Introduction to Cryptography

Lecture 5

Basic Number Theory

Benny Pinkas

Divisors, prime numbers

- We work over the integers
- A non-zero integer b divides an integer a if there exists an integer c s.t. $a=c \cdot b$.
- Denoted as b/a
- I.e. b divides a with no remainder
- Examples
- Trivial divisors: 1/a, a/a
- Each of \{1,2,3,4,6,8,12,24\} divides 24
- 5 does not divide 24
- Prime numbers
- An integer a is prime if it is only divided by 1 and by itself. - 23 is prime, 24 is not.

Plan

- Today
- Basic number theory
- Divisors, modular arithmetic
- The GCD algorithm
- Groups
- References:
- Many book on number theory
- Almost all books on cryptography
- Cormen, Leiserson, Rivest, (Stein), "Introduction to Algorithms", chapter on Number-Theoretic Algorithms.

Modular Arithmetic

- Modular operator:
- $a \bmod b$, (or $a \% b)$ is the remainder of a when divided by b
- I.e., the smallest $r \geq 0$ s.t. \exists integer q for which $a=q b+r$.
- (Thm: there is a single choice for such q, r)
- Examples
- $12 \bmod 5=2$
- $10 \bmod 5=0$
- $-5 \bmod 5=0$
- $-1 \bmod 5=4$

Modular congruency

- a is congruent to b modulo $n(a \equiv b \bmod n)$ if
$-(a-b)=0 \bmod n$
- Namely, n divides $a-b$
- In other words, $(a \bmod n)=(b \bmod n)$
- E.g.,
$-23 \equiv 12 \bmod 11$
$-4 \equiv-1 \bmod 5$
- There are n equivalence classes modulo n

$$
-[3]_{7}=\{\ldots,-11,-4,3,10,17, \ldots\}
$$

Facts about the GCD

- $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b) \quad$ (interesting when $a>b)$
- Since
(e.g., $a=33, b=15$)
- If c / a and c / b then $c /(a \bmod b)$
- If c / b and $c /(a \bmod b)$ then c / a
- If $a \bmod b=0$, then $\operatorname{gcd}(a, b)=b$.
- Therefore,

```
gcd(19,8)=
gcd(8, 3) =
gcd(20,8) =
gcd}(8,4)=
gcd(3,2) =
gcd}(2,1)=
```


Greatest Common Divisor (GCD)

- d is a common divisor of a and b, if d / a and d / b.
- $\operatorname{gcd}(a, b)$ (Greatest Common Divisor), is the largest integer that divides both a and $b .(a, b>=0)$
$-\operatorname{gcd}(a, b)=\max k s . t . k / a$ and k / b.
- Examples:
$-\operatorname{gcd}(30,24)=6$
$-\operatorname{gcd}(30,23)=1$
- If $\operatorname{gcd}(a, b)=1$ they are denoted relatively prime.

Euclid's algorithm

Input: $a>b>0$
Output: gcd(a,b)

Algorithm:

1. if $(a \bmod b)=0$ return (b)
2. else return $(\operatorname{gcd}(b, a \bmod b))$

Complexity:

- O(log a) rounds
- Each round of overhead $O\left(\log ^{2} a\right)$ bit operations
- Actually, the total overhead can be shown to be O($\left.\log ^{2} a\right)$

The extended gcd algorithm

Finding s, t such that $\operatorname{gcd}(a, b)=a s+b t$

Extended- $\operatorname{gcd}(\mathrm{a}, \mathrm{b}) /^{*}$ output is $(\operatorname{gcd}(\mathrm{a}, \mathrm{b}), \mathrm{s}, \mathrm{t})$

1. If ($a \bmod b=0$) then return $(b, 0,1)$
2. $\left(d^{\prime}, s^{\prime}, t^{\prime}\right)=$ Extended-gcd $(b, a \bmod b)$
3. $(d, s, t)=\left(d^{\prime}, t^{\prime}, s^{\prime}-\lfloor a / b\rfloor \cdot t^{\prime}\right)$
4. return $(\mathrm{d}, \mathrm{s}, \mathrm{t})$

Note that the overhead is as in the basic GCD algorithm

More examples of groups

- Addition modulo N

$$
-\left(G,{ }^{\circ}\right)=(\{0,1,2, \ldots, N-1\},+)
$$

- Z_{p}^{*} Multiplication modulo a prime number p
$-\left(G,{ }^{\circ}\right)=(\{1,2, \ldots, p-1\}, x)$
- E.g., $Z_{7}^{*}=(\{1,2,3,4,5,6\}, x)$
- Trivial: closure (the result of the multiplication is never divisible by p), associativity, existence of identity element.
The extended GCD algorithm shows that an inverse always exists:
$-s \cdot a+t \cdot p=1 \Rightarrow s \cdot a=1-t \cdot p \Rightarrow s \cdot a \equiv 1 \bmod p$

