the
signer (rather than comparing to an original signature)

- Itis impossible to change even one bit in the signed
document

- A copy of a digitally signed document is as good as the
original signed document.

- Digital signatures could be legally binding...
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« Prevent sender from denying that it sent the message

. l.e., the receiver can prove to third parties that the
message was signed by the sender

- This is different than message authentication (MACs)
- There the receiver is assured that the message was sent
by the receiver and was not changed in transit
- But the receiver cannot prove this to other parties
« MACs: sender and receiver share a secret key K

- If R sees a message MACed with K, it knows that it could
have only been generated by S

« But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R
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Document M

Signature of M

Signature
depends on M
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Private signature key

signer

Public verification key

verifier

valid / invalid
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» Key generation: (as in RSA)

— Public verification key: (N,e)
- Private signature key: d

— Compute m’ =s® mod N.
— Output “valid” iff m’=m.
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— Alice picks random p,q. Finds e-d=1 mod (p-1)(g-1).

« Signing: Given m, Alice computes s=m“ mod N.

« Verification: given m,s and public key (N,e).
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« In public key encryption
- The encryption function is a trapdoor permutation f
» Everyone can encrypt = compute f(). (using the public key)

« Only Alice can decrypt = compute f -1(). (using her private key)
« Alice can use f for signing
- Alice signs m by computing s=f-1(m).
- Verification is done by computing m=f(s).

- Intuition: since only Alice can compute f -1(), forgery is
infeasible.

« Caveat: none of the established practical signature
schemes following this paradigm is provably secure
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« A technical problem:
- |m] might be longer than |N|
- m might not be in the domain of f1()

Solution:

- Signing: First compute H(m), then compute the
signature f -}(H(M)). Where,

- H() is collision intractable. l.e. it is hard to find m, m’ s.t.
H(m)=H(m").
- The range of H() is contained in the domain of f1().
- Verification:
- Compute f(s). Compare to H(m).

- Use of H() is also good for security reasons. See below.
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« Intuitively
— Adversary can compute H(), f(), but not f -1().
— Can only compute (m,H(m)) by choosing m and computing H().
— Adversary wants to compute (m ,f -1(H(m))).
- To break signature needs to show s s.t. f(s)=H(m). (E.g. sé=H(m).)

- Failed attack strategy 1:
« Pick s, compute f(s), and look for m s.t. H(m)=f(s).
- Failed attack strategy 2:
» Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’ (which
is also a signature of m).

« (If H() is not collision resistant, adversary could find m,m’ s.t.
H(m) = H(m’).)

- ;rhlis doesn’t mean that the scheme is secure, only that these attacks
ail.
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