Introduction to Cryptography Lecture 5

Basic Number Theory

Benny Pinkas

November 27, 2005

Introduction to Cryptography, Benny Pinkas

Divisors, prime numbers

- We work over the integers
- A non-zero integer *b* divides an integer *a* if there exists an integer *c* s.t. *a=c·b*.
- Denoted as bla
- I.e. b divides a with no remainder
- Examples
- Trivial divisors: 1/a, a/a
- Each of {1,2,3,4,6,8,12,24} divides 24
- 5 does not divide 24
- Prime numbers
- An integer a is prime if it is only divided by 1 and by itself.
- 23 is prime, 24 is not.

November 27, 2005

Introduction to Cryptography, Benny Pinkas

page 3

Plan

- Today
- Basic number theory
- Divisors, modular arithmetic
- The GCD algorithm
- Groups
- References:
- · Many book on number theory
- · Almost all books on cryptography
- Cormen, Leiserson, Rivest, (Stein), "Introduction to Algorithms", chapter on Number-Theoretic Algorithms.

November 27, 20

Introduction to Cryptography, Benny Pinkas

Modular Arithmetic

- Modular operator:
 - a mod b, (or a%b) is the remainder of a when divided by b
 - I.e., the smallest $r \ge 0$ s.t. \exists integer q for which a = qb+r.
 - (Thm: there is a single choice for such q,r)
 - Examples
 - $12 \mod 5 = 2$
 - $10 \mod 5 = 0$
 - $-5 \mod 5 = 0$
 - $-1 \mod 5 = 4$

November 27, 200

Introduction to Cryptography, Benny Pinkas

page 4

Modular congruency

- a is congruent to b modulo n ($a \equiv b \mod n$) if
- $(a-b) = 0 \mod n$
- Namely, *n* divides *a-b*
- In other words, $(a \mod n) = (b \mod n)$
- E.g.,
- $-23 \equiv 12 \mod 11$
- $-4 \equiv -1 \mod 5$
- There are *n* equivalence classes modulo *n*

$$-[3]_7 = {...,-11,-4,3,10,17,...}$$

Introduction to Cryptography, Benny Pinkas

Facts about the GCD

- $gcd(a,b) = gcd(b, a \mod b)$ (interesting when a>b)
- Since

- (e.g., a=33, b=15)
- If cla and clb then cl(a mod b)
- If c/b and c/(a mod b) then c/a
- If $a \mod b = 0$, then gcd(a,b)=b.
- · Therefore,

$$gcd(2,1) = 1$$

Introduction to Cryptography, Benny Pinkas

gcd(20,8) =

gcd(8, 4) = 4

Greatest Common Divisor (GCD)

- d is a common divisor of a and b, if dla and dlb.
- gcd(a,b) (Greatest Common Divisor), is the largest integer that divides both a and b. $(a,b \ge 0)$
- $-gcd(a,b) = \max k s.t. k|a$ and k|b.
- Examples:
- $-\gcd(30,24)=6$
- $-\gcd(30,23)=1$
- If gcd(a,b)=1 they are denoted relatively prime.

Introduction to Cryptography, Benny Pinkas

Euclid's algorithm

Input: a>b>0

Output: gcd(a,b)

Algorithm:

- 1. if $(a \mod b) = 0$ return (b)
- 2. else return(gcd(b, a mod b))

Complexity:

- O(log a) rounds
- Each round of overhead O(log² a) bit operations
- Actually, the total overhead can be shown to be O(log² a)

The extended gcd algorithm

Finding s, t such that gcd(a,b) = as+bt

Extended-gcd(a,b) /* output is (gcd(a,b), s, t)

- 1. If (a mod b=0) then return(b,0,1)
- 2. (d',s',t') = Extended-gcd(b, a mod b)
- 3. $(d,s,t) = (d', t', s'- \lfloor a/b \rfloor \cdot t')$
- 4. return(d,s,t)

Note that the overhead is as in the basic GCD algorithm

November 27, 2005

Introduction to Cryptography, Benny Pinkas

More examples of groups

- Addition modulo N
- $-(G,^{\circ}) = (\{0,1,2,...,N-1\}, +)$
- Z_0^* Multiplication modulo a prime number p
- $-(G, \circ) = (\{1,2,...,p-1\}, \times)$
- E.g., $Z_7^* = (\{1,2,3,4,5,6\}, \times)$
- Trivial: closure (the result of the multiplication is never divisible by p), associativity, existence of identity element.
- The extended GCD algorithm shows that an inverse always exists:
- $s \cdot a + t \cdot p = 1 \implies s \cdot a = 1 t \cdot p \implies s \cdot a \equiv 1 \mod p$