Groups

- Definition: a set G with a binary operation ${ }^{\circ}: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$ is called a group if:
- (closure) $\forall a, b \in G$, it holds that $a^{\circ} b \in G$.
- (associativity) $\forall a, b, c \in G,\left(a^{\circ} b\right)^{\circ} c=a^{\circ}\left(b^{\circ} c\right)$.
- (identity element) $\exists e \in G$, s.t. $\forall a \in G$ it holds that $a^{\circ} e=a$.
- (inverse element) $\forall a \in G \exists a^{-1} \in G$, s.t. $a^{0} a^{-1}=e$.
- A group is Abelian (commutative) if $\forall a, b \in G$, it holds that $a^{\circ} b=b^{\circ} a$.
- Examples:
- Integers under addition

$$
\cdot(Z,+)=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

More examples of groups

- $Z_{N}{ }^{*}$ Multiplication modulo a composite number N $-\left(G,{ }^{\circ}\right)=(\{a \operatorname{s.t} .1 \leq a \leq N-1$ and $\operatorname{gcd}(a, N)=1\}, x)$
- E.g., $Z_{10}{ }^{*}=(\{1,3,7,9\}, x)$
- Closure:
- $s \cdot a+t \cdot N=1$
- $s^{\prime} \cdot b+t^{\prime} \cdot N=1$
- ss'.(ab)+(sat'+s'bt+ tt'N).N = 1
- Associativity: trivial
- Existence of identity element: 1.
- Inverse element: as in Z_{p}

Subgroups

- Let $\left(G,{ }^{\circ}\right)$ be a group.
- $\left(H,{ }^{\circ}\right)$ is a subgroup of G if
- $\left(H,{ }^{\circ}\right)$ is a group
- $H \subseteq G$
- For example, $H=(\{1,2,4\}, x)$ is a subgroup of $Z_{7}{ }^{*}$.
- Lagrange's theorem:

If $\left(G,{ }^{\circ}\right)$ is finite and $\left(H,{ }^{\circ}\right)$ is a subgroup of $\left(G,{ }^{\circ}\right)$, then $\mid H /$ divides |G|

For example: 3|6.

Fermat's theorem

- Corollary of Lagrange's theorem: if $\left(G,{ }^{\circ}\right)$ is a finite group, then $\forall a \in G, a^{|G|}=1$.
- Corollary (Fermat's theorem): $\forall a \in Z_{p}{ }^{*}, a^{p-1}=1 \bmod p$. E.g., for all $\forall a \in Z_{7}^{*}, a^{6}=1, a^{7}=a$.
- Computing inverses:
- Given $a \in G$, how to compute a^{-1} ?
- Fermat's theorem: $a^{-1}=a^{|G|-1} \quad\left(=a^{p-2}\right.$ in $\left.Z_{p}^{*}\right)$
- Or, using the extended gcd algorithm (for $Z_{p}{ }^{*}$ or $Z_{N}{ }^{*}$):
- $\operatorname{gcd}(a, p)=1$
$\cdot s \cdot a+t \cdot p=1 \Rightarrow s \cdot a=-t \cdot p+1 \Rightarrow s$ is a^{-1} !!
- Which is more efficient?

Cyclic Groups

- Exponentiation is repeated application of ${ }^{\circ}$
$-a^{3}=a^{0} a^{0} a$.
$-a^{0}=1$.
$-a^{-x}=\left(a^{-1}\right)^{x}$
- A group G is cyclic if there exists a generator g, s.t. $\forall a \in G, \exists i$ s.t. $g^{\prime}=a$.
- I.e., $G=\langle g\rangle=\left\{1, g, g^{2}, g^{3}, \ldots\right\}$
- For example $Z_{7}^{*}=\langle 3\rangle=\{1,3,2,6,4,5\}$
- Not all $a \in G$ are generators of G, but they all generate a subgroup of G.
- E.g. 2 is not a generator of Z_{7}
- The order of a is the smallest $j>0$ s.t. $a^{j}=1$.
- Lagrange's theorem \Rightarrow for $x \in Z_{p}{ }^{*}, \quad \operatorname{ord}(x) \mid p-1$.

Computing in Z_{p}^{*}

- P is a huge prime (1024 bits)
- Easy tasks (measured in bit operations):
- Adding in $O(\log p)$ (linear n the length of p)
- Multiplying in $O\left(\log ^{2} p\right) \quad\left(\right.$ and even in $\left.O\left(\log ^{1.7} p\right)\right)$
- Inverting (a to a^{-1}) in $O\left(\log ^{2} p\right.$)
- Exponentiations:
- $x^{r} \bmod p$ in $\mathrm{O}\left(\log r \cdot \log ^{2} p\right.$), using repeated squaring

