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Plan

• Today
– Basic number theory

• Divisors, modular arithmetic

• The GCD algorithm

• Groups

– References:
• Many book on number theory

• Almost all books on cryptography

• Cormen, Leiserson, Rivest, (Stein), “Introduction to 
Algorithms”,  chapter on Number-Theoretic Algorithms.
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Divisors, prime numbers

• We work over the integers
• A non-zero integer b divides an integer a if there exists 

an integer c s.t. a=c·b.
– Denoted as b|a
– I.e. b divides a with no remainder 

• Examples
– Trivial divisors: 1|a,  a|a
– Each of {1,2,3,4,6,8,12,24} divides 24
– 5 does not divide 24

• Prime numbers
– An integer a is prime if it is only divided by 1 and by itself.
– 23 is prime, 24 is not.
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Modular Arithmetic

• Modular operator:
– a mod b,  (or a%b) is the remainder of a when divided by b
– I.e., the smallest r ≥ 0 s.t. ∃ integer q for which a = qb+r.
– (Thm: there is a single choice for such q,r)

– Examples
• 12 mod 5 = 2

• 10 mod 5 = 0

• -5 mod 5 = 0

• -1 mod 5 = 4
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Modular congruency

• a is congruent to b modulo n (a ≡ b mod n) if 
– (a-b) = 0 mod n
– Namely, n divides a-b
– In other words, (a mod n) = (b mod n)

• E.g.,
– 23 ≡ 12 mod 11
– 4 ≡ -1 mod 5

• There are n equivalence classes modulo n
– [3]7 = {…,-11,-4,3,10,17,…}
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Greatest Common Divisor (GCD)

• d is a common divisor of a and b, if d|a and d|b. 
• gcd(a,b) (Greatest Common Divisor), is the largest 

integer that divides both a and b. (a,b >= 0)
– gcd(a,b) = max k s.t. k|a and k|b.

• Examples:
– gcd(30,24) = 6
– gcd(30,23) = 1

• If gcd(a,b)=1 they are denoted relatively prime. 
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Facts about the GCD

• gcd(a,b) = gcd(b, a mod b)    (interesting when a>b)
• Since

– If c|a and c|b then c|(a mod b)
– If c|b and c|(a mod b) then c|a

• If a mod b = 0, then gcd(a,b)=b.

• Therefore, 
gcd(19,8) = 

gcd(8, 3) =  

gcd(3,2) =  

gcd(2,1) = 1

gcd(20,8) =

gcd(8, 4) = 4 

(e.g., a=33, b=15)
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Euclid’s algorithm

Input: a>b>0
Output: gcd(a,b)
Algorithm:

1. if (a mod b) = 0 return (b)
2. else return( gcd(b, a mod b) )

Complexity: 
– O(log a) rounds
– Each round of overhead O(log2 a) bit operations
– Actually, the total overhead can be shown to be O(log2 a)
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The extended gcd algorithm

Finding s, t such that gcd(a,b) = as+bt

Extended-gcd(a,b)  /* output is (gcd(a,b), s, t)

1. If (a mod b=0) then return(b,0,1)

2. (d’,s’,t’) = Extended-gcd(b, a mod b)

3. (d,s,t) = (d’, t’, s’- a/b·t’)

4. return(d,s,t)

Note that the overhead is as in the basic GCD algorithm
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Groups

• Definition: a set G with a binary operation °:G×G→G is 
called a group if:
– (closure) ∀ a,b ∈ G, it holds that a° b ∈ G. 
– (associativity) ∀a,b,c ∈ G, (a° b)° c = a° (b° c).
– (identity element) ∃ e ∈ G, s.t.∀ a ∈ G it holds that a° e =a.
– (inverse element) ∀ a ∈ G ∃ a-1∈ G, s.t. a ° a-1 = e.

• A group is Abelian (commutative) if ∀ a,b ∈ G, it holds 
that a° b = b° a.

• Examples:
– Integers under addition 

• (Z,+) = {…,-3,-2,-1,0,1,2,3,…}
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More examples of groups

• Addition modulo N
– (G,° )  =  ({0,1,2,…,N-1}, +)

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,…,p-1}, ×)
– E.g., Z7

* = ( {1,2,3,4,5,6} , ×)

• Trivial: closure  (the result of the multiplication is never divisible 
by p), associativity, existence of identity element.

• The extended GCD algorithm shows that an inverse always 
exists:

– s·a+t·p = 1    ⇒ s·a = 1-t·p ⇒ s·a ≡1 mod p
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More examples of groups

• ZN
*  Multiplication modulo a composite number N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)
– E.g., Z10

* = ( {1,3,7,9}, ×)

– Closure: 
• s·a+t·N = 1

• s’·b+t’·N = 1

• ss’·(ab)+(sat’+s’bt+ tt’N)·N = 1

– Associativity: trivial
– Existence of identity element: 1. 
– Inverse element: as in Zp

*
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Subgroups

• Let (G,° ) be a group. 
– (H,° ) is a subgroup of G if

• (H,° ) is a group

• H ⊆ G 

– For example, H = ( {1,2,4}, ×) is a subgroup of Z7
*.

• Lagrange’s theorem:
If (G,° ) is finite and (H,° ) is a subgroup of (G,° ), then 
|H| divides |G|

For example: 3|6.
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Cyclic Groups

• Exponentiation is repeated application of °
– a3 = a° a° a.
– a0 = 1.
– a-x = (a-1)x

• A group G is cyclic if there exists a generator g, s.t.      
∀ a∈G, ∃ i s.t. gi=a. 
– I.e., G= <g> = {1, g, g2, g3, …} 
– For example Z7

* = <3> = {1,3,2,6,4,5}
• Not all a∈G are generators of G, but they all generate a 

subgroup of G.
– E.g. 2 is not a generator of Z7

* 

• The order of a is the smallest j>0 s.t. a j=1.
• Lagrange’s theorem ⇒ for x∈Zp

*,   ord(x) | p-1.
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Fermat’s theorem

• Corollary of Lagrange’s theorem: if (G,° ) is a finite 
group, then ∀a∈G, a|G|=1. 

• Corollary (Fermat’s theorem): ∀ a∈ Zp
*,  ap-1 =1 mod p. 

E.g., for all ∀a∈Z7
*, a6=1, a7=a.

• Computing inverses:
• Given a∈G, how to compute a-1?

– Fermat’s theorem: a-1 = a|G|-1 (= ap-2 in Zp
* )

– Or, using the extended gcd algorithm (for Zp* or ZN*):
• gcd(a,p) = 1

• s·a + t·p = 1  ⇒ s·a = -t·p + 1 ⇒ s is a-1 !!

– Which is more efficient?
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Computing in Zp
*

• P is a huge prime (1024 bits)
• Easy tasks (measured in bit operations):

– Adding in O(log p)  (linear n the length of p)
– Multiplying in O(log2 p)   (and even in O(log1.7 p) )
– Inverting (a to a-1) in O(log2 p) 
– Exponentiations:

• xr mod p in O(log r · log2 p), using repeated squaring


