
1

page 1December 11, 2005 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 7

Public-Key Encryption: El-Gamal, RSA

Benny Pinkas

page 2December 11, 2005 Introduction to Cryptography, Benny Pinkas

Public key encryption

• Alice publishes a public key PKAlice.
• Alice has a secret key SKAlice.
• Anyone knowing PKAlice can encrypt messages using it.
• Message decryption is possible only if SKAlice is known.

• Compared to symmetric encryption:
– Easier key management: n users need n keys rather than

O(n2) keys
• Compared to Diffie-Hellman key agreement:

– No need for an interactive key agreement protocol.

• Secure as long as we can trust the association of keys
with users.

page 3December 11, 2005 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• (Find the similarity with Diffie-Hellman key exchange)

• Public information (can be common to different public keys):

– A prime p=2q+1, and a generator g of H⊂Zp
* of order q.

• Private key: 0 < a < q.
• Public key: h=ga mod p.

• Encryption of message m∈ H⊂ Zp
*

– Pick a random 0 < r < q.
– The ciphertext is (gr, hr·m).

• Decryption of (s,t)
– Compute t /sa (m= hr·m / (gr)a)

Using public key alone

Using private key

page 4December 11, 2005 Introduction to Cryptography, Benny Pinkas

El Gamal and Diffie-Hellman

• ElGamal encryption is similar to DH key exchange
– DH key exchange: Adversary sees ga, gb. Cannot

distinguish the ket gab from random.
– El Gamal:

• A fixed public key ga.

• Sender picks a random gr.

• Sender encrypts message using gar.

• El Gamal is like DH where
– The same ga (gr) is used for all communication
– There is no need to explicitly send this ga

Known to the adversary

Used as a key

2

page 5December 11, 2005 Introduction to Cryptography, Benny Pinkas

El Gamal encryption: security

• The adversary sees:
– Public key: ga. Ciphertext: (gr,gar·m).

• Claim 1: Suppose that the parties share a private key K
which is chosen uniformly at random from H, and that
the ciphertext is R·m. Then this is a perfect cipher.

• Claim 2: The DDH assumption implies that given ga and
gr, a polynomial adversary cannot distinguish gar from a
value K which is chosen uniformly at random from H.

• Corollary: given ga and gr, a polynomial adversary
cannot distinguish gar·m from K·m. Namely, cannot
distinguish the result of the El Gamal encryption from a
perfect encryption.

page 6December 11, 2005 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Setting the public information
• A large prime p, and a generator g of H⊂Zp

* of order q.
– |p| = 756 or 1024 bits.
– p-1 must have a large prime factor (e.g. p=2q+1)

• Otherwise it is easy to solve discrete logs in Zp
* (relevant also

to DH key agreement)
• Needed for the DDH assumption to hold (Legendre’s symbol)

– g must be a generator of a large subgroup of Zp
*.

• Encoding the message:
– m must be in the subgroup generated by g.
– Alternatively, encrypt m using (gr, H(hr)⊕ m). Decryption is

done by computing H((gr)a). (H is a hash function that
preserves the pseudo-randomness of hr.)

page 7December 11, 2005 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Overhead:
– Encryption: two exponentiations; preprocessing possible.
– Decryption: one exponentiation.
– message expansion: m ∈ Zp

* ⇒ (gr, hr·m).

• Randomized encryption
– Must use fresh randomness r for every message.
– Provides semantic security: two different encryptions of the

same message are different.

page 8December 11, 2005 Introduction to Cryptography, Benny Pinkas

Semantic security

• Suppose that a public key encryption procedure was
deterministic.
– Then if Eve suspects that Bob might encrypt either 1 or 2,

she can compute (by herself) E(1) and E(2) and compare
them to the encryption that Bob sends.

• Semantic Security: knowing that an encryption is either
E(1) or E(2), Eve cannot decide with probability better
than ½ which is the case.

• El Gamal encryption provides semantic security:
– Each encryption uses fresh randomness. Therefore Eve

cannot use a table of encryptions of known values.
– Cannot distinguish (gr, hr·1) from (gr, hr·2).

3

page 9December 11, 2005 Introduction to Cryptography, Benny Pinkas

Homomorphic property

• Insecurity against chosen ciphertext attacks:
– Attacker wants to decrypt (s,t) = (gr, hr·m).
– Chooses random r’, computes (s’,t’)=(s, t·r’) =

(gr, hr·(m·r’)).
– Asks for a decryption of (s’,t’). Receives m·r’.

• Homomorphic property:
– Given encryptions of x,y, it’s easy to generate an

encryption of x·y.
• (gr, hr·x) × (gr’, hr’·y) → (gr’’, hr’’ ·x·y)

page 10December 11, 2005 Introduction to Cryptography, Benny Pinkas

Homomorphic encryption

• Homomorphic encryption is useful for performing
operations over encrypted data.

• Given E(m1) and E(m2) it is easy to compute E(m1m2).

