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- Today

— Basic number theory
« Divisors, modular arithmetic

« The GCD algorithm
« Groups

— References:
« Many book on number theory

- Almost all books on cryptography
- Cormen, Leiserson, Rivest, (Stein), “Introduction to

Algorithms”, chapter on Number-Theoretic Algorithms.
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- We work over the integers

- A non-zero integer b divides an integer a if there exists
an integer c s.t. a=c-h.
— Denoted as b|a
— l.e. b divides a with no remainder

- Examples
— Trivial divisors: 1|a, ala
- Each of {1,2,3,4,6,8,12,24} divides 24
— 5 does not divide 24
- Prime numbers
— Aninteger a is prime if it is only divided by 1 and by itself.
— 23 is prime, 24 is not.
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- Modular operator:
—amod b, (or a%b) is the remainder of a when divided by b
— l.e., the smallest r >0 s.t. 3 integer g for which a = gb+r.
— (Thm: there is a single choice for such q,r)

— Examples
«12mod5=2

« 10mod5=0
e -5mod5=0
e -1mod5=4
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. ais congruent to b modulo n (a =b mod n) if
—(@-b)=0modn
-~ Namely, n divides a-b
— In other words, (a mod n) = (b mod n)

- E.Q.,
- 23 =12 mod 11
-4 =-1mod>5

- There are n equivalence classes modulo n
-3, ={...,-11,-4,3,10,17,...}
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- d iIs a common divisor of a and b, if d|a and d|b.

. gcd(a,b) (Greatest Common Divisor), is the largest
integer that divides both a and b. (a,b >= 0)

- gcd(a,b) = max k s.t. kla and k|b.

- Examples:
- gcd(30,24) =6
- gcd(30,23) =1

- If gcd(a,b)=1 they are denoted relatively prime.
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. gcd(a,b) = gcd(b, a mod b)

. Since

— If c]a and cl|b then c|(a mod b)
— If c|b and c|(a mod b) then c|a

- Ifamod b =0, then gcd(a,b)=b.

- Therefore,
erefore God(19.8) =

lgcd(8, 3) =
lgcd(3,2) =
lgcd(2,1) =1

(interesting when a>hb)
(e.g., a=33, b=15)

cd(20,8) =
gcd(8,4) =4

Introduction to Cryptography, Benny Pinkas



Input: a>b>0
Output: gcd(a,b)
Algorithm:
1. if (@ mod b) = 0 return (b)
2. else return( gcd(b, a mod b) )

Complexity:
— O(log a) rounds
- Each round of overhead O(log? a) bit operations

Actually, the total overhead can be shown to be O(log? a)
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Finding s, t such that gcd(a,b) = as+bt

Extended-gcd(a,b) /* output is (gcd(a,b), s, t)
1. If (a mod b=0) then return(b,0,1)
2. (d',s',t') = Extended-gcd(b, a mod b)
3. (d,s,t)=(d', t', s- La/bt)
4

. return(d,s,t)

Note that the overhead is as in the basic GCD algorithm
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- Definition: a set G with a binary operation °:GxG—G is
called a group If:
— (closure) VVa,b € G, it holds that a°b € G.
— (associativity) va,b,c € G, (a°b)°c=a°°(b°c).

— (identity element) 7e € G, s.t. Va € G it holds that a°e =a.

— (inverse element) VYa e G 7ale G, st.a °al=e.

A group is Abelian (commutative) if a,b € G, it holds
thata°b =b°a.

- Examples:

— Integers under addition
e (2,+)={...,-3,-2,-1,0,1,2,3,...}
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More examples of groups

« Addition modulo N
-(G,°) = ({0,1,2,...,N-1}, +)

- Z,; Multiplication modulo a prime number p

-(G,°) = ({1,2,...,p-1}, x)
- E.g.,Z;7=({1,2,3,4,5,6}, x)

- Trivial: closure (the result of the multiplication is never divisible
by p), associativity, existence of identity element.

- The extended GCD algorithm shows that an inverse always
exists:

~-sattp=1 = sa=1-tp = s:a=slmodp
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- Z,/ Multiplication modulo a composite number N
- (G,°) = ({as.t. 1<a<N-1 and gcd(a,N)=1}, x)
- E.9., Z; = ({1,3,7,9}, x)

— Closure:
e Ssatt:N=1
« S"b+t"N =1
« ss’-(ab)+(sat’'+s’bt+ tt'N)-N = 1
— Associativity: trivial
— Existence of identity element: 1.
- Inverse element: as in Z;;
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. Let (G, °) be a group.
— (H, °) is a subgroup of G if
« (H,°)isagroup
e HcG
— For example, H = ({1,2,4}, x) is a subgroup of Z.".

. Lagrange’s theorem:
If (G, °) is finite and (H, ©) is a subgroup of (G, °), then
|H| divides |G|

For example: 3|6.

November 27, 2005 Introduction to Cryptography, Benny Pinkas page 13




Cyclic Groups

- Exponentiation is repeated application of °
-al=a‘a‘a.
-~ab=1.
—ax= (a-l)x
- A group G is cyclic if there exists a generator g, s.t.
VaeG, 71s.t. g=a.
- le.,G=<g>={1,0,02% @3 ...}
— For example Z,"=<3>={1,3,2,6,4,5}
- Not all aeG are generators of G, but they all generate a
subgroup of G.
- E.g. 2 is not a generator of Z°
- The order of a is the smallest j>0 s.t. a I=1.

- Lagrange’s theorem = for xeZ ", ord(x) | p-1.
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- Corollary of Lagrange’s theorem: if (G, °) is a finite
group, then vaeG, al®l=1.
. Corollary (Fermat's theorem): Vae Zp*, ar1 =1 mod p.
E.g., for all YaeZ,", a=1, a’=a.
- Computing inverses:
- Given aeG, how to compute a1?
- Fermat's theorem: a = al®l1 (= aP2inZ;")
- Or, using the extended gcd algorithm (for Z;* or Z*):
- gcd(a,p) =1
sa+tp=1 =sa=-tp+1= sisatlll
— Which is more efficient?
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P is a huge prime (1024 bits)
- Easy tasks (measured in bit operations):
— Adding in O(log p) (linear n the length of p)
— Multiplying in O(log? p) (and even in O(log!’ p) )
— Inverting (a to a1) in O(log? p)
— Exponentiations:
« X"mod p in O(log r - log? p), using repeated squaring
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