November 27, 200

Introduction to Cryptography, Benny Pinkas

age 11

Groups

- Definition: a set G with a binary operation °:G×G→G is called a group if:
- (closure) $\forall a,b \in G$, it holds that $a^{\circ}b \in G$.
- (associativity) $\forall a,b,c \in G$, $(a^{\circ}b)^{\circ}c = a^{\circ}(b^{\circ}c)$.
- (identity element) \exists e ∈ G, s.t. \forall a ∈ G it holds that a° e =a.
- (inverse element) $\forall a \in G \exists a^{-1} \in G$, s.t. a $\circ a^{-1} = e$.
- A group is Abelian (commutative) if $\forall a,b \in G$, it holds that $a^{\circ}b = b^{\circ}a$.
- Examples:
 - Integers under addition
 - $(Z,+) = \{...,-3,-2,-1,0,1,2,3,...\}$

November 27, 200

Introduction to Cryptography, Benny Pinkas

---- 40

More examples of groups

- Z_N^* Multiplication modulo a composite number N
 - $-(G, \circ) = (\{a \text{ s.t. } 1 \le a \le N-1 \text{ and } gcd(a, N)=1\}, \times)$
 - $-E.g., Z_{10}^* = (\{1,3,7,9\}, \times)$
 - Closure:
 - s⋅a+t⋅N = 1
 - $s' \cdot b + t' \cdot N = 1$
 - ss'·(ab)+(sat'+s'bt+ tt'N)·N = 1
 - Associativity: trivial
- Existence of identity element: 1.
- Inverse element: as in Z_p^*

November 27, 2005

roduction to Cryptography, Benny Pinkas

190 12

Subgroups

- Let $(G, ^{\circ})$ be a group.
- (H, °) is a subgroup of G if
 - (H, °) is a group
- *H* ⊆ *G*
- For example, $H = (\{1,2,4\}, \times)$ is a subgroup of Z_7^* .
- Lagrange's theorem:

If $(G, ^{\circ})$ is finite and $(H, ^{\circ})$ is a subgroup of $(G, ^{\circ})$, then |H| divides |G|

For example: 3|6.

November 27 2005

Introduction to Cryptography, Benny Pinkas

---- 40

Fermat's theorem

- Corollary of Lagrange's theorem: if (G, \circ) is a finite group, then $\forall a \in G, a^{|G|}=1$.
- Corollary (Fermat's theorem): $\forall a \in \mathbb{Z}_p^*, a^{p-1} = 1 \mod p$. E.g., for all $\forall a \in \mathbb{Z}_7^*, a^6 = 1, a^7 = a$.
- Computing inverses:
- Given $a \in G$, how to compute a^{-1} ?
- Fermat's theorem: $a^{-1} = a^{|G|-1} \ (= a^{p-2} \text{ in } Z_p^*)$
- Or, using the extended gcd algorithm (for Z_n^* or Z_N^*):
 - gcd(a,p) = 1
- $s \cdot a + t \cdot p = 1 \implies s \cdot a = -t \cdot p + 1 \implies s \text{ is } a^{-1}!!$
- Which is more efficient?

November 27, 200

Introduction to Cryptography, Benny Pinkas

page 15

Cyclic Groups

- Exponentiation is repeated application of $^{\circ}$
- $-a^3=a^{\circ}a^{\circ}a$.
- $-a^{0}=1.$
- $-a^{-x}=(a^{-1})^x$
- A group G is cyclic if there exists a generator g, s.t.
 ∀ a∈G, ∃ i s.t. qⁱ=a.
- I.e., $G = \langle g \rangle = \{1, g, g^2, g^3, ...\}$
- For example $Z_7^* = \langle 3 \rangle = \{1, 3, 2, 6, 4, 5\}$
- Not all a∈G are generators of G, but they all generate a subgroup of G.
- E.g. 2 is not a generator of Z_7^*
- The order of a is the smallest j>0 s.t. $a^{j}=1$.
- Lagrange's theorem \Rightarrow for $x \in Z_n^*$, ord(x) | p-1.

November 27, 200

Introduction to Cryptography, Benny Pinkas

.....

Computing in Z_p^*

- P is a huge prime (1024 bits)
- Easy tasks (measured in bit operations):
- Adding in O(log p) (linear n the length of p)
- Multiplying in O(log² p) (and even in O(log^{1.7} p))
- Inverting (a to a^{-1}) in O(log² p)
- Exponentiations:
- $x^r \mod p$ in $O(\log r \cdot \log^2 p)$, using repeated squaring

November 27, 200

roduction to Cryptography, Benny Pinkas