• For example, an election procedure:
– A “Yes” is E(2). A “No” vote is E(1).
– Take all the votes an multiply them. Obtain E(2j), where j is

the number of “Yes” votes.
– Decrypt the result and find out how many “Yes” votes

there are, without identifying how each person voted.

page 11December 11, 2005 Introduction to Cryptography, Benny Pinkas

Integer Multiplication & Factoring as a One Way
Function.

p,q N=pq

hard

easy

Can a public key system be based
on this observation ?????

page 12December 11, 2005 Introduction to Cryptography, Benny Pinkas

Excerpts from RSA paper (CACM, 1978)

The era of “electronic mail” may soon be upon us; we must
ensure that two important properties of the current “paper
mail” system are preserved: (a) messages are private, and (b)
messages can be signed. We demonstrate in this paper how
to build these capabilities into an electronic mail system.

At the heart of our proposal is a new encryption method.
This method provides an implementation of a “public-key
cryptosystem,” an elegant concept invented by Diffie and
Hellman. Their article motivated our research, since they
presented the concept but not any practical implementation
of such system.

4

page 13December 11, 2005 Introduction to Cryptography, Benny Pinkas

The Multiplicative Group Zpq*

• p and q denote two large primes (e.g. 512 bits long).
• Denote their product as N = pq.
• The multiplicative group ZN

* =Zpq
* contains all integers

in the range [1,pq-1] that are relatively prime to both p
and q.

• The size of the group is
– ϕ(n) = ϕ(pq) = (p-1) (q-1) = N - (p+q) + 1

• For every x ∈∈ ZN
*, xϕ(N)=x(p-1)(q-1) = 1 mod N.

page 14December 11, 2005 Introduction to Cryptography, Benny Pinkas

Exponentiation in ZN*

• Motivation: use exponentiation for encryption.

• Let e be an integer, 1 < e < ϕ(N) = (p-1)(q-1).
– Question: When is exponentiation to the eth power,

(x --> xe), a one-to-one operation in ZN* ?

• Claim: If e is relatively prime to (p-1)(q-1) then x --> xe is
a one-to-one operation in ZN*.

• Constructive proof:
– Since gcd(e, (p-1)(q-1))=1, e has a multiplicative inverse

modulo (p-1)(q-1).
– Denote it by d, then ed=1+c(p-1)(q-1)=1+cφ(N).
– Let y=xe, then yd =(xe)d=x1+cϕ(N)=x.
– I.e., y --> yd is the inverse of x-->xe.

page 15December 11, 2005 Introduction to Cryptography, Benny Pinkas

The RSA Public Key Cryptosystem

• Public key:
– N=pq the product of two primes (we assume that factoring

N is hard)
– e such that gcd(e,ϕ(N))=1 (are these hard to find?)

• Private key:
– d such that de≡1 mod ϕ(N)

• Encryption of M∈ZN*
– C=E(M)=Me mod N

• Decryption of C∈ZN*
– M=D(C)=Cd mod N (why does it work?)

page 16December 11, 2005 Introduction to Cryptography, Benny Pinkas

Constructing an instance of the RSA PKC

• Alice
– picks at random two large primes, p and q.
– picks uniformly at random a large d that is relatively prime

to (p-1)(q-1) (gcd(d,ϕ(N))=1).
– Alice computes e such that de≡1 mod ϕ(N)

• Let N=pq be the product of p and q.
• Alice publishes the public key (N,e).
• Alice keeps the private key d, as well as the primes p, q

and the number ϕ(N), in a safe place.

5

page 17December 11, 2005 Introduction to Cryptography, Benny Pinkas

Properties of RSA

• Deterministic encryption. In textbook RSA:
– M is always encrypted as Me

– The ciphertext is as long as the domain of M

• The public exponent e may be small. It’s common to
choose its value to be either 3 or 216+1. The private key
d must be long.
– Each encryption involves only a few modular

multiplications. Decryption requires a full exponentiation.
• Chosen ciphertext attack: (homomorphic property)

– RSA is susceptible to chosen ciphertext attacks: Given a
ciphertext C=Me, choose a random R and generate
C’=CRe (an encryption of M·R). Decrypting C’ reveals M.

page 18December 11, 2005 Introduction to Cryptography, Benny Pinkas

Decryption overhead

• Usage of a small e ⇒ Encryption is more efficient than
a full blown exponentiation.

• Decryption requires a full exponentiation (M=Cd mod N)
• Can this be improved?

page 19December 11, 2005 Introduction to Cryptography, Benny Pinkas

The Chinese Remainder Theorem (CRT)

• Thm:
– Let N=pq with gcd(p,q)=1.
– Then for every pair (y,z) ∈ Zp×Zq there exists a unique x∈Zn, s.t.

