Introduction to Cryptography Lecture 6

Diffie-Hellman Key Exchange

Benny Pinkas

December 4, 2005

Introduction to Cryptography, Benny Pinkas

Number Theory

- Lagrange's Theorem: $\forall a$ in a finite group G, $a^{|G|}=1$.
- Euler's phi function (aka, Euiler's totient function),
- $-\varphi(n)$ = number of elements in Z_n^* (i.e. $|\{x \mid gcd(x,n)=1, 1 \le x \le n\}|$
- $-\varphi(p)=p-1$ for a prime p.
- $n = \prod_{i=1..k} p_i^{e(i)} \implies \varphi(n) = n \cdot \prod_{i=1..k} (1-1/p_i)$
- $-\varphi(p^2)=p(p-1)$ for a prime p.
- $n = p \cdot q \implies \varphi(n) = (p-1)(q-1)$
- Corollary: $\forall a \in Z_n^*$ it holds that $a \varphi^{(n)} = 1 \mod n$
- For Z_p^* (prime p), $a^{p-1}=1 \mod p$ (Fermat's theorem).
- For $Z_n^{*}(n=p\cdot q)$, $a^{(p-1)(q-1)}=1 \mod n$

December 4, 20

Introduction to Cryptography, Benny Pinkas

page 3

Groups we will use

• Z_p^* Multiplication modulo a prime number p

$$-(G, \circ) = (\{1, 2, ..., p-1\}, \times)$$

-
$$E.g.$$
, $Z_7^* = (\{1,2,3,4,5,6\}, \times)$

• Z_N* Multiplication modulo a composite number N

$$-(G, \circ) = (\{a \text{ s.t. } 1 \le a \le N-1 \text{ and } gcd(a, N)=1\}, \times)$$

-
$$E.g.$$
, $Z_{10}^* = (\{1,3,7,9\}, \times)$

- A group G is cyclic if there exists a generator g, s.t.
 ∀ a ∈ G, ∃ i s.t. g'=a.
- I.e., $G = \langle g \rangle = \{1, g, g^2, g^3, ...\}$
- For example $Z_7^* = \langle 3 \rangle = \{1, 3, 2, 6, 4, 5\}$

December 4, 200

Introduction to Cryptography, Benny Pinkas

Finding prime numbers

- Prime number theorem: $\#\{\text{primes} \le x\} \approx x / \ln x \text{ as } x \rightarrow \infty$
- How can we find a random k-bit prime?
- Choose x at random in $\{2^k, \dots, 2^{k+1}-1\}$
- Test if x is prime
- The probability of success is $\approx 1/\ln(2^k) = O(1/k)$.
- The expected number of trials is O(k).

December 4, 200

oduction to Cryptography, Benny Pinkas

Finding generators

- How can we find a generator of Z_n*?
- Can check whether ∀ 1≤i≤p-2 aⁱ ≠ 1 ⊗
- We know that if $a^i=1 \mod p$ then $i \mid p-1$.
- Therefore need to check only *i* for which *i* | *p-1*.
- Easy if we know the factorization of (p-1)
- For all $a \in \mathbb{Z}_{p}^{*}$, the order of a divides (p-1)
- For every integer divisor b of (p-1), check if $a^b=1 \mod p$.
- If none of these checks succeeds, then a is a generator.
- a is a generator iff ord(a)=p-1.

December 4, 2005

Introduction to Cryptography, Benny Pinkas

Quadratic Residues

- The square root of $x \in Z_p^*$ is $y \in Z_p^*$ s.t. $y^2 = x \mod p$.
- Examples: sqrt(2) mod 7 = 3, sqrt(3) mod 7 doesn't exist.
- How many square roots does $x \in Z_{D}^{*}$ have?
- If a and b are square roots of x, then x=a²=b² mod p.
 Therefore (a-b)(a+b)=0 mod p. Therefore either a=b or a=-b modulo p.
- Therefore x has either 2 or 0 square roots, and is denoted as a Quadratic Residue (QR) or Non Quadratic Residue (NQR), respectively.
- $a^{(p-1)/2}$ is either 1 or -1 in Z_0^* . (indeed, $(a^{(p-1)/2})^2$ is always 1)
- Euler's theorem: $x \in Z_n^*$ is a QR iff $x^{(p-1)/2} = 1 \mod p$.
- · Legendre's symbol:

 $\left(\frac{x}{p}\right) = \begin{cases} 1 & x \text{ is a QR in } Z_p^* \\ -1 & x \text{ is an NQR in } Z_p^* \\ 0 & x = 0 \mod p \end{cases}$

Can be efficiently computed as x^{(p-1)/2} mod p.

December 4, 200

ntroduction to Cryptography, Benny Pinkas

page 7

Finding prime numbers of the right form

- How can we know the factorization of p-1
- Easy, for example, if p=2q+1, and q is prime.
- How can we find a k-bit prime of this form?
 - Search for a prime number q of length k-1 bits. (Will be successful after about O(k) attempts.)
 - 2. Check if 2q+1 is prime.
 - 3. If not, go to step 1.

