# Introduction to Cryptography Lecture 8

Rabin's encryption system, Digital signatures

Benny Pinkas

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Reminder: RSA Public Key Cryptosystem

- The multiplicative group  $Z_N^* = Z_{pq}^*$ . The size of the group is  $\varphi(n) = \varphi(pq) = (p-1)(q-1)$
- Public key:
  - N=pq the product of two primes
  - e such that  $gcd(e, \varphi(N))=1$  (are these hard to find?)
- Private key:
  - d such that de≡1 mod φ(N)
- Encryption of  $M \in \mathbb{Z}_N^*$ 
  - $-C=E(M)=M^e \mod N$
- Decryption of C∈Z<sub>N</sub>\*
  - $-M=D(C)=C^d \mod N$  (why does it work?)

December 18, 2005

Introduction to Cryptography, Benny Pinkas

#### Reminders

- The Chinese Remainder Theorem (CRT):
  - Let N=pq with gcd(p,q)=1.
  - Then for every pair  $(y,z) \in Z_p \times Z_q$  there exists a *unique*  $x \in Z_n$ , s.t.
    - x=y mod p
    - $x=z \mod q$
- Quadratic Residues:
  - The square root of  $x \in Z_p^*$  is  $y \in Z_p^*$  s.t.  $y^2 = x \mod p$ .
  - $x \in \mathbb{Z}_p^*$  has either 2 or 0 square roots, and is denoted as a Quadratic Residue (QR) or Non Quadratic Residue (NQR), respectively.
  - Euler's theorem:  $x \in \mathbb{Z}_p^*$  is a QR iff  $x^{(p-1)/2} = 1 \mod p$ .

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Rabin's encryption systems

- Key generation:
  - Private key: random primes p,q (e.g. 512 bits long).
  - Public key: N=pq.
- Encryption:
  - Plaintext  $m \in Z_N^*$ .
  - Ciphertext:  $c = m^2 \mod N$ . (very efficient)
- Decryption: Compute  $c^{1/2} \mod N$ .

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Square roots modulo N

- $\Rightarrow$  Let x be a quadratic residue (QR) modulo N=pq, then
  - $-x \mod p$  is a QR mod p.  $x \mod q$  is a QR mod q
  - x mod p has two roots mod p: y and p y
  - x mod q has two roots mod q: z and q z
- $\Leftarrow$  If x is a QR mod p and mod q, it is a QR mod N. (Follows from the Chinese remainder theorem.)
  - Each combination of roots modulo p and q results in a root modulo N.
  - We get four roots modulo pq: A, B, pq A, pq B

$$- (y,z) -> A,$$

$$-(y,z) -> A,$$
  $(p - y, q - z) -> pq - A$ 

$$-(y, q - z) -> B,$$

$$-(y, q-z) -> B, (p-y, z) -> pq-B$$

$$= (y,z) \cdot (1,-1)$$

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Square roots modulo N

- N=pq.
- If x has a square root modulo N then it has 4 different square roots modulo N.
  - Let A be s.t.  $A^2=x \mod N$ .
  - Let c be s.t.  $c=1 \mod p$ ,  $c=-1 \mod q$ .
  - Then A, -A, cA, -cA are all square roots of x modulo N.
- Exactly ¼ of the elements are QR mod N.
- $QR_N = QR_p \times QR_q$ .  $|QR_N| = (p-1)(q-1)/4$
- Assume that  $p=q=3 \mod 4$ . (Blum integers.)
  - 1 is an NQR mod p and mod q (Euler's thm).
  - Exactly one of the roots is a QR mod p and a QR mod q.
  - Similarly, for every combination of QR/NQR mod p and mod q.

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Finding square roots modulo N

- Need to compute  $y=x^{1/2} \mod N$ .
- Suppose we know (the private key) p, q.
  - Compute the roots of x modulo p, q. Use Chinese remainder theorem to find x.
- Computing square roots in  $Z_{p}^{*}$ ,
  - Recall,  $x \in QR_p$  iff  $x^{(p-1)/2}=1 \mod p$ .
  - Assume  $p=3 \mod 4$ . (p is a Blum integer).
  - Compute the root as  $y=x^{(p+1)/4} \mod p$ .
    - (p+1)/4 is an integer
    - $y^2 = (x^{(p+1)/4})^2 = x^{(p+1)/2} = x^{(p-1)/2}x = x$
  - If p=1 mod 4 the computation is more complicated (no deterministic algorithm is known)

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Decryption of Rabin cryptosystem

- Input:  $c, p, q. (p=q=3 \mod 4)$
- Decryption:
  - Compute  $m_p = c^{(p+1)/4} \mod p$ .
  - Compute  $m_q = c^{(q+1)/4} \mod q$ .
  - Use CRT to compute the four roots mod N, i.e. four values mod N corresponding to  $[m_p, p-m_p] \times [m_q, q-m_q]$
- There are four possible options for the plaintext!
  - The receiver must select the correct plaintext
  - This can be solved by requiring the sender to embed some redundancy in m
    - E.g., a string of bits of specific form

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Security of the Rabin cryptosystem

- The Rabin cryptosystem is secure against passive attacks iff factoring is hard. ©
- The Rabin cryptosystem is completely insecure against chosen-ciphertext attacks ☺

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Security of the Rabin cryptosystem

- Security against chosen plaintext attacks
- Suppose there is an adversary that breaks the system
  - Adversary's input: N, c
  - Adversary's output: m s.t.  $m^2 = c \mod N$ .
- We show a reduction showing that given this adversary we can break the factoring assumption.
- I.e., we build an algorithm:
  - Input: N
  - Operation: can ask queries to the Rabin decryption oracle
  - Output: the factoring of N.
- Therefore, if one can break Rabin's cryptosystem it can also solve factoring.
- Therefore, if factoring is hard the Rabin cryptosystem is "secure".