• x=y mod p

• x=z mod q

• Proof:
– The extended Euclidian algorithm finds a,b s.t. ap+bq=1.
– Define c=bq. c=1 mod p. c=0 mod q.
– Define d=ap. d=0 mod p. d=1 mod q.
– Let x=cy+dz mod N.

• cy+dz = 1y + 0 = y mod p.

• cy+dz = 0 + 1z = z mod q.

– (How efficient is this?)
– (The inverse operation, finding (y,z) from x, is easy.)

page 20December 11, 2005 Introduction to Cryptography, Benny Pinkas

More efficient RSA decryption

• CRT:
– Given p,q compute a,b s.t. ap+bq=1.
– c=bq; d=ap

• Decryption, given C:
– Compute y’=Cd mod p. (instead of d can use d’=d mod p-1)
– Compute z’=Cd mod q. (instead of d can use d’’=d mod q-1)
– Compute M=cy’+dz’ mod N.

• Overhead:
– Two exponentiations modulo p,q, instead of one

exponentiation modulo N.
– Overhead of exponentiation is cubic in length of modulus.
– I.e., save a factor of 23/2.

Once for all
messages

6

page 21December 11, 2005 Introduction to Cryptography, Benny Pinkas

Security reductions

• Security by reduction
– Define what it means for the system to be “secure”

(chosen plaintext/ciphertext attacks, etc.)
– State a “hardness assumption” (e.g., that it is hard to

extract discrete logarithms in a certain group).
– Show that if the hardness assumption holds then the

cryptosystem is secure.

• Benefits:
– To examine the security of the system it is sufficient to

check whether the assumption holds
– Similarly, for setting parameters (e.g. group size).

page 22December 11, 2005 Introduction to Cryptography, Benny Pinkas

RSA Security

• If factoring N is easy then RSA is insecure
– (factor N ⇒ find p,q ⇒ find (p-1)(q-1) ⇒ find d from e)

• Factoring assumption:
– For a randomly chosen p,q of appropriate length, it is infeasible to

factor N=pq.
• This assumption might be too weak (might not ensure secure

encryption)
– Maybe it’s possible to break RSA without factoring N?
– We don’t know how to reduce RSA security to the hardness of

factoring.

• Fact: finding d is equivalent to factoring.
– I.e., if it is possible to find d given (N,e) , then it is easy to factor N.

• “hardness of finding d assumption” no stronger than hardness of
factoring.

page 23December 11, 2005 Introduction to Cryptography, Benny Pinkas

The RSA assumption: Trap-Door One-Way
Function (OWF)

• (what is the minimal assumption required to show that
RSA encryption is secure?)

• (Informal) definition: f : D→R is a trapdoor one way
function if there is a trap-door s such that:
– Without knowledge of s, the function f is a one way. I.e.,

for a randomly chosen x, it is hard to invert f(x).
– Given s, inverting f is easy

• Example: fg,p(x) = gx mod p is not a trapdoor one way
function.

• Example: assuming that RSA is a trapdoor OWF
– fN,e(x) = xe mod N. (assumption: for a random N,e,x,

inverting is hard.)
– The trapdoor is d s.t. ed = 1 mod φ(N)
– [fN,e(x)]d = x mod N

page 24December 11, 2005 Introduction to Cryptography, Benny Pinkas

RSA as a One Way Trapdoor Permutation

x xe mod N

hard

easy

Easy with trapdoor info (d)

7

page 25December 11, 2005 Introduction to Cryptography, Benny Pinkas

RSA assumption: cautions

• The RSA assumption is quite well established:
– RSA is a Trapdoor One-Way Permutation
– Hard to invert on random input – without secret key

• But is it a secure cryptosystem?
– Given the assumption it is hard to reconstruct the input,

but is it hard to learn anything about the input?

• Theorem [G]: RSA hides the log(log(n)) least and most
significant bits of a uniformly-distributed random input
– But some (other) information about pre-image may leak
– And… adversary can detect a repeating message

page 26December 11, 2005 Introduction to Cryptography, Benny Pinkas

Is it safe to use a common modulus ?

• Consider the following environment:
– There is a global modulus N. No one knows its factoring.
– Each party has a pair (ei,di), such that ei,di = 1 mod N.

• Used as a public/private key pair.

• The system is insecure.

• Party 1, knowing (e1,d1)
– can factor N
– Find di for any other party i.

page 27December 11, 2005 Introduction to Cryptography, Benny Pinkas

RSA with a small exponent

• Setting e=3 enables efficient encryption
• Might be insecure if not used properly

– Assume three users with public keys N1, N2, N3.
– Alice encrypts the same message to all of them

• C1 = m3 mod N1

• C2 = m3 mod N2

• C3 = m3 mod N3

• Can an adversary which sees C1,C2,C3 find m?
– m3 < N1N2N3
– N1, N2 and N3 are most likely relatively prime (otherwise

can factor).
– Chinese remainder theorem -> can find m3 mod N (and

therefore m3 over the integers)
– Easy to extract 3rd root over the integers.