December 4, 20

Introduction to Cryptography, Benny Pinkas

Hard problems in cyclic groups

- The following problems are believed to be hard in Z_ρ* or in some subgroups of Z_ρ*
- Discrete logarithm: let g be a generator of G. The input is a random $x \in G$. The task is to find an r s.t. $x=q^r \mod p$.
- The Diffie-Hellman problem: The input contains g and random x,y∈G, such that x=g^a and y=g^b. The task is to find z=g^{a.b}.
- The Decisional Diffie-Hellman problem: The input contains random $x,y \in G$, such that $x=g^a$ and $y=g^b$; and a pair (z,z') where one of (z,z') is $g^{a\cdot b}$ and the other is g^c (for a random c). The task is to tell which of (z,z') is $g^{a\cdot b}$.
- Solving DDH < solving DH < solving DL

page 8

Does the DDH assumption hold in Z_o*?

- The DDH assumption does not hold in Z_n*
- Assume that both $x=g^a$ and $y=g^b$ are QRs in Z_n^* .
- Namely, their Legendre symbol is 1, both *a* and *b* are even, and it holds that $x^{(p-1)/2} = y^{(p-1)/2} = 1$.
- Then the Legendre symbol of g^{ab} is always 1, whereas the symbol of a random g^c is 1 with probability $\frac{1}{2}$
- Solution: (work in a subgroup of prime order)
- Set p=2q+1, where q is prime.
- $-\varphi(Z_p^*)=p-1=2q$. Therefore Z_p^* has a subgroup H of prime order q.
- Let g be a generator of H.
- The DDH assumption is believed to hold in H. (The Legendre symbol is always 1.)

December 4, 2005

Introduction to Cryptography, Benny Pinkas

Diffie and Hellman: "New Directions in Cryptography", 1976.

- "We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware has freed it from the design limitations of mechanical computing...
- ...such applications create a need for new types of cryptographic systems which minimize the necessity of secure key distribution...
- ...theoretical developments in information theory and computer science show promise of providing provably secure cryptosystems, changing this ancient art into a science."

December 4, 2l

Introduction to Cryptography, Benny Pinkas

age 11

Classical symmetric ciphers

- Alice and Bob share a private key k.
- System is secure as long as k is secret.
- Major problem: generating and distributing k.

Diffie-Hellman

• Came up with the idea of public key cryptography

Secret key_{Bob}

Everyone can learn Bob's public key and encrypt messages to Bob. Only Bob knows the decryption key and can decrypt.

Key distribution is greatly simplified.

- Diffie and Hellman did not have an implementation for a public key encryption system
- Suggested a method for key exchange over insecure communication lines, that is still in use today.

December 4, 2005

Introduction to Cryptography, Benny Pinkas

age 12

Public Key-Exchange

- Goal: Two parties who do not share any secret information, perform a protocol and derive the same shared key.
- No eavesdropper can obtain the new shared key (if it has limited computational resources).
- The parties can therefore safely use the key as an encryption key.

December 4, 2005

Introduction to Cryptography, Benny Pinkas

---- 40

Diffie-Hellamn: security

- A (passive) adversary
- Knows Z_{p}^{*} , g
- Sees g^a , g^b
- Wants to compute g^{ab} , or at least learn something about it
- Recall the Decisional Diffie-Hellman problem:
- Given random $x,y \in \mathbb{Z}_p^*$, such that $x=g^a$ and $y=g^b$; and a value z which is promised to be either g^{ab} or g^c (for a random c), it is hard tell which is the case.
- I.e., g^{ab} is indistinguishable from a random element in H.
- Note: it is insufficient to require that the adversary cannot compute g^{ab}.

December 4, 20

Introduction to Cryptography, Benny Pinkas

age 15

The Diffie-Hellman Key Exchange Protocol

• Public parameters: a group Z_p^* (where |p|=768 or 1024, p=2q+1), and a generator g of $H \subset Z_p^*$ of order q.

· Alice:

• Bob:

- picks a random a∈[1,q].
- picks a random b∈[1,q].
- Sends $g^a \mod p$ to Bob.
- Sends $g^b \mod p$ to Bob.
- Computes $k=(g^b)^a \mod p$
- Computes $k=(g^a)^b \mod p$
- $K = g^{ab}$ is used as a shared key between Alice and Bob.
 - DDH assumption ⇒ *K* is indistinguishable from a random key
 - *K* is a master key which is used to encrypt session keys. Session keys are used to encrypt traffic with a symmetric cryptosystem

December 4, 20

Introduction to Cryptography, Benny Pinkas

Diffie-Hellman key exchange: usage

- The DH key exchange can be used in any group in which the Decisional Diffie-Hellman (DDH) assumption is believed to hold.
- Currently, Z_0^* and elliptic curve groups.
- · Common usage:
- Overhead: 1-2 exponentiations
- Usually,
- A DH key exchange for generating a master key
- Master key used to encrypt session keys
- Session key is used to encrypt traffic with a symmetric cryptosystem

December 4, 2005

Introduction to Cryptography, Benny Pinkas

age 16

An active attack against the Diffie-Hellman Key Exchange Protocol

- An active adversary Eve.
- Can read and change the communication between Alice and Bob.
- ... As if Alice and Bob communicate via Eve.