December 18, 2005

Introduction to Cryptography, Benny Pinkas

#### The reduction

- Input: N
- Operation:
  - Choose random x.
  - Send N and  $c=x^2 \mod N$ , to adversary.
  - Adversary answers with y s.t. c=y² mod N.
  - If y=x or y=N-x, go back to step 1.
  - Otherwise
    - $x^2 y^2 = 0 \mod N$ .
    - $0 \neq (x-y)(x+y) = cN = cpq$ .
    - Compute gcd(x+y,N), gcd(x-y,N) and obtain p or q.
    - (The gcd is not N since 0 < x, y < N, and therefore -N < x + y, x y < 2N, and it's known that  $x + y, x y \neq 0, N$ ).

happens with prob 1/2

December 18, 2005

Introduction to Cryptography, Benny Pinkas

#### Insecurity against chosen-ciphertext attacks

- A chosen-ciphertext attack reveals the factorization of N.
- The attacker's challenge is to decrypt a ciphertext c.
- It can ask the receiver to decrypt any ciphertext except c.
- The attacker can use the receiver as the "adversary" in the reduction, namely
  - Chooses a random x and send  $c=x^2 \mod N$  to the receiver
  - The receiver returns a square root y of c
  - With probability  $\frac{1}{2}$ ,  $x \neq y$  and  $x \neq -y$ . In this case the attacker can factor N by computing gcd(x-y,N).
  - (The attack does not depend on homomorphic properties of the ciphertext. Namely, it is not required that E(x)E(y)=E(xy).)

December 18, 2005



# Handwritten signatures

- Associate a document with an signer (individual)
- Signature can be verified against a different signature of the individual
- It is hard to forge the signature...
- It is hard to change the document after it was signed...
- Signatures are legally binding

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Desiderata for digital signatures

- Associate a document to an signer
- A digital signature is attached to a document (rather then be part of it)
- The signature is easy to verify but hard to forge
  - Signing is done using knowledge of a private key
  - Verification is done using a public key associated with the signer (rather than comparing to an original signature)
  - It is impossible to change even one bit in the signed document
- A copy of a digitally signed document is as good as the original signed document.
- Digital signatures could be legally binding...

December 18, 2005

Introduction to Cryptography, Benny Pinkas

## Non Repudiation

- Prevent sender from denying that it sent the message
- I.e., the receiver can prove to third parties that the message was signed by the sender
- This is different than message authentication (MACs)
  - There the receiver is assured that the message was sent by the receiver and was not changed in transit
  - But the receiver cannot prove this to other parties
    - MACs: sender and receiver share a secret key K
    - If R sees a message MACed with K, it knows that it could have only been generated by S
    - But if R shows the MAC to a third party, it cannot prove that the MAC was generated by S and not by R

December 18, 2005

Introduction to Cryptography, Benny Pinkas



# Diffie-Hellman "New directions in cryptography" (1976)

- In public key encryption
  - The encryption function is a trapdoor permutation f
    - Everyone can encrypt = compute f(). (using the public key)
    - Only Alice can decrypt = compute  $f^{-1}()$ . (using her private key)
- Alice can use f for signing
  - Alice signs m by computing  $s=f^{-1}(m)$ .
  - Verification is done by computing m=f(s).
- Intuition: since only Alice can compute  $f^{-1}()$ , forgery is infeasible.
- Caveat: none of the established practical signature schemes following this paradigm is provably secure

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Example: simple RSA based signatures

- Key generation: (as in RSA)
  - Alice picks random p,q. Finds  $e \cdot d=1 \mod (p-1)(q-1)$ .
  - Public verification key: (N,e)
  - Private signature key: d
- Signing: Given m, Alice computes  $s=m^d \mod N$ .
- Verification: given *m*,*s* and public key (*N*,*e*).
  - Compute  $m' = s^e \mod N$ .
  - Output "valid" iff m'=m.

December 18, 2005

Introduction to Cryptography, Benny Pinkas

## Message lengths

- A technical problem:
  - |m| might be longer than |N|
  - m might not be in the domain of  $f^{-1}()$

#### Solution:

- Signing: First compute H(m), then compute the signature  $f^{-1}(H(M))$ . Where,
  - H() is collision intractable. I.e. it is hard to find m, m' s.t. H(m)=H(m').
  - The range of H() is contained in the domain of  $f^{1}()$ .
- Verification:
  - Compute f(s). Compare to H(m).
- Use of H() is also good for security reasons. See below.

December 18, 2005

Introduction to Cryptography, Benny Pinkas

# Security of using hash function

- Intuitively
  - Adversary can compute H(), f(), but not  $f^{-1}()$ .
  - Can only compute (m,H(m)) by choosing m and computing H().
  - Adversary wants to compute  $(m, f^{-1}(H(m)))$ .
  - To break signature needs to show s s.t. f(s)=H(m). (E.g.  $s^e=H(m)$ .)
  - Failed attack strategy 1:
    - Pick s, compute f(s), and look for m s.t. H(m)=f(s).
  - Failed attack strategy 2:
    - Pick m,m's.t. H(m)=H(m). Ask for a signature s of m' (which is also a signature of m).
    - (If H() is not collision resistant, adversary could find m,m' s.t. H(m) = H(m').)
  - This doesn't mean that the scheme is secure, only that these attacks fail.

December 18, 2005

Introduction to Cryptography, Benny Pinkas